Skip to main content

Resistance Breeding and Exploitation of Wild Relatives for New Resistance Sources

  • Chapter
  • First Online:
Emerging Trends in Plant Pathology

Abstract

Increasing yield from same piece of land and resources has now become more imperative since the share of resources is decreasing continuously due to increasing population. Change in environmental parameters are confronting with plants by changing dynamics as well as emergence of novel parasites. Resistance breeding though has been the traditional objective of plant breeding programme. With changing scenario, effective and diverse-resistant sources, particularly from wild relatives and from other sources, seem to be essential for durability of the resistance. Furthermore, precise tools are required for identification and transfer of genes for developing resistant genotypes. This chapter includes description of necessity of resistance breeding, types of resistance, breeding tools used in development of resistant genotypes and wild relatives that can be used as potential sources of resistant genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andolfo G, Iovieno P, Frusciante L, Ercolano MR (2016) Genome editing technologies for enhancing plant disease resistance. Front Plant Sci 7:1813

    Article  PubMed  PubMed Central  Google Scholar 

  • Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8:1932

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashkani S, Rafii MY, Shabanimofrad M, Miah G, Sahebi M, Azizi P, Tanweer FA, Akhtar MS, Nasehi A (2015) Molecular breeding strategy and challenges towards improvement of blast disease resistance in rice crop. Front Pl Sci 6:886

    Google Scholar 

  • Ballini E, Berruyer R, Morel JB, Lebrun MH, Notteghem JL, Tharreau D (2007) Modern elite rice varieties of the ‘green revolution’ have retained a large introgression from wild rice around the Pi33 rice blast resistance locus. New Phytologist 175:340–350

    Article  CAS  Google Scholar 

  • Bergquist R (1981) Transfer from Tripsacum dactyloides to corn of a major gene locus conditioning resistance to Puccinia sorghi. Phytopathology 71:518–520

    Article  Google Scholar 

  • Biselli C, Urso S, Bernardo L, Tondelli A, Tacconi G, Martino V, Grando S, Val VG (2010) Identification and mapping of the leaf stripe resistance gene Rdg1a in Hordeum spontaneum. Theor Appl Genet 120:1207–1218

    Article  CAS  PubMed  Google Scholar 

  • Blakeslee AF (1904) Sexual reproduction in the mucorineae. Proc Am Acad Arts Sci 40:205–319

    Article  Google Scholar 

  • Bockus W, Cruz C, Kalia B, Gill B, Stack J, Pedley K (2012) Reaction of selected accessions of Aegilops tauschii to wheat blast, 2011. Pl Dis Manag Rep 6:CF005

    Google Scholar 

  • Borlaug NE (1959) The use of multilineal or composite varieties to control airborne epidemic diseases of selfpollinated crop plants. Proceedings international wheat genetics symposium. vol 1958. Winnipeg, Manitoba, pp 12–26

    Google Scholar 

  • Borrelli VMG, Brambilla V, Rogowsky P, Marocco A, Lanubile A (2018) The enhancement of plant disease resistance using CRISPR/Cas9 technology. Front Plant Sci 9:1245

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai X, Chen PD, Xu SS, Oliver RE, Chen X (2005) Utilization of alien genes to enhance Fusarium head blight resistance in wheat: a review. Euphytica 142:309–318

    Article  Google Scholar 

  • Chaturvedi SK, Nadarajan N (2010) Genetic enhancement for grain yield in chickpea: accomplishments and resetting research agenda. Elect J Pl Breed 1:611–615

    Google Scholar 

  • Chavan S, Smith SM (2014) A rapid and efficient method for assessing pathogenicity of Ustilago maydis on maize and teosinte lines. J Visu Exper 83:e50712

    Google Scholar 

  • Chen G, Liu Y, Ma J, Zheng Z, Wei Y, McIntyre CL, Zheng YL, Liu C (2013) A novel and major quantitative trait locus for Fusarium crown rot resistance in a genotype of wild barley (Hordeum spontaneum L.). PLoS ONE 8:e58040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary K, Choudhary OP, Shekhawat NS (2008) Marker assisted selection: a novel approach for crop improvement. Am Eurasian J Agric 1:26–30

    Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557–572

    Article  CAS  PubMed  Google Scholar 

  • Collinge DB, Loud OS, Thordal-Christensen H (2008) What are the prospects for genetically engineered, disease resistant plants. European J Pl Path 121:217–231

    Article  CAS  Google Scholar 

  • Cruz CD, Peterson GL, Bockus WW, Kankanala P, Dubcovsky J, Jordan KW (2016) The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum pathotype of Magnaporthe oryzae. Crop Sci 56:990–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das G, Rao GJN (2015) Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Front Plant Sci 6:698. https://doi.org/10.3389/fpls.2015.00698

    Article  PubMed  PubMed Central  Google Scholar 

  • Dujardin M, Hanna W (1987) Inducing male fertility in crosses between pearl millet and Pennisetum orientale. Rich Crop Sci 27:65–68

    Article  Google Scholar 

  • Dujardin M, Hanna WW (1989) Crossability of pearl millet with wild Pennisetum species. Crop Sci 29:77–80

    Article  Google Scholar 

  • Duvick DN, Smith JSC, Cooper M (2004) Long term selection in a commercial hybrid maizebreeding program. In: Janick I (ed) Plant breeding reviews. Part 2, vol 24. Wiley, New York, pp 109–152

    Google Scholar 

  • Ellur RK, Khanna A, Bhowmick PK, Vinod K, Nagarajan M, Mondal KK (2016) Marker-aided incorporation of Xa38, a novel bacterial blight resistance gene, in PB1121 and comparison of its resistance spectrum with xa13+ Xa21. Scien Rep 6:29188

    Article  Google Scholar 

  • Flor HH (1955) Host-parasite interaction in flax rust: its genetics and other implications. Phytopathology 45:680–685

    Google Scholar 

  • Flor HH (1956) The complementary genic systems in flax and flax rust. Adv Genet 8:29–54

    Article  Google Scholar 

  • Friedt W, Horsley RD, Harvey BL, Poulsen DME, Lance RCM, Ceccarelli S, Grando S, Capettini F (2011) Barley breeding history, progress, objectives, and technology. In: Ullrich SE (ed) Barley: production, improvement, and uses. Wiley-Blackwell, Oxford, pp 160–220

    Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hanna WW, Wells HD, Burton GW (1985) Dominant gene for rust resistance in pearl millet. J Hered 76:134

    Article  Google Scholar 

  • Hartman GL, Wang TC, Hymowitz T (1992) Sources of resistance to soybean rust in perennial glycine species. Plant Dis 76:396–399

    Article  Google Scholar 

  • Hartman G, Gardner M, Hymowitz T, Naidoo G (2000) Evaluation of perennial species for resistance to soybean fungal pathogens that cause sclerotinia stem rot and sudden death syndrome. Crop Sci 40:545–549

    Article  Google Scholar 

  • Hooker AL (1981) Resistance to Helminthosporium turcicum from Tripsacum floridanum incorporated into corn. Maize Genet Coop Newsl 55:87–88

    Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A (1984) Inheritance of functional foreign genes in plants. Science 223:496–498

    Article  CAS  PubMed  Google Scholar 

  • ISAAA’s GM Approval Database (2019) http://www.isaaa.org/gmapprovaldatabase

  • Islam MR, Shepherd KW (1991) Present status of genetics of resistance in flax. Euphytica 55:255–267

    Article  Google Scholar 

  • Jaiswal HK, Singh BD, Singh AK, Singh RM (1986) Introgression of genes for yield and yield traits from C. reticulatum into C. arietinum. Int Chickpea Newsl 14:5–8

    Google Scholar 

  • Jensen NF (1952) Intra-varietal diversification in oat breeding. Agron J 44:30–34

    Article  Google Scholar 

  • Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68–72. https://doi.org/10.1016/S0168-9525(02)00006-9

    Article  CAS  PubMed  Google Scholar 

  • Johnson T, Newtin M (1940) Mendelian inheritance of certain pathogenic characters of Puccinia graminis tritici. Canad J Res Sec C Bot Sci 18:599–611

    Article  Google Scholar 

  • Jorgensen JH (1990) Disease and pest resistance genes. Coor Rep Barley Genet Newsl 20:89

    Google Scholar 

  • Kaur L, Sirari A, Kumar D, Sandhu JS, Singh S, Singh I (2013) Harnessing ascochyta blight and botrytis grey mould resistance in chickpea through interspecific hybridization. Phytopath Medit 52:157–165

    CAS  Google Scholar 

  • Khan MA, Naeem M, Iqbal M (2014) Breeding approaches for bacterial leaf blight resistance in rice (Oryza sativa L.), current status and future directions. Eur J Plant Pathol 139:27–37. https://doi.org/10.1007/s10658-014-0377-x

    Article  CAS  Google Scholar 

  • Khan MH, Dar ZA, Dar SA (2015) Breeding strategies for improving rice yield-a review. Agric Sci 6:467–478. https://doi.org/10.4236/as.2015.65046

    Article  CAS  Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    Article  CAS  PubMed  Google Scholar 

  • Knights EJ, Southwell RJ, Schwinghamer MW, Harden S (2008) Resistance to Phytophthora medicaginis Hansen and Maxwell in wild Cicer species and its use in breeding root rot resistant chickpea (Cicer arietinum L.). J Agricul Res 59:383–387

    Google Scholar 

  • Koch MF, Parlevliet JE (1991) Genetic analysis of, and selection for, factors affecting quantitative resistance to Xanthomonas campestris pv oryzae in rice. Euphytica 53:235–245

    Article  Google Scholar 

  • Kumar J, Choudhary AK, Solanki RK, Pratap A (2011) Towards marker-assisted selection in pulses: a review. Plant Breed 130:297–313

    Article  CAS  Google Scholar 

  • Kaur V, Shubha KP, Manju MS (2018) Role of crop wild relatives in crop improvement under hanging climatic conditions. In: Yadav PK, Kumar S, Kumar S, Yadav RC (eds) Crop improvement for sustainability. Daya Publishing House, New Delhi, pp 13–35

    Google Scholar 

  • Ladizinsky G, Adler A (1976) The origin of chickpea Cicer arietinum L. Euphytica 25:211–217. https://doi.org/10.1007/BF00041547

    Article  Google Scholar 

  • Langner T, Kamoun S, Belhaj K (2018) CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol 56:2221–2234

    Article  CAS  Google Scholar 

  • Leal-Bertioli SC, José AC, Alves-Freitas DM, Moretzsohn MC, Guimarães PM, Nielen S, Vidigal BS, Pereira RW, Pike J, Fávero AP (2009) Identification of candidate genome regions controlling disease resistance in Arachis. BMC Pl Biol 9:112

    Article  CAS  Google Scholar 

  • Leal-Bertioli SC, Moretzsohn MC, Roberts PA, Ballén-Taborda C, Borba TC, Valdisser PA, Vianello RP, Araújo ACG, Guimarães PM, Bertioli DJ (2016) Genetic mapping of resistance to Meloidogyne arenaria in Arachis stenosperma: a new source of nematode resistance for peanut. Gen Geno Gen 6:377–390

    CAS  Google Scholar 

  • Lehnhoff EA, Keith BK, Dyer WE, Menalled FD (2013) Impact of biotic and abiotic stresses on the competitive ability of multiple herbicide resistant wild oat (Avena fatua). PLoS ONE 8:64478

    Article  CAS  Google Scholar 

  • Lennon JR, Krakowsky M, Goodman M, Flint-Garcia S, Balint-Kurti PJ (2016) Identification of alleles conferring resistance to gray leaf spot in maize derived from its wild progenitor species teosinte. Crop Sci 56:209–218

    Article  CAS  Google Scholar 

  • Leung H, Hettel GP, Cantrell RP (2002) International rice research institute: roles and challenges as we enter the genomics era. Trends Plant Sci 7:139–142

    Article  CAS  PubMed  Google Scholar 

  • Maazou ARS, Qiu J, Mu J, Liu Z (2017) Utilization of wild relatives for maize (Zea mays L.) improvement. African J Plant Sci 11:105–113

    Article  Google Scholar 

  • Magar MM, Rani CVD, Anuradha G (2014) Marker assisted selection for bacterial leaf blight resistance in segregating populations of Cottondora sannalu. Int J Appl Sci Biotechnol 2:229–237. https://doi.org/10.3126/ijasbt.v2i3.10570

    Article  Google Scholar 

  • Mallikarjuna N, Saxena KB, Jadhav DR. (2010) Cajanus.Wild Crop Relativ: Genomic Breed Res. 21–33

    Google Scholar 

  • Maxted N, Kell SP (2009) Establishment of a global network for the in situ conservation of crop wild relatives: status and needs. Food and Agriculture Organization of the United NationsCommission on Genetic Resources for Food and Agriculture, Rome

    Google Scholar 

  • McFadden ES (1930) A successful transfer of emmer characters to vulgare wheat. J Amer Soc Agro 22:1020–1034

    Article  Google Scholar 

  • Mcintosh RA (1996) Breeding wheat for resistance to biotic stress. In: Braun HJ, Altay F, Kronstad WE, Beniwal SPS, McNab A (eds) Wheat: prospects for global improvement, Proceedings of the 5th international wheat conference, vol 1997. Kluwer Academic Publishers, Dordrecht, pp 71–86

    Google Scholar 

  • Mignucci JS, Chamberain D (1978) Interactions of Microsphaera diffusa with soybeans and other legumes. Phytopathology 68:169–173

    Article  Google Scholar 

  • Monneveux P, Reynolds MP, Aguilar JG, Singh RP, Weber WE (2008) Effects of the 7DL.7Ag translocation from Lophopyrum elongatum on wheat yield and related morphophysiological traits under different environments. Plant Breeding 122:379–384

    Article  Google Scholar 

  • Morishima H, Oka HI (1960) The pattern of interspecific variation in the genus Oryza: its quantitative representation by statistical methods. Evolution 14:153–165

    Google Scholar 

  • Morrell PL, Clegg MT (2011) Hordeum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 309–319

    Chapter  Google Scholar 

  • Moseman JG, Nevo E, Morshidy MAE, Zohary D (1984) Resistance of Triticum dicoccoidesto infection with Erysiphe graminis tritici. Euphytica 33:41–47

    Article  Google Scholar 

  • Nault L, Findley W (1982) Zea diploperennis: a primitive relative offers new traits to improve corn. Desert Plants 3:203–205

    Google Scholar 

  • Oliver RE, Stack RW, Miller JD, Cai X (2007) Reaction of wild emmer wheat accessions to Fusarium head blight. Crop Sci 47:893–897

    Article  Google Scholar 

  • Orton WA (1900) The wilt disease of cotton and its control. US department of agriculture, division of vegetable physiology and pathology. Bulletin 27

    Google Scholar 

  • Pande S, Sharma M, Mangala UN, Ghosh R, Sundaresan G (2011) Phytophthora blight of pigeonpea [Cajanus cajan(L.) Millsp.]: an updating review of biology, pathogenicity and disease management. Crop Prot 30:951–957

    Article  Google Scholar 

  • Parlevliet JE (1979) Components of resistance that reduce the rate of epidemic development. Annu Rev Phytopathol 17:203–222

    Article  Google Scholar 

  • Parlevliet JE (2002) Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica 124:147–156. https://doi.org/10.1023/A:1015601731446

    Article  CAS  Google Scholar 

  • Pink DAC, Kift NB, Ellis PR, McClemant SJ, Lynn J, Tatchell GM (2003) Genetic control of resistance to aphid Brevicoryne brassicae in the wild species Brassica fruticulosa. Plant Breed 122:24–29

    Article  CAS  Google Scholar 

  • Pradhan SK, Nayak DK, Mohanty S, Behera L, Barik SR, Pandit E et al (2015) Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deep water rice variety, Jalmagna. Rice 8:19. https://doi.org/10.1186/s12284-015-0051-8

    Article  PubMed Central  Google Scholar 

  • Rafique MZ, Zia M, Rashid H, Chaudhary MF, Chaudhry Z (2010) Comparison of transgenic plant production for bacterial blight resistance in Pakistani local rice (Oryza sativa L.) cultivars. Afr J Biotechnol 9:1892–1904. https://doi.org/10.5897/AJB09.868

    Article  CAS  Google Scholar 

  • Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Beck D, Bohn M, Frisch M (2003) Use of SSRs for establishing heterotic groups in subtropical maize. Theor Appl Genet 107:947–957. https://doi.org/10.1007/s00122-003-1333-x

    Article  CAS  PubMed  Google Scholar 

  • Ribaut JM, de Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opinion Plant Bio 13:1–6

    Google Scholar 

  • Saxena KMS, Hooker AL (1968) On the structure of a gene for disease resistance in maize. Proc Nat Acad Sci USA 61:1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmalenbach I, Körber N, Pillen K (2008) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theoretical Appl Gen 117:1093–1106

    Article  Google Scholar 

  • Sharma SK, Rana JC (2012) Strategies for the conservation of crops wild relatives: Indian context. In: Sharma AK, Ray D, Ghosh SN (eds) Biological diversity – origin, evolution and conservation. Viva Books Private Limited, New Delhi, pp 433–468

    Google Scholar 

  • Sharma S, Upadhyay HD (2016) Pre-breeding to expand primary genepool through introgression of genes from wild cajanus species for pigeonpea improvement. Legume Perspect 11:17–20

    Google Scholar 

  • Sharma T, Rai A, Gupta S, Vijayan J, Devanna B, Ray S (2012) Rice blast management through host-plant resistance: retrospect and prospects. Agricul Res 1:37–52

    Article  Google Scholar 

  • Shamsudin NAA, Swamy BPM, Ratnam W, Cruz MTS, Raman A, Kumar A (2016) Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genet 17:30. https://doi.org/10.1186/s12863-016-0334-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh KB, Ocampo B (1997) Exploitation of wild cicer species for yield improvement in chickpea. Theor Appl Gen 95:418–423

    Article  Google Scholar 

  • Singh BD, Jaiswal HK, Singh RM, Singh AK (1984) Isolation of early flowering recombinants from the interspecific cross between Cicer arietinum and C. reticulatum. Int Chickpea Newsl 11:14

    Google Scholar 

  • Singh S, Gumber RK, Joshi N, Singh K (2005) Introgression from wild Cicer reticulatum to cultivated chickpea for productivity and disease resistance. Plant Breed 124:477–480

    Article  Google Scholar 

  • Singh K, Chhuneja P, Ghai M, Kaur S, Goel RK, Bains NS, Keller B, Dhaliwal HS (2007) Molecular mapping of leaf and stripe rust resistance genes. In: Buck et al. (eds) T. Monococcum and their transfer to hexaploid wheat. Wheat production in stressed environments, Springer, Cham, pp 779–786

    Google Scholar 

  • Singh M, Rana MK, Kumar K, Bisht IS, Dutta M, Gautam NK, Sarker A, Bansal KC (2013) Broadening the genetic base of lentil cultivars through inter-subspecific and interspecific crosses of Lens taxa. Plant Breed 132:667–675

    Article  CAS  Google Scholar 

  • Sleper DA, Poehlman JM (2006) Breed field crops. Crop Sci 47:900–901

    Google Scholar 

  • Smith EF (1896) A bacterial disease of the tomato, eggplant and Irish potato (Bacillus solanacearum Nov. sp.). USDA. Bulletin 12:1

    Google Scholar 

  • Smith CM, Havlickova H, Starkey S, Gill BS, Holubec V (2004) Identification of Aegilops germplasm with multiple aphid resistance. Euphytica 135:265–273

    Article  Google Scholar 

  • Sodkiewicz W, Strzembicka A, Apolinarska B (2008) Chromosomal location in triticale of leaf rust resistance genes introduced from Triticum monococcum. Plant Breed 127:364–367

    Article  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Suh JP, Cho YC, Won YJ, Ahn EK, Baek MK, Kim MK, Kim BK, Jena KK (2015) Development of resistant gene-pyramided Japonica rice for multiple biotic stresses using molecular marker-assisted selection. Plant Breed Biotechnol 3:333–345. https://doi.org/10.9787/PBB.2015.3.4.333

    Article  Google Scholar 

  • Swarbreck SM, Lindquist AE, Ackerly DD, Andersen GL (2011) Analysis of leaf and root transcriptomes of soil grown Avena barbata plants. Plant Cell Physio 52:317–332

    Article  CAS  Google Scholar 

  • Tagle AG, Chuma I, Tosa Y (2015) Rmg7, a new gene for resistance to Triticum isolates of Pyricularia oryzae identified in tetraploid wheat. Phytopathology 105:495–499

    Article  CAS  PubMed  Google Scholar 

  • Tullu A, Bett K, Banniza S, Vail S, Vandenberg A (2013) Widening the genetic base of cultivated lentil through hybridization of Lens culinaris “Eston” and L. ervoides accession IG72815. Can J Plant Sci 93:1037–1047

    Article  Google Scholar 

  • Van der Maesen LJG (1986) Cajanus DC. and Atylosia W. & A. (Leguminosae). Agricultural University, Wageningen Papers 85–4 (1985). Agricultural University, Wageningen, pp 1–225

    Google Scholar 

  • Vasudevan K, Gruissem W, Bhullar NK (2015) Identification of novel alleles of the rice blast resistance gene Pi54. Sci Rep 5:15678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughan D (1989) The genus Oryza L.: current status of taxonomy, IRRI Paper Series. Number 138. International Rice Research Institute, Manila, p 21

    Google Scholar 

  • Vencovsky R, Ramalho MAP (2006) Contribuicoes do melhoramento genético no Brasil. In: Paterniani E (ed) Ciência, agricultura e sociedade, Contributions of Plant Breeding in Brazil. Embrapa, Brasília, DF, pp 41–74

    Google Scholar 

  • Waines JG, Ehdaie B (2007) Domestication and crop physiology: roots of green-revolution wheat. Annales Botanici 100:991–998

    Article  Google Scholar 

  • Wan YF, Yen C, Yang JL (1997) Sources of resistance to head scab in Triticum. Euphytica 94:31–36

    Article  Google Scholar 

  • Wang J, Liu W, Wang H, Li L, Wu J, Yang X (2011) QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica 177:277–292

    Article  Google Scholar 

  • Wang X, Lee S, Wang J, Ma J, Bianco T, Jia Y (2014) Current advances on genetic resistance to rice blast disease. In: Yan W, Bao J (eds) Rice—germplasm, genetics and improvement. InTech, Rijeka, pp 195–217

    Google Scholar 

  • Wei WH, Qin R, Song YC, Guo LQ, Gu MG (2001) Comparative analyses of disease resistant and nonresistant lines from maize × Zea diploperennis by GISH. Bot bulletin Acad Sinica 42:109–114

    CAS  Google Scholar 

  • Wijerathna YMAM (2015) Marker assisted selection: biotechnology tool for rice molecular breeding. Adv Crop Sci Technol 3:187. https://doi.org/10.4172/2329-8863.1000187

    Article  Google Scholar 

  • Wulff BBH, Moscou MJ (2014) Strategies for transferring resistance to wheat: from wide crosses to GM cassettes. Front Plant Sci 5:692

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J (2013) Pyramiding of two BPH resistance genes and Stv-bi gene using marker-assisted selection in japonica rice. Crop Breed Appl Biotechnol 13:99–106. https://doi.org/10.1590/S1984-70332013000200001

    Article  CAS  Google Scholar 

  • Yabuuchi A, Kosako Y, Yano L, Hotta H, Nishiuchi Y (1996) Validation of the publication of new names and new combinations previously effectively published outside the IJSB Int. J Syst Bacteriol 46:625–626

    Article  Google Scholar 

  • Yadav S, Anuradha G, Kumar RR, Vemireddy LR, Sudhakar R, Donempudi K, Venkata D, Jabeen F, Narasimhan YK, Marathi B, Siddiq EA (2015) Identification of QTLs and possible candidate genes conferring sheath blight resistance in rice (Oryza sativa L.). Springer Plus 4:175. https://doi.org/10.1186/s40064-015-0954-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao G, Zhang J, Yang L, Xu H, Jiang Y, Xiong L, Zhang C, Zhang Z, Ma Z, Sorrells ME (2007) Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theoretical Appl Gen 114:351–358

    Article  CAS  Google Scholar 

  • Yellareddygari SKR, Reddy MS, Kloepper JW, Lawrence KS, Fadamiro H (2014) Rice sheath blight: a review of disease and pathogen management approaches. J Plant Pathol Microb 5:241. https://doi.org/10.4172/2157-7471.1000241

    Article  Google Scholar 

  • Yediay F, Baloch F, Kilian B, Ozkan H (2010) Testing of rye-specific markers located on 1RS chromosome and distribution of 1AL.RS and 1BL.RS translocations in Turkish wheat (Triticum aestivum L. durum Desf.) varieties and landraces. Gen Resour Crop Evol 57:119–129

    Article  CAS  Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Ann Rev Phytopath 34:479–501

    Article  CAS  Google Scholar 

  • Yumurtaci A (2015) Utilization of wild relatives of wheat, barley, maize and oat in developing abiotic and biotic stress tolerant new varieties. Emirates J Food Agricul 27:1–23

    Article  Google Scholar 

  • Zhang F, Xie J (2014) Genes and QTLs resistant to biotic and abiotic stresses from wild rice and their applications in cultivar improvements. In: Bao J (ed) Rice-Germplasm, genetics and improvement. IntechOpen, London, pp 59–78

    Google Scholar 

  • Zhang Q, Wang C, Zhao K, Zhao Y, Caslana V, Zhu X (2001) The effectiveness of advanced rice lines with new resistance gene Xa23 to rice bacterial blight. Rice Genetics Newsl 18:71–72

    CAS  Google Scholar 

  • Zhou L, Wang JK, Yi Q, Wang YZ, Zhu YG, Zhang ZH (2007) Quantitative trait loci for seedling vigor in rice under field conditions. Field Crop Res 100:294–301. https://doi.org/10.1016/j.fcr.2006.08.003

    Article  Google Scholar 

  • Zhou YL, Uzokwe VNE, Zhang CH, Cheng LR, Wang L, Chen K, Gao XQ, Sun Y, Chen JJ, Zhu LH, Zhang Q, Ali J, Xu JL, Li ZK (2011) Improvement of bacterial blight resistance of hybrid rice in China using the Xa23 gene derived from wild rice (Oryza rufipogon). Crop Prot 30:637–644

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N.K., Joshi, A., Sahoo, S., Prasad, B. (2021). Resistance Breeding and Exploitation of Wild Relatives for New Resistance Sources. In: Singh, K.P., Jahagirdar, S., Sarma, B.K. (eds) Emerging Trends in Plant Pathology . Springer, Singapore. https://doi.org/10.1007/978-981-15-6275-4_10

Download citation

Publish with us

Policies and ethics