Skip to main content

Ascomycota and Integrated Pest Management

  • Chapter
  • First Online:
Microbes for Sustainable Insect Pest Management

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

Employing fungal pathogens to combat insect pests of agricultural importance has gained momentum due to its ecofriendly approach, availability and host specificity. Successful future prospects include efficiency and improvements in the research methods, proper selection of strains, mass production, genetic manipulations and other innovative techniques. Further aspects are the preparation of formulations that will increase persistence, longer shelf life and ease of application, pathogen virulence and spectrum of action. A description of Ascomycetes biology, taxonomic characters and mode of action is presented here with a focus on its role in Intergrated Pest Management strategies. Recent studies on genetic modifications for improving their virulence are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alves, S. B., Pereira, R. M., Lopes, R. B., & Tamai, M. A. (2003). Use of entomopathogenic fungi in Latin America. In R. K. Upadhyay (Ed.), Advances in microbial control of insect pests (pp. 193–211). New York: Kluwer Academic Plenum.

    Google Scholar 

  • Anand, R., Prasad, B., & Tiwary, B. N. (2009). Relative susceptibility of Spodoptera litura pupae to selected entomopathogenic fungi. BioControl, 54, 85–92.

    Article  Google Scholar 

  • Barr, D. J. S. (1992). Evolution and kingdoms of organisms from the perspective of a mycologist. Mycologia, 84, 1–11.

    Article  Google Scholar 

  • Barson, G. (1976). Laboratory studies on the fungus verticillum lecanii, a laral pathogen of large elm bark beetle (Colytus scolytus). Annals of Applied Biology, 83, 207–214.

    Article  Google Scholar 

  • Bateman, R. P., Neethling, D., & Oosthuizen, F. (1998). Green Muscle handbook for central and southern Africa (pp. 412–423). SA: Lubilosa/Biological Control Products.

    Google Scholar 

  • Beavers, J. B., McCoy, C. W., & Kaplan, D. T. (1983). Natural enemies of sub-terranean Diaprepes abbbrevialus (Coleoptera: Curculionidae) larvae in Florida. Environmental Entomology, 12, 840–843.

    Article  Google Scholar 

  • Bedford, G. O. (1980). Biology, ecology and control of palm rhinoceros beetles. Annual Review of Entomology, 25, 309–339.

    Article  Google Scholar 

  • Berbee, M. L., & Taylor, J. W. (1992). Detecting the morphological convergence in true fungi using 18S RNA sequence data. Bio Systems, 28, 117–125.

    Article  CAS  PubMed  Google Scholar 

  • Beys da Silva, W. O., Santi, L., Schrank, A., & Vainstein, M. H. (2011). Metarhiziumanisopliae lipolytic activity plays a pivotalrolein Rhipicephalus (Boophilus) microplus infection. Fungal Biology, 114, 10–15.

    Article  CAS  Google Scholar 

  • Bidochka, M. J., & Small, C. (2005). Phylogeography of Metarhizium, an insect pathogenic fungus. In F. E. Vega & M. Blackwell (Eds.), Insect-fungal associations (pp. 28–49). New York: Oxford University Press Inc.

    Google Scholar 

  • Boldo, J. T., Junges, A., do Amaral, K. B., Staats, C. C., Vainstein, M. H., & Schrank, A. (2009). Endochitinase CHI2 of the biocontrol fungus Metarhizium anisopliae affects its virulence toward the cotton stainer bug Dysdercus peruvianus. Current Genetics, 55, 551–560.

    Article  CAS  PubMed  Google Scholar 

  • Boucias, D. G., & Pendland, J. C. (1988). Detection of protease inhibitors in the haemolymph of resistant Anticarsia gemmatalis which are inhibitory to the entomopathogenic fungus Nomuraea rileyi. Experientia, 43, 336–339.

    Article  Google Scholar 

  • Butt, T. M., Greenfield, B. P. J., Greig, C., Maffeis, T. G. G., Taylor, J. W. D., Piasecka, J., Dudley, E., Abdulla, A., Dubovskiy, I. M., & Garrido-Jurado, I. (2013). Metarhizium anisopliae pathogenesis of mosquito larvae: A verdict of accidental death. PLoS One, 8, e81686.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Butt, T. M., Coates, C. J., Dubovskiy, I. M. & Ratcliffe, N. A. (2016). Entomopathogenic fungi: New insights into host-pathogen interactions. In: Lovett, B., & St. Leger, R. J. (Eds). Advances in genetics. (pp. 307–364). London: Elsevier.

    Google Scholar 

  • Carroll, G. C., & Wicklow, D. T. (1992). The fungal community: Its organization and role in the ecosystem (Vol. 23, pp. 208–208). New York: Marcel Dekker Inc.

    Google Scholar 

  • Carruthers, R. I., & Hural, K. (1990). Fungi as naturally occurring entomopathogens. UCLA Symposia Molecular and Cell Biology, 112, 115–138.

    Google Scholar 

  • Carruthers, R. I., & Soper, R. S. (1987). Fungal diseases. In J. R. Fuxa & Y. Tanada (Eds.), Epizootiology of insect diseases (pp. 357–416). New York: Wiley.

    Google Scholar 

  • Claydon, N., & Grove, J. F. (1982). Insecticidal secondary metabolic products from the entomogenous fungus Verticillium lecanii. Journal of Invertebrate Pathology, 40, 413–418.

    Article  CAS  Google Scholar 

  • Copping, L. G. (Ed.). (2001). The biopesticide manual: A world compedium (2nd ed.). Farnham: British Crop Protection Council.

    Google Scholar 

  • Copping, L. G. (2004). The manual of biocontrol agents, third ed. British crop protection. UK: Council Aston: Available online https://www.bcpc.org/product/manual-of-biocontrol-agents-online

  • De Crecy, E., Jaronski, S., Lyons, B., Lyons, T. J., & Keyhani, N. O. (2009). Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnology, 9, 74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deacon, J. W. (1997). Modern mycology (p. 303). Cambridge: Blackwell Science Ltd.

    Google Scholar 

  • Driver, F., Milner, R. J., & Trueman, J. W. H. (2000). A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycological Research, 104, 134–150.

    Article  CAS  Google Scholar 

  • Ekbom, B. S. (1979a). Investigations on the potential of parasitic fungus (Verticillium lecanii) for biological control of the greenhouse whitefly (Trialeurodes vaporariorum). Swedish Journal of Agricultural Research, 9, 129–138.

    Google Scholar 

  • De Faria, M. R., & Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43, 237–256.

    Google Scholar 

  • Ekbom, B. S. (1979b). Investigations on the potential of parasitic fungus (Verticillium lecanii) for biological control of the greenhouse whitefly (Trialeurodes vaporariorum). Swedish Journal of Agricultural Research, 9, 129–138.

    Google Scholar 

  • Elangbam, P. D., Elangbam, B. D., & Deepshikha. (2016). A review on prospects of entomopathogenic fungi as potent biological control agents of insect pests. International Journal of Current Research in Biosciences and Plant Biology, 3, 74–82.

    Google Scholar 

  • Ellis, T. M., Meekes, J., Fransen, J., & van Lenteren, J. C. (2002). Pathogenecity of Aschersonia spp. against whiteflies Bemisia argentifolia and Trileurodis vaporariorum. Journal of Invertebrate Pathology, 81, 1–11.

    Article  Google Scholar 

  • Elsworth, J. F., & Grove, J. F. (1977). Cyclodepsipeptides from Beauveria bassiana Bals. Part 1. Beauverolides H and I. Journal of Chemical Society [Perkin 1], 3, 270–273.

    Article  Google Scholar 

  • Etzell, R. W., & Petitt, F. L. (1992). Association of Verticillum lecanii with population reduction of red rice root aphid (Rhopalosiphum rufiabdominalis) on aeroponically grown squash. Florida Entomologist, 75, 605–606.

    Article  Google Scholar 

  • Evans, H. C., & Whitehead, P. F. (2005). Entomogenous fungi of arboreal Coleoptera from Worcestershire, England, including the new species Harposporium bredonense. Mycological Progress, 4, 91–99.

    Article  Google Scholar 

  • F.A.O. (2012). Global pact against plant pests marks 60 years in action. Food and Agriculture Organization of the United Nations.; www.fao.org/news/story/en/item/131114/icode

  • Fan, Y., Borovsky, D., Hawkings, C., Ortiz-Urquiza, A., & Keyhani, N. O. (2012a). Exploiting host molecules to augment mycoinsecticide virulence. Nature Biotechnology, 30, 35–37.

    Article  CAS  PubMed  Google Scholar 

  • Fan, Y., Pereira, R. M., Kilic, E., Casella, G., & Keyhani, N. O. (2012b). Pyrokinin b-neuropeptide affects necrophoretic behavior in fire ants (S. invicta), and expression of b-NP in a mycoinsecticide increases its virulence. PLoS One, 7, e26924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, W., & St. Leger, R. J. (2010). RNA binding proteins mediate the ability of a fungus to adapt to the cold. Environmental Microbiology, 12, 810–820.

    Article  CAS  PubMed  Google Scholar 

  • Fang, W., & St. Leger, R. J. (2012). Enhanced UV resistance and improved killing of malaria mosquitoes by photolyase transgenic entomopathogenic fungi. PLoS One, 7, e43069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, W., Zhang, Y., Yang, X., Zheng, X., Duan, H., Li, Y., & Pei, Y. (2004). Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker. Journal of Invertebrate Pathology, 85, 18–24.

    Article  CAS  PubMed  Google Scholar 

  • Fang, W., Leng, B., Xiao, Y., Jin, K., Ma, J., Fan, Y., Feng, J., Yang, X., Zhang, Y., & Pei, Y. (2005). Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Applied and Environmental Microbiology, 71, 363–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, W., Pei, Y., & Bidochka, M. J. (2006). Transformation of Metarhizium anisopliae mediated by Agrobacterium tumefaciens. Canadian Journal of Microbiology, 52, 623–626.

    Article  CAS  PubMed  Google Scholar 

  • Fang, W., Feng, J., Fan, Y., Zhang, Y., Bidochka, M. J., St. Leger, R. J., & Pei, Y. (2009a). Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. Journal of Invertebrate Pathology, 102, 155–159.

    Article  CAS  PubMed  Google Scholar 

  • Fang, W., Pava-Ripoll, M., Wang, S., & St. Leger, R. J. (2009b). Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. Fungal Genetics and Biology, 46, 277–285.

    Article  CAS  PubMed  Google Scholar 

  • Fang, W., Fernandes, É. K. K., Roberts, D. W., Bidochka, M. J., Leger, S., & J, R. (2010). A laccase exclusively expressed by Metarhizium anisopliae during isotropic growth is involved in pigmentation, tolerance to abiotic stresses and virulence. Fungal Genetics and Biology, 47, 602–607.

    Article  CAS  PubMed  Google Scholar 

  • Fang, W., Azimzadeh, P., & St. Leger, R. J. (2012). Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases. Current Opinion in Microbiology, 15, 232–238.

    Article  PubMed  Google Scholar 

  • Fargues, J. F. (1984). Adhesion of the fungal spore to the insect cuticle in relation to pathogenicity. In D. W. Roberts & J. R. Aist (Eds.), Infection processes of fungi (Conference Report) (pp. 90–110). Rockefeller Foundation, New York.

    Google Scholar 

  • Fawcett, H. S. (1908). Fungi parasitic upon Aleyrodes citri. (Special Studies, No. 1. pp. 1–41). University of the State of Florida.

    Google Scholar 

  • Feng, M. G., Poprawski, T. J., & Khachatourians, G. G. (1994). Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: Current status. Biocontrol Science and Technology, 4, 3–34.

    Article  Google Scholar 

  • Ferron, P. (1978). Biological control of insect pests by entomogenous fungi. Annual Review of Entomology, 23, 409–442.

    Article  Google Scholar 

  • Ferron, P. (1981). Pest control by the fungi Beauveria and Metarhizium. In H. D. Burges (Ed.), Microbial control of pests and plant diseases 1970–1980 (pp. 465–482). London: Academic.

    Google Scholar 

  • Fornazier, R. F., Ferreira, R. R., Vitoria, A. P., Molina, S. M. G., Lea, P. J., & Azevedo, R. A. (2002). Effects of cadmium on antioxidant enzyme activities in sugar cane. Biological Plant, 45, 91–97.

    Article  CAS  Google Scholar 

  • Fransen, J. J. (1987). Aschersonia aleyrodis as a microbial control agent of greenhouse whitefly, (pp 167). Thesis, University of Wageningen.

    Google Scholar 

  • Furlong, M. J., & Groden, E. (2001). Evaluation of synergistic interactions between the Colorado potato beetle (Coleoptera: Chrysomelidae) pathogen Beauveria bassiana and the insecticides, imidacloprid, and cyromazine. Journal of Economic Entomology, 94, 344–356.

    Article  CAS  PubMed  Google Scholar 

  • Fuxa, J. R. (1987). Ecological considerations for the use of entomopathogens in IPM. Annual Review of Entomology, 32, 225–251.

    Article  Google Scholar 

  • Gao, Q., Jin, K., Ying, S. H., Zhang, Y., Xiao, G., Shang, Y., Duan, Z., Hu, X., Xie, X. Q., Zhou, G., Peng, G., Luo, Z., Huang, W., Wang, B., Fang, W., Wang, S., Zhong, Y., Ma, L. J., St Leger, R. J., Zhao, G. P., Pei, Y., Feng, M. G., Xia, Y., & Wang, C. (2011). Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genetics, 7, e1001264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerson, U., Kenneth, R., & Muttah, T. I. (1979). Hirsutella thompsonii, a fungal pathogen of mites. II. Host-pathogen interactions. Annals of Applied Biology, 91, 29–40.

    Article  Google Scholar 

  • Glare, T. R., & Milner, R. J. (1991). Ecology of entomopathogenic fungi. In D. K. Arora, L. Ajello, & L. G. Mukerji (Eds.), Handbook of applied mycology, humans, animals, and insects (Vol. 2, pp. 547–612). New York: Dekker.

    Google Scholar 

  • Goettel, M. S., Koike, M., Kim, J. J., Aiuchi, D., Shinya, R., & Brodeur, J. (2008). Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. Journal of Invertebrate Pathology, 98, 256–261.

    Article  CAS  PubMed  Google Scholar 

  • Gongora, C. E. (2004). Transformacion de Beauveria bassiana cepa Bb9112 con les genes de la proteina verde fluorescente y la protease pr1A de M. anisopliae. Revista Colombiana de Entomologia, 30, 1–5.

    Google Scholar 

  • Gopalakrishnan, C. (1989). Susceptibilty of cabbage diamond blackmoth (Plutella xylostella L.) to the entomofungal pathogen Verticillum lecanii (Zimmerm.) Viegas. Current Science, 58, 1256–1257.

    Google Scholar 

  • Greenfield, B. P., Lord, A. M., Dudley, E., & Butt, T. M. (2014). Conidia of the insect pathogenic fungus, Metarhizium anisopliae, fail to adhere to mosquito larval cuticle. Royal Society Open Science, 1, 140193. https://doi.org/10.1098/rsos.140193.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajek, A. E., & St. Leger, R. J. (1994). Interactions between fungal pathogens and insect hosts. Annual Review of Entomology, 39, 293–322.

    Article  Google Scholar 

  • Hamill, R. L., & Sullivan, H. R. (1969). Determination of pyrrolnitrin and derivatives by gas-liquid chromatography. Applied Microbiology, 18, 310–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamlen, R. A. (1979). Biological control of insects and mites on European greenhouse crops: Research and commercial implementation. Proceedings of the Florida State Horticultural Society, 92, 367–368.

    Google Scholar 

  • Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., & Cannon, P. F. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research, 111, 509–547.

    Article  PubMed  Google Scholar 

  • Hodge, K. T., Viaene, N. M., Vianne, N. M., & Gams, W. (1997). Two Harposporium species with Hirsutella synanamorphs. Mycological Research, 101, 1377–1382.

    Article  Google Scholar 

  • Hopkins, D. L., & Purcell, A. H. (2002). Xylella fastidiosa: Cause of Pierce’s disease of Grapevine and other emergent disease. Plant Disease, 86, 1056–1066.

    Article  CAS  PubMed  Google Scholar 

  • Horn, A. S. (1915). The occurrence of fungi on Aleurodes vaporariorum in Great Britain. Annals of Applied Biology, 2, 109–111.

    Article  Google Scholar 

  • Hu, Q., Li, F., & Zhang, Y. (2016). Risks of mycotoxins from mycoinsecticides to humans. BioMed Research International, 1, 1–1,13.

    Google Scholar 

  • Hu, X., Xiao, G., Zheng, P., Shang, Y., Su, Y., Zhang, X., Liu, x., Zhan, S., St Leger, R. J., & Wang, C. (2014). Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proceedings of the National Academy of Sciences of the United States of America, 111, 16796–16801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, H. C., & Erickson, R. S. (2002). Overwintering of Coniothyrium minitans, a mycoparasite of Sclerotinia sclerotiorum, on the Canadian prairies. Australasian Plant Pathology, 31, 291–293.

    Article  Google Scholar 

  • Hughes, J. C., & Gillesipie, A. T. (1985). Proceedings and Abstract, XVIIIth, Annual Meeting Society. Invertebrate Pathology, 28.

    Google Scholar 

  • Hywell-Jones, N. (1995). Torrubiella iriomoteana from scale insects in Thailand and a new related species Torrubiella siamensis with notes on their respective anamorphs. Mycological Research, 99, 330–332.

    Article  Google Scholar 

  • Hywell-Jones, N. (1997). Hirsutella species associated with hoppers (Homoptera) in Thailand. Mycological Research, 101, 1202–1206.

    Article  Google Scholar 

  • Ignoffo, C. M. (1981). The fungus Nomuraea rileyi as a microbial insecticide. In H. D. Burges (Ed.), Microbial control of pests and plant diseases (pp. 513–538). London: Academic.

    Google Scholar 

  • Jin, K., Peng, G., Liu, Y., & Xia, Y. (2015). The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum. Fungal Genetics and Biology, 77, 61–67.

    Article  CAS  PubMed  Google Scholar 

  • Jain, N., Rana, I. S., Kanojiya, A., & Sandhu, S. S. (2008). Characterization of Beaveria bassiana strains based on protease and lipase activity and their role in pathogenicity. Journal of Basic & Applied Mycology, 1, 18–2, 22.

    Google Scholar 

  • Kabaluk, J. T., Svircev, A. M., Goettel, M. S., & Woo, S. G. (2010). The use and regulation of microbial pesticides in representative jurisdictions worldwide. IOBC Global, 99.

    Google Scholar 

  • Kachhawa, D. (2017). Microorganisms as a biopesticides. Journal of Entomology and Zoology Studies., 5(3), 468–473.

    Google Scholar 

  • Kanagaratnam, P. (1982). Control of glasshouse whitefly, Trialeurodes vaporariorum, by an ‘aphid’ strain of the fungus Verticillium lecanii. Annals of Applied Biology, 111, 213–219.

    Article  Google Scholar 

  • Kanaoka, M. (1978). Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Agricultural Biological Chemistry, 42, 629–640.

    CAS  Google Scholar 

  • Kendrick, M. (2000). The fifth Kingdom, 3rd edition. Mycologue Publications, Sidney, British Columbia, Canada. http://www.mycolog.com/fifthtoc.html

  • Khachatourians, G. G. (1992). Virlunce of five Beauveria strains, Paecilomyces farinosus and Verticillum lecanii against the migratory grasshopper, Melanoplus sanguinipes. Journal of Invertebrate Pathology, 59, 212–214.

    Article  Google Scholar 

  • Khan, M. A., & Ahmad, W. (2015). The management of Spodopteran pests using fungal pathogens. In K. S. Sree & A. Varma (Eds.), Biocontrol of lepidopteran pests (pp. 123–160). Cham: Springer.

    Google Scholar 

  • Kim, J. J., Lee, M. H., Yoon, C. S., Kim, H. S., Yoo, J. K., & Kim, K. C. (2002). Control of cotton aphid and greenhouse whitefly with a fungal pathogen. Journal of National Institute of Agricultural Science and Technolog, 7–14.

    Google Scholar 

  • Kirk, P. M., Cannon, P. F., Minter, D. W., & Stalpers, J. A. (2008). Dictionary of the Fungi (10th ed.). Wallingford: CABI. ISBN:0-85199-826-7.

    Google Scholar 

  • Krasnoff, S. B., & Gupta, S. (1994). Identification of the antibiotic phomalactone from the entomopathogenic fungus Hirsutella thompsonii var. synnematosa. Journal of Chemical Ecology, 20, 293–302.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, P. S., & Singh, S. P. (2001). Coconut mite in India: Biopesticide breakthrough. Biocontrol News and Information, 22, 76N–78N.

    Google Scholar 

  • Lacadena, J., Mancheño, J. M., Martinez-Ruiz, A., Martinez-del-Pozo, A., Gasset, M., Oñaderra, M., & Gavilanes, J. G. (1995). Substitution of histidine-137 by glutamine abolishes the catalytic activity of the ribosome-inactivating protein I-sarcin. Biochemical Journal, 309, 581–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latge, J. P., & Monsigny, M. (1988). Visualization of exocellular lectins in the entomopathogenic fungus Conidiobolus obscurus. Journal Histochemistry and Cytochemistry, 36, 1419–1424.

    Article  CAS  Google Scholar 

  • LeConte, J. L. (1874). Hints for the promotion of economic entomology. Proceedings of the American Association for the Advancement of Science, 22, 10–22.

    Google Scholar 

  • Lesser, M. P. (1996). Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnology and Oceanography, 41, 271–283.

    Article  CAS  Google Scholar 

  • Li, X., Luo, H., & Zhang, K. (2005). A new species of Harposporium parasitic on nematodes. Canadian Journal of Botany, 83, 558–562.

    Article  Google Scholar 

  • Li, Z. Z., Li, C. R., Huang, B., & Meizhen, M. Z. (2001). Discovery and demonstration of the teleomorph of Beauveria bassiana (Bals.) Vuill., an important entomogenous fungus. Chinese Science Bulletin, 46, 751–753.

    Article  Google Scholar 

  • Li, Z., Alves, S. B., Roberts, D. W., Fan, M., Delalibera, I., Tang, J., Lopes, R. B., Faria, M., & Rangel, D. E. M. (2010). Biological control of insects in Brazil and China: History, current programs and reasons for their success using entomopathogenic fungi. Biocontrol Science and Technology, 20, 117–136.

    Article  Google Scholar 

  • Liao, X., Lu, H. L., Fang, W., & St. Leger, R. J. (2014). Overexpression of a Metarhizium robertsii HSP25 gene increases thermotolerance and survival in soil. Applied Microbiology and Biotechnology, 98, 777–783.

    Article  CAS  PubMed  Google Scholar 

  • Lin, L., Fang, W., Liao, X., Wang, F., Wei, D., & St. Leger, R. J. (2011). The MrCYP52 cytochrome P450 monoxygenase gene of Metarhizium robertsiii important for utilizing insect epicuticular hydrocarbons. PLoS One, 16, e28984.

    Article  CAS  Google Scholar 

  • Liu, J. C., Boucias, D. G., Pendland, J. C., Liu, W. Z., & Maruniak, J. (1996). The mode of action of hirsutellin A on eukaryotic cells. Journal of Invertebrate Pathology, 67, 224–228.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W. Z., Boucias, D. G., & McCoy, C. W. (1995). Extraction and characterization of the insecticidal toxin hirsutellin A produced by Hirsutella thompsonii var. thompsonii. Experimental Mycology, 19, 254–262.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z. Y., Liang, Z. Q., Liu, A. Y., Yao, Y. J., Hyde, K. D., & Yu, Z. N. (2002). Molecular evidence for teleomorph-anamorph connections in Cordyceps based on ITS-5.8S rDNA sequences. Mycological Research, 106, 1100–1108.

    Article  CAS  Google Scholar 

  • Lomer, C. J., Bateman, R. P., Johnson, D. L., Langewald, J., & Thomas, M. (2001). Biological control of locusts and grasshoppers. Annual Review of Entomoly, 46, 667–702.

    Article  CAS  Google Scholar 

  • Lord, J. C. (2005). From Metchnikoff to Monsanto and beyond: The path of microbial control. Journal of Invertebrate Pathology, 89, 19–29.

    Article  PubMed  Google Scholar 

  • Loureiro, E. S. & Monteiro, A. C. (2005). Pathogenicity of isolates of three entomopathogenic fungi against soldiers of Atta sexdentes sexdentes (Linneus, 1758) (Hymenoptera: Formicidae). Revista Arvoe (online), 29(4), 553–561. ISSN:1806-9088. https://doi.org/10.1590/S0100-67622005000400007.

    Article  Google Scholar 

  • Lovett, B., & Leger, R. J. S. (2015). Stress is the rule rather than the exception for Metarhizium. Current Genetics, 61, 253–261.

    Article  CAS  PubMed  Google Scholar 

  • Luo, S., He, M., Cao, Y., & Xia, Y. (2013). The tetraspanin gene MaPls1 contributes to virulence by affecting germination, appressorial function and enzymes for cuticle degradation in the entomopathogenic fungus, Metarhizium acridum. Environment Microbiology, 15, 2966–2979.

    CAS  Google Scholar 

  • Maimala, S. (2004). Screening strains of Hirsutella thompsonii (FISHER) for mass production by solid-state fermentation technology. Doctoral Dissertation, Kasetsart University, Bangkok, Thailand.

    Google Scholar 

  • Maina, U. M., Galadima, I. B., Gambo, F. M., & Zakaria, D. (2018). A review on the use of entomopathogenic fungi in the management of insect pests of field crops. Journal of Entomology and Zoology Studies, 6, 27–32.

    Google Scholar 

  • Marheineke, K., Grunewald, S., Christie, W., & Reilander, H. (1998). Lipid composition of Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn) insect cells used for baculovirus infection. FEBS Letters, 441, 49–52.

    Article  CAS  PubMed  Google Scholar 

  • Mathew, S. O., Sandhu, S. S., & Rajak, R. C. (1998). Bioactivity of Nomuraea rileyi against Spilosoma obliqua: Effect of dosage, temperature and relative humidity. Journal of Indian Botanical Society, 77, 23–25.

    Google Scholar 

  • Matuzzia, R. F., Cardosob, N., Poltronieria, A. S., Poitevina, C. G., Dalzotoa, P., Zawadeneaka, M. A., & Pimentela, I. C. (2016). Potential of endophytic fungi as biocontrol agents of Duponchelia fovealis (Zeller) (Lepidoptera: Crambidae). Brazilian Journal of Biology, 78, 429–435.

    Google Scholar 

  • Mazet, I., Vey, A., & Hirsutellin, A. (1995). A toxic protein produced in vitro by Hirsutella thompsonii. Microbiology, 141, 1343–1348.

    Article  CAS  PubMed  Google Scholar 

  • McCoy, C. W., Samson, R. A., & Boucias, D. G. (1988). Entomogenous fungi. In C. Ignoffo (Ed.), Handbook of natural pesticides microbial insecticides Part A Entomogenous Protozoa and Fungi (Vol. 5, pp. 156–236). Florida: CRC press.

    Google Scholar 

  • McCready, S., & Marcello, L. (2003). Repair of UV damage in Halobacterium salinarum. Biochemical Society Transactions, 31, 694–698.

    Article  CAS  PubMed  Google Scholar 

  • Mcleod, D. M. (1954). Investigations on the genera Beauveria Vuill. and Tritirachium Limber. Canadian Journal of Botany, 32, 818–890.

    Article  Google Scholar 

  • Mello, A., Murat, C., & Bonfante, P. (2006). Truffles: Much more than a prized and local fungal delicacy. FEMS Microbiology Letters, 260, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Ment, D., Gindin, G., Rot, A., Soroker, V., Glazer, I., Barel, S., & Samish, M. (2010a). Novel technique for quantifying adhesion of Metarhizium anisopliae conidia to the tick cuticle. Applied Environment Microbiology, 76, 3521–3528.

    Article  CAS  Google Scholar 

  • Ment, D., Gindin, G., Soroker, V., Glazer, I., Rot, A., & Samish, M. (2010b). Metarhizium anisopliae conidial responses to lipids from tick cuticle and tick mammalian host surface. Journal of Invertebrate Pathology, 103, 132–139.

    Article  CAS  PubMed  Google Scholar 

  • Milner, R. J., & Lutton, G. C. (1986). Dependence of Verticillum lecanni (Fungi: Hyphomycetes) on high humidities for infection and sporulation using Myzus persicae (Homoptera: Aphididae) as host. Environment Entomology, 15, 380–382.

    Article  Google Scholar 

  • Milner, R. J., & Staples, J. A. (1996). Biological control of termites: Results and experiences within a CSIRO project in Australia. Biocontrol Science and Technology, 6, 3–9.

    Google Scholar 

  • Milner, R. J., Staples, J. A., Hartley, T. R., Lutton, G. G., Driver, F., & Watson, J. A. L. (1998a). Occurrence of Metarhizium anisopliae in nests and feeding sites of Australian termites. Mycological Research, 102, 216–220.

    Article  Google Scholar 

  • Milner, R. J., Staples, J. A., & Lutton, G. G. (1998b). The selection of an isolate of the hyphomycete fungus, Metarhizium anisopliae, for control of termites in Australia. Biological Control, 11, 240–247.

    Article  Google Scholar 

  • Mishra, J., Tewari, S., Singh, S., & Arora, N. K. (2015). Biopesticide: Where we stand? In N. K. Arora (Ed.), Plant microbes Symbiosis: Applied facets (pp. 37–75). New Delhi: Springer.

    Google Scholar 

  • Moorhouse, E. R., Gillespie, A. T., Sellers, E. K., & Charnley, A. K. (1992). Influence of fungicides and insecticides on the entomogenous fungus Metarhizium anisopliae a pathogen of the vine weevil, Otiorhynchus sulcatus. Biocontrol Science and Technology, 2, 49–58.

    Article  Google Scholar 

  • Muma, M. H. (1958). Predators and parasites of citrus mite in Florida. Proceeding of 10th International Congress of Entomology, 4, 633–647.

    Google Scholar 

  • Mweke, A., Christian, U., & Paulin, N. (2018). Evaluation of the entomopathogenic fungi Metarhizium anisopliae, Beauveria bassiana and Isaria sp. for the management of Aphis craccivora (Hemiptera: Aphididdae). Journal of Economic Entomology, 111, 1587–1594.

    Article  PubMed  Google Scholar 

  • Naejrech, B. B. (1973). Verticillium sp. pathogenic on aphids. Indian Phytopathology, 26, 163–164.

    Google Scholar 

  • Nunez, E., Iannacone, J., & Omez, H. G. (2008). Effect of two entomopathogenic fungi in controlling aleurodicus cocois (Curtis, 1846) (Hemiptera: Aleyrodidae). Chilean Journal of Agricultural Research, 68, 21–30.

    Google Scholar 

  • Ocampo, V. R., & Caoili, B. L. (2013). Infection process of entomopathogenic fungi Metarhizium anisopliae in the Tetranychus kanzawai (Kishida) (Tetranynichidae: Acarina). Agrivita, 35, 64.

    Google Scholar 

  • Omoto, C., & McCoy, C. W. (1998). Toxicity of purified fungal toxin hirsutellin A to the citrus rust mite Phyllocoptruta oleivora (ash.). Journal of Invertebrate Pathology, 72, 319–322.

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Urquiza, A., & Keyhani, N. O. (2015). Stress response signaling and virulence: Insights from entomopathogenic fungi. Current Genetics, 61, 239–249.

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Urquiza, A., Luo, Z., & Keyhani, N. O. (2015). Improving mycoinsecticides for insect biological control. Applied Microbiology and Biotechnology, 99, 1057–1068.

    Article  CAS  PubMed  Google Scholar 

  • Pan, W. Y., & Zheng, H. (1988). Report on application of Beauveria bassiana against Dendrolimus tabulaeformis in arid forest region. In Y. W. Li, J. W. Wu, Z. K. Wu, & Q. F. Xu (Eds.), Study and Application of Entomogenous Fungi in China (Vol. 1, pp. 77–79). Beijing: Academic Periodical Press.

    Google Scholar 

  • Patrick, W. & Kaskey, J. (2012). Biopesticide: Killer bugs for hire. Bloomberg Business Week. https://www.bloomberg.com/news/articles/2012-07.

  • Peng, G., & Xia, Y. (2015). Integration of an insecticidal scorpion toxin (BjaIT) gene into Metarhizium acridum enhances fungal virulence towards Locusta migratoria manilensis. Management Science, 71, 58–64.

    CAS  Google Scholar 

  • Prior, C., & Greathead, D. G. (1989). Biological control of locusts: The potential for the exploitation of pathogens. FAO Plant Protection Bulletin, 37, 37–48.

    Google Scholar 

  • Protsenko, E. P. (1967). The importance of the fungus Aschersonia in nature and its practical use by man in the biological control of insects. Sbornik Po Karantinu Rastenii, 19, 147.

    Google Scholar 

  • Pulido, M. J., Guerrero, P. I., Martínez, M. I. D. J., Valadez, C. B., Guzman, T. J. C., Solis, S. E., Gutierrez, G. C. J., Schrank, A., Bremont, J. F., & Hernandez, G. A. (2011). Isolation, characterization and expression analysis of the ornithine decarboxylase gene (ODC1) of the entomopathogenic fungus, Metarhizium anisopliae. Microbiological Research, 166, 494–507.

    Article  CAS  Google Scholar 

  • Purcell, A. H. (1989). Homopteran transmission of xylem-inhabiting bacteria. In K. F. Harris (Ed.), Advances in disease vector research (pp. 243–266). New York: Springer.

    Google Scholar 

  • Purwar, J. R., & Sachan, G. C. (2006). Insect pest through entomopathogenic fungi: A review. Journal of Applied Bioscience, 32, 1–26.

    Google Scholar 

  • Rajak, R. C., Sandhu, S. S., Mukherjee, S., Kekre, S., & Gupta, A. (1991). Natural outbreak of Nomuraea rileyi on Junonia orithyia. Journal of Biological Control, 5, 123–124.

    Google Scholar 

  • Ramakers, P. M. J. (1983). Aschersonia aleyrodis a selective biological insecticide. IOBC/WPRS Bulletin, 6, 167–171.

    Google Scholar 

  • Ramanujam, B., Rangeshwaran, R., Sivakmar, G., Mohan, M., & Yandigeri, M. S. (2014). Management of insect pests by microorganisms. Proceedings of Indian National Science Academy, 80, 455–471.

    Article  Google Scholar 

  • Rangaswami, S., Ramamoorthi, K., & Oblisami, G. (1968). Final report, PL 480, studies on microbiology and pathology of insect pests of crop plants. Bangalore: Univiersity of Agriculture and Science.

    Google Scholar 

  • Rehner, S. A., & Buckley, E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-á sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia, 97, 84–98.

    CAS  PubMed  Google Scholar 

  • Roberts, D. W., & Humber, R. A. (1981). Entomogenous fungi. In G. T. Cole & B. Kendrick (Eds.), Biology of conidial fungi (Vol. 2, pp. 201–236). Berlin: Academic.

    Chapter  Google Scholar 

  • Rossi-Zalaf, L. S., & Alves, S. B. (2006). Susceptibility of Brevipalpus phoenicis to entomopathogenic fungi. Experiment and Applied Acarology, 40, 37–47.

    Article  Google Scholar 

  • Samson, R. A., Evans, H. C., & Latgé, J. P. (1988). Atlas of Entomopathogenic Fungi (pp. 1–187). Berlin: Springer.

    Book  Google Scholar 

  • Sandhu, S. S., & Mishra, M. (1994). Larvicidal activity of fungal isolates Beaveria bassiana, Metarhizium anisopliae and Aspergillus flavus against mosquito sp. Culex pipiens. In Proceedings of the National Symposium on Advances in Biological Control of Insect Pests (145–150). New Delhi: Muzaffarnagar.

    Google Scholar 

  • Sandhu, S. S., & Vikrant, P. (2004). Myco-insecticides: Control of insect pests. In S. P. Gautam, S. S. Sandhu, A. Sharma, & A. K. Pandey (Eds.), Microbial diversity: Opportunities & Challenges (Vol. 3, pp. 47–53). New Delhi: Indica Publishers.

    Google Scholar 

  • Sandhu, S. S., Rajak, R. C., & Hasija, S. K. (2000). Potential of entomopathogens for the biological management of medically important pest: Progress and prospect. Glimpses in Plant Sciences, 2, 110–117.

    Google Scholar 

  • Santi, L., Silva, W. O. B., Pinto, A. F. M., Schrank, A., & Vainstein, M. H. (2010). Metarhizium anisopliae host–pathogen interaction: Differential immunoproteomics reveals proteins involved in the infection process of arthropods. Fungal Biology, 114, 312–319.

    Article  CAS  PubMed  Google Scholar 

  • Seryczynska, H. & Bajan, C. (1975). Defensive reactions of L3, L4 larvae of the Colorado beetle to the insecticidal fungi Paecilomyces farinosus (Dicks) Brown Smith, Paecilomyces fumoso-roseus (Wize), Beauveria bassiana (Bols/Vuill.) (Fungi Imperfecti: Moniliales)”. Bulletin de l’Academie Polonaise des Sciences. Serie des Sciences Biologiques, 23, 267–271.

    Google Scholar 

  • Shah, P. A., & Goettel, M. S. (1999). Directory of microbial control products and services (pp. 81). Society, 2nd edn. Gainesville: Society for Invertebrate Pathology, Division on Microbial Control.

    Google Scholar 

  • Shah, P. A., Kooyman, C., & Paraso, A. (1997). Surveys for fungal pathogens of locusts and grasshoppers in Africa and the Near East. Memoirs of the Entomological Society Canada, 171, 27–35.

    Article  Google Scholar 

  • Shahid, A. A., Rao, A. Q., Bakhsh, A., & Husnain, T. (2012). Entomopathogenic fungi as biological controllers: New insight into their virulence and pathogenicity. Archives Biological Sciencse Belgrage, 64, 21–42.

    Article  Google Scholar 

  • Shang, Y., Duan, Z., Huang, W., Gao, Q., & Wang, C. (2012). Improving UV resistance and virulence of Beauveria bassiana by genetic engineering with an exogenous tyrosinase gene. Journal of Invertebrate Pathology, 109, 105–109.

    Article  CAS  PubMed  Google Scholar 

  • Shaukat, A., Zhen, H., & Shunxiang, R. (2010). Production of cuticle degrading enzymes by Isaria fumosorosea and their evaluation as a biocontrol agent against diamondback moth. Journal of Pest Science, 83, 361–370.

    Article  Google Scholar 

  • Shaw, K., Davidson, G., Clark, S. J., Ball, B., Pell, J. K., Chandler, D., & Sunderland, K. D. (2002). Laboratory bioassays to assess the pathogenicity of mitosporic fungi to Varroa destructor (Acari: Mesostigmata), an ectoparasitic mite of the honeybee, Apis mellifera. Biological Control, 24, 266–276.

    Article  Google Scholar 

  • Sinha, R. P., & Häder, D. P. (2002). UV-induced DNA damage and repair: A review. Photochemical and Photobiological Sciences, 1, 225–236.

    Article  CAS  PubMed  Google Scholar 

  • Solovey, Y. F., & Koltsov, P. D. (1976). Effect of the entomopathogenic fungus Aschersonia on the orange whitefly. Mikologiya i Fitopatologiya, 10, 425–424.

    Google Scholar 

  • Soman, A. G. (2001). Vertilecanins: New phenopicolinic acid analogues from Verticillium lecanii. Journal of Natural Products, 64, 189–119.

    Article  CAS  PubMed  Google Scholar 

  • Spassova, P., Hristova, E., & Elenkov, E. S. (1980). Pathogenicity of various species of fungi belonging to the genera Aschersonia to the larvae of glass house white fly (Trialeurodes vaporariorum West Wood) on tomato and cucumber. Horticulture and Viticulture Science XVII, 5, 70–76.

    Google Scholar 

  • Srisukchayakul, P., Wiwat, C., & Pantuwatana, S. (2005). Studies on the pathogenesis of the local isolates of Nomuraea rileyi against Spodoptera litura. ScienceAsia, 31, 273–276.

    Article  Google Scholar 

  • St. Leger, R. J., & Butt, T. M. (1989). Synthesis of proteins including a cuticle-degrading protease during differentiation of the entomopathogenic fungus Metarhizium anisopliae. Experimental Mycology, 13, 253–262.

    Article  CAS  Google Scholar 

  • St. Leger, R., & Cooper, R. M. (1986). Cuticle-degrading enzymes of entomopathogenic fungi: Cuticle degradation in vitro by enzymes from entomopathogens. Journal of Invertebrate Pathology, 47, 167–177.

    Article  CAS  Google Scholar 

  • St. Leger, R., & Cooper, R. M. (1987). Distribution of chymoelastases and trypsin-like enzymes in five species of entomopathogenic deuteromycetes. Archieves of Biochemistry and Biophysics, 258, 123–131.

    Article  CAS  Google Scholar 

  • St. Leger, R. J., Joshi, L., Bidochka, M. J., & Roberts, D. W. (1996). Construction of an improved mycoinsecticide over-expressing a toxic protease. Proceedings of the National Academy of Sciences of the United States of America, 93, 6349–6354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staats, C. C., Junges, A., Guedes, R. L. M., Thompson, C. E., de Morais, G. L., Boldo, J. T., de Almeida, L. G. P., Andreis, F. C., Gerber, A. L., & Sbaraini, N. (2014). Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins. BMC Genomics, 15, 1–18.

    Article  CAS  Google Scholar 

  • Sztejnberg, A., Doron-Shloush, S., & Gerson, U. (1997). The biology of the acaropathogenic fungus Hirsutella kirchneri. International Journal of Biological Science and Technology, 7, 577–590.

    Google Scholar 

  • Tanada, Y. & Kaya, H. (1993). Insect pathology (pp. 665). New York: Academic. https://www.elsevier.com/books/insect-pathology/tanada/978-0-08-092625-4

  • Tang, L. C., & Hou, R. F. (1998). Potential application of the entomopathogenic fungus, Nomurea riley for control of the corn ear worm, Helicoverpa armigera. Entomologia Experimentalis et Appicata, 88, 25–30.

    Article  Google Scholar 

  • Thakur, R., & Sandhu, S. S. (2010). Distribution, occurrence and natural invertebrate hosts of indigenous entomopathogenic fungi of Central India. Indian Journal of Microbiology, 50, 89–96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakur, R., Rajak, R. C., & Sandhu, S. S. (2005). Biochemical and molecular characteristics of indigenous strains of the entomopathogenic fungus Beauveria bassiana of Central India. Biocontrol Science and Technology, 15, 733–744.

    Article  Google Scholar 

  • Thompson, S. N., & Borchardt, D. B. (2003). Glucogenic blood sugar formation in an insect Manduca sexta L.: Asymmetric synthesis of trehalose from 13C enriched pyruvate. Comparative Biochemistry and Physiology e Part B: Biochemistry & Molecular Biology, 135, 461–471.

    Article  CAS  Google Scholar 

  • Tseng, M. N., Chung, P. C., & Tzean, S. S. (2011). Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering of dihydroxynaphthalene melanin biosynthesis genes. Applied and Environmental Microbiology, 77, 4508–4519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • U. N. Report. (2011). World population prospects: The 2010 revision. New York: United Nations.

    Google Scholar 

  • Uchida, M. (1970). Studies on the use of the parasitic fungus Aschersonia sp. for controlling citrus white fly, Dialeurodes citri. Bulletin of the Kanagawa Horticultural Experiment Station, 18, 66–74.

    Google Scholar 

  • Verhaar, M. A., Hijwegan, T., & Zadoks, J. C. (1996). Glasshouse experiment on biocontrol of Cucumber powdery mildew (Spharoetheca fuligenia) by the mycoparasites verticillum lecanii and Sporothrix rugulosa. Biological Control, 6, 353–360.

    Article  Google Scholar 

  • Wang, C., & St. Leger, R. J. (2006). A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proceedings of the National Academy of Sciences of the United States of America, 103, 6647–6652.

    Google Scholar 

  • Wang, C., & St Leger, R. J. (2007a). The MAD1 adhesion of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects and the MAD2 adhesion enables attachment to plants. Eukaryotic Cell, 6, 808–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., & St Leger, R. J. (2007b). The Metarhizium anisopliae perilipin homology MPL1 regulates lipid metabolism, appressorial turgor pressure and virulence. Journal of Biological Chemistry, 282, 21110–21115.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., Duan, Z., & St Leger, R. J. (2008). MOS1 osmosensor of Metarhizium anisopliae is required for adaptation to insect host hemolymph. Eukaryotic Cell, 7, 302–309.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., Fang, W., Wang, C., Leger, S., & J, R. (2011). Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars. PLoS Pathogens, 7, e1002097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, B., Kang, Q., Lu, Y., Bai, L., & Wang, C. (2012). Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proceedings of the National Academy of Science of the United States of America, 109, 1287–1292.

    Article  CAS  Google Scholar 

  • Whipps, J. M. (1993). A review of white rust (Puccinia horiana Henn.) disease on Chrysanthemum and the potential for its biological control with verticillum lecanii (Zimm.) viegas. Annals of Applied Biology, 122, 173–187.

    Article  Google Scholar 

  • Wraight, S. P., Carruthers., R. I., Jaronski, S. T., Bradley, C. J. Garza, C. A. & Galaini-Wraight, S. (2000). Evaluation of the entomopathogenic fungi Beauveria bassiana and Paecilomyces fumosoroseus for microbial control of the silverleaf whitefly, Bemisia argentifolii. Biological Control, 17, 203–217.

    Google Scholar 

  • Wraight, S. P., Jackson, M. A., & de Kock, S. L. (2001). Production, stabilization and formulation of fungal biocontrol agents. In T. M. Butt, C. Jackson, & N. Magan (Eds.), Fungi as biocontrol agents: Progress, problems and potential (pp. 253–287). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Xiao, G., Ying, S. H., Zheng, P., Wang, Z. L., Zhang, S., Xie, X. Q., Shang, y., St Leger, R. J., Zhao, G. P., Wang, C., & Feng, M. G. (2012). Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Scientific Reports, 2, 483.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, C., Zhang, X., Qian, Y., Chen, X., Liu, R., Zeng, G., Zhao, H., & Fang, W. (2014). A high-throughput gene disruption methodology for the entomopathogenic fungus Metarhizium robertsii. PLoSOne, 9, e107657.

    Article  CAS  Google Scholar 

  • Yang, L., Keyhani, N. O., Tang, G., Tian, C., Lu, R., Wang, X., Pei, Y., & Fan, Y. (2014). Expression of a toll signaling regulator serpin in a mycoinsecticide for increased virulence. Applied and Environmental Microbiology, 80, 4531–4539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye, M. Z., Han, G. V., Fu, C. L., & Bao, J. E. (1993). Insecticidal toxin produced by the entomogenous fungus Nomuraea rileyi. Acta Agriculturaw Universitatis Zhejiangeusis, 19, 76–79.

    Google Scholar 

  • Yeo, H. (2000). Myco insecticides for aphid management: A biorational approach. PhD thesis, University of Nottingham.

    Google Scholar 

  • Ying, S. H., & Feng, M. G. (2011). Integration of Escherichia coli thioredoxin (trxA) into Beauveria bassiana enhances the fungal tolerance to the stresses of oxidation, heat and UV-B irradiation. Biological Control, 59, 255–260.

    Article  CAS  Google Scholar 

  • Zhao, H., Xu, C., Lu, H. L., Chen, X., St. Leger, R. J., & Fang, W. (2014). Hostto- pathogen gene transfer facilitated infection of insects by a pathogenic fungus. PLoS Pathogens, 10, e1004009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao, H., Lovett, B., & Fang, W. (2016a). Genetically engineering entomopathogenic fungi. Advances in Genetics, 94, 137–163.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, J., Yao, R., Wei, Y., Huang, S., Keyhani, N. O., & Huang, Z. (2016b). Screening of Metarhizium anisopliae UV-induced mutants for faster growth yields a hyper-virulent isolate with greater UV and thermal tolerances. Applied Microbiology and Biotechnology, 100, 9217–9228.

    Article  CAS  PubMed  Google Scholar 

  • Zhen, H., Yongfen, H., Tianni, G., Yu, H., Shunxiang, R., & Nemat, O. (2016). The Ifchit chitinase gene acts as avirulence factor in the insect pathogenic fungus Isaria fumosorosea. Applied Microbiology and Biotechnology, 100(12), 5491.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, T., Rasool, A., Gull, S., Stephan, D., Nabi, S. (2019). Ascomycota and Integrated Pest Management. In: Khan, M., Ahmad, W. (eds) Microbes for Sustainable Insect Pest Management . Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-23045-6_5

Download citation

Publish with us

Policies and ethics