Skip to main content

Other Methods: Minimally Invasive Techniques in Pain Clinic

  • Chapter
  • First Online:
Chronic Pain Management in General and Hospital Practice
  • 1072 Accesses

Abstract

There are several methods for treating chronic pain in conjunction with nerve blocks: multimodal rehabilitation, cognitive behavioral therapy, administration of analgesic drugs, brain stimulation, spinal cord stimulation, peripheral nerve stimulation, acupuncture, radiofrequency denervation, physical intervention, physical exercise, relaxation, biofeedback, massage, manipulation, physical therapy and active orthosis, supervised exercise.

Brain stimulation represents one of the earliest uses to treat chronic pain that is refractory to medical therapy. Pain relief is most frequently achieved by stimulating the motor cortex, the thalamus, or the periaqueductal and periventricular gray matter.

Spinal cord stimulation (SCS) or dorsal column stimulation (DCS) is a type of technique that is used to send electrical signals to selected areas of the dorsal spinal cord for the treatment of certain pain conditions which hardly respond to the analgesics or other measures.

Percutaneous electric nerve stimulation (PENS) by a needle electrode or transcutaneous electrical nerve stimulation (TENS) by a surface electrode may provide a safe and simple alternative to narcotics and anti-inflammatory analgesics utilized in chronic pain.

Electrotherapy of pain by neurostimulation including spinal cord and peripheral nerve stimulations are based on the gate control theory proposed by Melzack and Wall in 1965.

Acupuncture is believed to be devised before 2500 BC in China and widely introduced in the late twentieth century in many other areas of the world. Acupuncture consists of the insertion of one or several small metal needles into the skin and underlying tissues at meridian points on the body. Mechanism of its action has been hypothesized variously, including meridians and acupoints theory.

Vagal nerve stimulation, recently developed, provides growing evidence that it has also analgesic effects besides therapeutic efficacy in the treatment of refractory epilepsy and depression. The proposed mechanism of its action is alteration of epinephrine release by projections of solitary tract to locus coeruleus in the medulla, and elevation of gamma aminobutyric acid (GABA) levels in the brain stem.

Percutaneous disc coagulation therapy (PDCT) can deliver stable thermal damage to the center of nucleus pulposus and annulus part as well with ball shaped plasma light, and several similar methods have been developed.

MRI-guided focused ultrasound (MRgFUS) surgery is a minimally invasive thermal ablation method that uses magnetic resonance imaging (MRI) for target definition without damaging normal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Acupuncture in the narrower sense of using metal needles to treat illnesses by stimulating specific points along circulation channels (meridians) in accordance with theories related to the circulation of qi [91, 92].

References

  1. Croft PG. The effect of electrical stimulation of the brain on the perception of pain. J Ment Sci. 1952;98:421–6.

    Article  CAS  PubMed  Google Scholar 

  2. Honey CM, Tronnier VM, Honey CR. Deep brain stimulation versus motor cortex stimulation for neuropathic pain: a minireview of the literature and proposal for future research. Comput Struct Biotechnol J. 2016;14:234–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S. Chronic motor cortex stimulation for the treatment of central pain. Acta Neurochir Suppl (Wien). 1991;52:137–9.

    Article  CAS  Google Scholar 

  4. Katayama Y, Fukaya C, Yamamoto T. Poststroke pain control by chronic motor cortex stimulation: neurological characteristics predicting a favorable response. J Neurosurg. 1998;89:585–91.

    Article  CAS  PubMed  Google Scholar 

  5. Katayama Y, Yamamoto T, Kobayashi K, et al. Motor cortex stimulation for phantom limb pain: comprehensive therapy with spinal cord and thalamic stimulation. Stereotact Funct Neurosurg. 2001;77:159–62.

    Article  CAS  PubMed  Google Scholar 

  6. Katayama Y, Yamamoto T, Kobayashi K, et al. Motor cortex stimulation for post-stroke pain: comparison of spinal cord and thalamic stimulation. Stereotact Funct Neurosurg. 2001;77:183–6.

    Article  CAS  PubMed  Google Scholar 

  7. Monsalve GA. Motor cortex stimulation for facial chronic neuropathic pain: a review of the literature. Surg Neurol Int. 2012;3(Suppl. 4):S290–311.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fontaine D, Hamani C, Lozano A. Efficacy and safety of motor cortex stimulation for chronic neuropathic pain: critical review of the literature. J Neurosurg. 2009;110:251–6.

    Article  PubMed  Google Scholar 

  9. Lefaucheur JP, Drouot X, Cunin P. Motor cortex stimulation for the treatment of refractory peripheral neuropathic pain. Brain. 2009;132(Pt 6):1463–71.

    Article  PubMed  Google Scholar 

  10. Nguyen JP, Velasco F, Brugières P. Treatment of chronic neuropathic pain by motor cortex stimulation: results of a bicentric controlled crossover trial. Brain Stimul. 2008;1:89–96.

    Article  PubMed  Google Scholar 

  11. Velasco F, Argüelles C, Carrillo-ruiz JD. Efficacy of motor cortex stimulation in the treatment of neuropathic pain: a randomized double-blind trial. J Neurosurg. 2008;108:698–706.

    Article  PubMed  Google Scholar 

  12. Velasco F, Carrillo-Ruiz JD, Castro G, et al. Motor cortex electrical stimulation applied to patients with complex regional pain syndrome. Pain. 2009;147:91–8.

    Article  PubMed  Google Scholar 

  13. Cedzich C, Taniguchi M, Schäfer S, Schramm J. Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery. 1996;38:962–70.

    Article  CAS  PubMed  Google Scholar 

  14. Kurt E, Henssen DJHA, Steegers M, Staal M, Beese U, et al. Motor cortex stimulation in patients suffering from chronic neuropathic pain: summary of an expert meeting and pre-meeting questionnaire, combined with a literature review. World Neurosurg. 2017;108:254–63.

    Article  PubMed  Google Scholar 

  15. Heath R. Studies in schizophrenia: a multidisciplinary approach to mind brain relationships. Cambridge: Harvard University Press; 1954.

    Book  Google Scholar 

  16. Mazars G, Merienne L, Cioloca C. Thalamic stimulation for intermittent analgesia: preliminary notes [in French]. Rev Neurol. 1973;128:273–9.

    CAS  PubMed  Google Scholar 

  17. Hosobuchi Y, Adams JE, Rutkin B. Chronic thalamic stimulation for the control of facial anesthesia dolorosa. Arch Neurol. 1973;29:158–61.

    Article  CAS  PubMed  Google Scholar 

  18. Adams JE, Hosobuchi Y, Fields HL. Stimulation of the internal capsule for relief of chronic pain. J Neurosurg. 1974;41:740–4.

    Article  CAS  PubMed  Google Scholar 

  19. Richardson DE, Akil H. Pain reduction by electrical brain stimulation in man, part I: acute administration in periaqueductal and periventricular sites. J Neurosurg. 1977;47:178–83.

    Article  CAS  PubMed  Google Scholar 

  20. Richardson DE, Akil H. Pain reduction by electrical stimulation, part II: chronic self-administration in the periventricular gray matter. J Neurosurg. 1977;47:184–94.

    Article  CAS  PubMed  Google Scholar 

  21. Hosobuchi Y, Adams JE, Linchitz R. Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science. 1977;197:183–6.

    Article  CAS  PubMed  Google Scholar 

  22. Hosobuchi Y, Adams JE, Bloom FE, Guilleum R. Stimulation of human periaqueductal grey for pain relief increases immunoreactive B-endorphin in ventricular fluid. Science. 1979;203:279–81.

    Article  CAS  PubMed  Google Scholar 

  23. Hosobuchi Y, Lamb S, Bascim D. Tryptophan loading may reverse tolerance to opiate analgesics in humans: a preliminary report. Pain. 1980;9:161–9.

    Article  CAS  PubMed  Google Scholar 

  24. Hosobuchi Y, Rossier J, Bloom FE. Oral loading with L-tryptophan may augment the simultaneous release of ACTH and beta-endorphin that accompanies periaqueductal stimulation in humans. Adv Biochem Psychopharmacol. 1980;22:563–70.

    CAS  PubMed  Google Scholar 

  25. Akil H, Richardson DE, Hughes J, Barchas JD. Enkephalin-like material elevated in ventricular cerebrospinal fluid of pain patients after analgesic focal stimulation. Science. 1978;201:463–5.

    Article  CAS  PubMed  Google Scholar 

  26. Richardson DE, Akil H. Long term results of periventricular gray-self stimulation. Neurosurgery. 1977;1:199–202.

    Article  CAS  PubMed  Google Scholar 

  27. Amano K, Kitamura H, Kawamura H, et al. Alterations of immunoreactive beta-endorphin in the third ventricular fluid in response to electrical stimulation of the human periaqueductal gray matter. Appl Neurophysiol. 1980;43:150–8.

    CAS  PubMed  Google Scholar 

  28. Gybels J. Electrical stimulation of the brain for pain control in humans [in German]. Verhandl Deutsch Gesellsch Inn Med. 1980;86:1553–9.

    Article  CAS  Google Scholar 

  29. Ray CD, Bruton CV. Deep brain stimulation for severe, chronic pain. Acta Neurochir. 1980;3:289–93.

    Article  Google Scholar 

  30. Dieckmann GJ, Witzmann A. Initial and long-term results of deep brain stimulation for chronic intractable pain. Appl Neurophysiol. 1982;45:167–72.

    CAS  PubMed  Google Scholar 

  31. Plotkin R. Results in 60 cases of deep brain stimulation for chronic intractable pain. Appl Neurophysiol. 1982;45:173–8.

    CAS  PubMed  Google Scholar 

  32. Richardson DE. Analgesia produced by stimulation of various sites in the human beta-endorphin system. Appl Neurophysiol. 1982;45:116–22.

    CAS  PubMed  Google Scholar 

  33. Hosobuchi Y. Subcortical electrical stimulation for control of intractable pain in humans. J Neurosurg. 1986;64:543–53.

    Article  CAS  PubMed  Google Scholar 

  34. Levy RM, Lamb S, Adams JE. Treatment of chronic pain by deep brain stimulation: long term follow-up and review of the literature. Neurosurgery. 1987;21:885–93.

    Article  CAS  PubMed  Google Scholar 

  35. Hosobuchi Y. Intracerebral stimulation for the relief of chronic pain. In: Youmans JR, editor. Neurological surgery. Philadelphia: WB Saunders; 1990. p. 4128–43.

    Google Scholar 

  36. Kumar K, Toth C, Nath RK. Deep brain stimulation for intractable pain: a 15-year experience. Neurosurgery. 1997;40:736–46.

    Article  CAS  PubMed  Google Scholar 

  37. Rinaldi PC, Young RF, Albe-Fessard D, Chodakiewitz J. Spontaneous neuronal hyperactivity in the medial and intralaminar thalamic nuclei of patients with deafferentation pain. J Neurosurg. 1991;74:415–21.

    Article  CAS  PubMed  Google Scholar 

  38. Kumar K, Wyant GM, Nath R. Deep brain stimulation for control of intractable pain in humans, present and future: a ten-year follow-up. Neurosurgery. 1990;26:774–82.

    Article  CAS  PubMed  Google Scholar 

  39. Hosobuchi Y. Dorsal periaqueductal gray matter stimulation in humans. Pacing Clin Electrophysiol. 1987;10:213–6.

    Article  CAS  PubMed  Google Scholar 

  40. Mazars GJ, Merienne L, Cioloca C. Comparative study of electrical stimulation of posterior thalamic nuclei, periaqueductal gray and other midline mesencephalic structures in man. In: Bonica JJ, editor. Advances in pain research and therapy, vol. 3. New York: Raven Press; 1979. p. 541–6.

    Google Scholar 

  41. Falowski SM. Deep brain stimulation for chronic pain. Curr Pain Headache Rep. 2015;19:27.

    Article  PubMed  Google Scholar 

  42. Farrand S, Evans AH, Mangelsdorf S, et al. Deep brain stimulation for severe treatment-resistant obsessive-compulsive disorder: an open-label case series. Aust N Z J Psychiatry. 2018;52(7):699–708.

    Article  PubMed  Google Scholar 

  43. Sugiyama K, Nozaki T, Asakawa T, et al. The present indication and future of deep brain stimulation. Neurol Med Chir (Tokyo). 2015;55:416–21.

    Article  Google Scholar 

  44. Boccard SG, Pereira EA, Aziz TZ. Deep brain stimulation for chronic pain. J Clin Neurosci. 2015;22:1537–43.

    Article  PubMed  Google Scholar 

  45. Hassan S, Lagrata S, Levy A, et al. Microvascular decompression or neuromodulation in patients with SUNCT and trigeminal neurovascular conflict? Cephalalgia. 2018;38(2):393–8.

    Article  PubMed  Google Scholar 

  46. Lempka SF, Malone DA Jr, Hu B, et al. Randomized clinical trial of deep brain stimulation for poststroke pain. Ann Neurol. 2017;81:653–63.

    Article  PubMed  Google Scholar 

  47. Boccard SGJ, Prangnell SJ, Pycroft L, et al. Long-term results of deep brain stimulation of the anterior cingulate cortex for neuropathic pain. World Neurosurg. 2017;106:625–37.

    Article  PubMed  Google Scholar 

  48. Sweet W. Intracerebral electrical stimulation for the relief of chronic pain. In: Youmans JR, editor. Neurological surgery. Philadelphia: WB Saunders; 1982. p. 3739–48.

    Google Scholar 

  49. Akram H, Miller S, Lagrata S, et al. Ventral tegmental area deep brain stimulation for refractory chronic cluster headache. Neurology. 2016;86(18):1676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bittar RG, Kar-Purkayastha I, Owen SL, Bear R, Green A, Wang S, Aziz T. Deep brain stimulation for pain relief: a meta-analysis. J Clin Neurosci. 2005;12:515–9.

    Article  PubMed  Google Scholar 

  51. Green AL, Owen SL, Davies P, Moir L, Aziz TZ. Deep brain stimulation for neuropathic cephalalgia. Cephalalgia. 2006;26:561–7.

    Article  CAS  PubMed  Google Scholar 

  52. Schoenen J, Di Clemente L, Vandenheede M, et al. Hypothalamic stimulation in chronic cluster headache: a pilot study of efficacy and mode of action. Brain. 2005;128:940–7.

    Article  CAS  PubMed  Google Scholar 

  53. Franzini A, Ferroli P, Leone M, et al. Hypothalamic deep brain stimulation for the treatment of chronic cluster headaches: a series report. Neuromodulation. 2004;7:1–8.

    Article  PubMed  Google Scholar 

  54. Mogilner AY, Rezaih AR. Brain stimulation: current clinical indications and future prospects. Suppl Clin Neurophysiol. 2004;57:721–32.

    Article  PubMed  Google Scholar 

  55. Shimoji K, Asai A, Toei M, et al. Clinical application of electroanesthesia. 1. Method. Masui. 1969;18:1479–85.

    CAS  PubMed  Google Scholar 

  56. Shimoji K, Higashi H, Terasaki H, et al. Physiologic changes associated with clinical electroanesthesia. Anesth Analg. 1971;50:490–7.

    Article  CAS  PubMed  Google Scholar 

  57. Thibaut A, Russo C, Hurtado-Puerto AM, et al. Effects of transcranial direct current stimulation, transcranial pulsed current stimulation, and their combination on brain oscillations in patients with chronic visceral pain: a pilot crossover randomized controlled study. Front Neurol. 2017;8:576.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Klein MM, Treister R, Raij T. Transcranial magnetic stimulation of the brain: guidelines for pain treatment research. Pain. 2015;156:1601–14.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Elsner B, Kugler J, Pohl M, Mehrholz JD. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev. 2016;(3):CD009645.

    Google Scholar 

  60. O’Connell NE, Wand BM, Marston L, et al. Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev. 2014;(4):CD008208.

    Google Scholar 

  61. Chen ML, Yao L, Boger J, Mercer K, Thompson B, Jiang N. Non-invasive brain stimulation interventions for management of chronic central neuropathic pain: a scoping review protocol. BMJ Open. 2017;7:e016002.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Galhardoni R, Correia GS, Araujo H, et al. Repetitive transcranial magnetic stimulation in chronic pain: a review of the literature. Arch Phys Med Rehabil. 2015;96(4 Suppl):S156–72.

    Article  PubMed  Google Scholar 

  63. Shimoji K. Stimulation produced analgesia. Tokyo: Shinko Pub. Co; 2010.

    Google Scholar 

  64. Shimoji K, Higashi H, Kano T, Asai S, Morioka T. Electrical management of intractable pain. Masui (Jap J Anesth). 1971;20:444–7.

    CAS  Google Scholar 

  65. Wong SS, Chan CW, Cheung CW. Spinal cord stimulation for chronic non-cancer pain: a review of current evidence and practice. Hong Kong Med J. 2017;23:517–23.

    Article  PubMed  Google Scholar 

  66. Melzack R, Wall PD. Pain mechanism: anew theory. Science. 1965;150:971–9.

    Article  CAS  PubMed  Google Scholar 

  67. Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg. 1967;46:489–91.

    Article  CAS  PubMed  Google Scholar 

  68. Shimoji K, Higashi H, Terasaki H, Morioka T. Clinical electroanesthesia with several methods of current application. Anesth Analg. 1971;50:409–16.

    Article  CAS  PubMed  Google Scholar 

  69. Shimoji K, Kitamura H, Ikezono E, et al. Spinal hypalgesia and analgesia by low-frequency electrical stimulation in the epidural space. Anesthesiology. 1974;41:91–4.

    Article  CAS  PubMed  Google Scholar 

  70. Vallejo R, Bradley K, Kapural L. Spinal cord stimulation in chronic pain: mode of action. Spine (Phila Pa 1976). 2017;42(Suppl 14):S53–60.

    Article  Google Scholar 

  71. Peppucci E, Di Bonaventura R, Esposito V, et al. Update on mechanism and therapeutic implications of spinal cord stimulation and cerebral hemodynamics: a narrative review. Acta Neurochir Suppl. 2017;124:27–36.

    Article  PubMed  Google Scholar 

  72. Deer TR, Mekhail N, Provenzano D. The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the neuromodulation appropriateness consensus committee. Neuromodulation. 2014;17:515–50.

    Article  PubMed  Google Scholar 

  73. Shimoji K. Analgesia by spiral cord stimulation. Masui. 1994;43(Suppl):S67–76.

    PubMed  Google Scholar 

  74. Shimoji K, Hokari T, Kano T, et al. Management of intractable pain with percutaneous epidural spinal cord stimulation: differences in pain-relieving effects among diseases and sites of pain. Anesth Analg. 1993;77(1):110–6.

    Article  CAS  PubMed  Google Scholar 

  75. Howard-Quijano K, Takamiya T, Dale EA, et al. Spinal cord stimulation reduces ventricular arrhythmias during acute ischemia by attenuation of regional myocardial excitability. Am J Physiol Heart Circ Physiol. 2017;313:H421–31.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Shimoji K, Matsuki M, Shimizu H, et al. Low-frequency, weak extradural stimulation in the management of intractable pain. Br J Anaesth. 1977;49:1081–6.

    Article  CAS  PubMed  Google Scholar 

  77. Kin K, Agari T, Yasuhara T. The factors affecting the difficulty of percutaneous cylindrical electrode placement for spinal cord stimulation. World Neurosurg. 2018;113:e391–8.

    Article  PubMed  Google Scholar 

  78. Kumar K, Hunter G, Demeria D. Spinal cord stimulation in treatment of chronic benign pain: challenges in the treatment planning and present status, a 22-year experience. Neurosurgery. 2006;58:481–96.

    Article  PubMed  Google Scholar 

  79. Kinfe TM, Pintea B, Vatter H. Is spinal cord stimulation useful and safe for the treatment of chronic pain of ischemic origin? A review. Clin J Pain. 2016;32:7–13.

    Article  PubMed  Google Scholar 

  80. Rossini PM, Burke D, Chen R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126:1071–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Phillips AA, Squair JW, Sayenko DG, et al. An autonomic neuroprosthesis: non-invasive electrical spinal cord stimulation restores autonomic cardiovascular function in individuals with spinal cord injury. J Neurotrauma. 2018;35(3):446–51.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Reddy CG, Flouty OE, Holland MT, et al. Novel technique for trialing peripheral nerve stimulation: ultrasonography-guided StimuCath trial. Neurosurg Focus. 2017;42:E5.

    Article  PubMed  Google Scholar 

  83. Aló KM, Abramova MV, Richter EO. Percutaneous peripheral nerve stimulation. Prog Neurol Surg. 2011;24:41–57.

    Article  PubMed  Google Scholar 

  84. Dworkin RH, O’Connor AB, Backonja M, et al. Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain. 2007;132:237–51.

    Article  CAS  PubMed  Google Scholar 

  85. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150:971–9.

    Article  CAS  PubMed  Google Scholar 

  86. Meng DW, Zhang JG, Zheng Z, et al. Chronic bilateral sphenopalatine ganglion stimulation for intractable bilateral chronic cluster headache: a case report. Pain Physician. 2016;19:E637–42.

    PubMed  Google Scholar 

  87. Mobbs RJ, Nair S, Blum P. Peripheral nerve stimulation for the treatment of chronic pain. J Clin Neurosci. 2007;14:216–23.

    Article  CAS  PubMed  Google Scholar 

  88. Kano T. Electroanesthesia. In: Shimoji K, editor. Stimulation produced analgesia. Tokyo: Shinko Pub. Co; 2003.

    Google Scholar 

  89. Shimoji K, Takahashi N, Nishio Y, et al. Pain relief by transcutaneous nerve stimulation with bidirectional modulated sine waves in patients with chronic back pain: a randomized, double-blind, sham-controlled study. Neuromodulation. 2007;10:42–51.

    Article  PubMed  Google Scholar 

  90. Takakura K, Sano K, Kosugi Y, Ikebe J. Pain control by transcutaneous electrical nerve stimulating using irregular pulse of 1/f fluctuation [proceedings]. Appl Neurophysiol. 1979;42:314–5.

    CAS  PubMed  Google Scholar 

  91. Chen YL, Zhao C, Zhang L, et al. Toward evidence-based Chinese medicine: Status quo, opportunities and challenges. Chin J Integr Med. 2018;24(3):163–70.

    Article  PubMed  Google Scholar 

  92. Emst E, Lee MS, Choi TY. Acupuncture: does it alleviate pain and are there serious risks? A review of reviews. Pain. 2011;152:755–64.

    Article  Google Scholar 

  93. Xiang A, Cheng K, Shen X, et al. The immediate analgesic effect of acupuncture for pain: a systematic review and meta-analysis. Evid Based Complement Alternat Med. 2017;2017:3837194.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Armour M, Dahlen HG, Zhu X, et al. The role of treatment timing and mode of stimulation in the treatment of primary dysmenorrhea with acupuncture: an exploratory randomised controlled trial. PLoS One. 2017;12:e0180177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Tejada MA, Montilla-García A, Cronin SJ, et al. Sigma-1 receptors control immune-driven peripheral opioid analgesia during inflammation in mice. Proc Natl Acad Sci U S A. 2017;114:8396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhao ZQ. Neural mechanism underlying acupuncture analgesia. Prog Neurobiol. 2008;85:355–75.

    Article  PubMed  Google Scholar 

  97. Travell W, Travell JG. Technic for reduction and ambulatory treatment of sacroiliac displacement. Arch Phys Ther. 1942;23:222–32.

    Google Scholar 

  98. Travell JG, Simons DG. Myofascial pain and dysfunction: the trigger point manual: the lower extremities, vol. 2. Baltimore: Williams & Wilkins; 1992.

    Google Scholar 

  99. Dunning J, Butts R, Mourad F, et al. Dry needling: a literature review with implications for clinical practice guidelines. Phys Ther Rev. 2014;19:252–65.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wang X, Zhang B, Zhang L, Liu S. Electroacupuncture suppresses morphine reward-seeking behavior: lateral hypothalamic orexin neurons implicated. Neurosci Lett. 2017;661:84–9.

    Article  CAS  PubMed  Google Scholar 

  101. Yen LT, Hsu YC, Lin JG, Hsieh CL, Lin YW. Role of ASIC3, Nav1.7 and Nav1.8 in electroacupuncture-induced analgesia in a mouse model of fibromyalgia pain. Acupunct Med. 2018;36(2):110–6.

    Article  PubMed  Google Scholar 

  102. Chen L, Xu A, Yin N, Zhao M, et al. Enhancement of immune cytokines and splenic CD4+ T cells by electroacupuncture at ST36 acupoint of SD rats. PLoS One. 2017;12:e0175568.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Chen B, Li MY, Guo Y, et al. Mast cell-derived exosomes at the stimulated acupoints activating the neuro-immune regulation. Chin J Integr Med. 2017;23:878–80.

    Article  CAS  PubMed  Google Scholar 

  104. Yao W, Yang H, Yin N, Ding G. Mast cell-nerve cell interaction at acupoint: modeling mechanotransduction pathway induced by acupuncture. Int J Biol Sci. 2014;10:511–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Wu ML, Xu DS, Bai WZ, Cui JJ, Shu HM, et al. Local cutaneous nerve terminal and mast cell responses to manual acupuncture in acupoint LI4 area of the rats. J Chem Neuroanat. 2015;68:14–21.

    Article  PubMed  Google Scholar 

  106. Wang L, Sikora J, Hu L, Shen X, Grygorczyk R, et al. ATP release from mast cells by physical stimulation: a putative early step in activation of acupuncture points. Evid Based Complement Alternat Med. 2013;2013:350949.

    PubMed  PubMed Central  Google Scholar 

  107. Su TF, Zhao YQ, Zhang LH, Peng M, Wu CH, et al. Electroacupuncture reduces the expression of proinflammatory cytokines in inflamed skin tissues through activation of cannabinoid CB2 receptors. Eur J Pain. 2012;16:624–35.

    Article  CAS  PubMed  Google Scholar 

  108. Zijlstra FJ, van den Berg-de Lange I, Huygen FJ, Klein J. Anti-inflammatory actions of acupuncture. Mediat Inflamm. 2003;12:59–69.

    Google Scholar 

  109. Zhu LX, Zhao FY, Cui RL. Effect of acupuncture on release of substance P. Ann N Y Acad Sci. 1991;632:488–9.

    Article  CAS  PubMed  Google Scholar 

  110. Fung PC. Probing the mystery of Chinese medicine meridian channels with special emphasis on the connective tissue interstitial fluid system, mechanotransduction, cells durotaxis and mast cell degranulation. Chin Med. 2009;4:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. MacPherson H, Hammerschlag R, Coeytaux RR, et al. Unanticipated insights into biomedicine from the study of acupuncture. J Altern Complement Med. 2016;22:101–7.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zhang R, Lao L, Ren K, Berman BM. Mechanisms of acupuncture-electroacupuncture on persistent pain. Anesthesiology. 2014;120:482–503.

    Article  PubMed  Google Scholar 

  113. Bardoni R, Takazawa T, Tong CK, Choudhury P, Scherrer G, et al. Pre- and postsynaptic inhibitory control in the spinal cord dorsal horn. Ann N Y Acad Sci. 2013;1279:90–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yonehara N. Influence of serotonin receptor antagonists on substance P and serotonin release evoked by tooth pulp stimulation with electro-acupuncture in the trigeminal nucleus caudalis of the rabbit. Neurosci Res. 2001;40:45–51.

    Article  CAS  PubMed  Google Scholar 

  115. Mi W, Wang S, You Z, et al. Nortriptyline enhances morphine-conditioned place preference in neuropathic rats: role of the central noradrenergic system. Anesth Analg. 2017;125:1032–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fuxe K, Borroto-Escuela DO, Romero-Fernandez W. Volume transmission and its different forms in the central nervous system. Chin J Integr Med. 2013;19:323–9.

    Article  CAS  PubMed  Google Scholar 

  117. Beaussier M, Sciard D, Sautet A. New modalities of pain treatment after outpatient orthopaedic surgery. Orthop Traumatol Surg Res. 2016;102(1 Suppl):S121–4.

    Article  CAS  PubMed  Google Scholar 

  118. Lau CH, Wu X, Chung VC, et al. Acupuncture and related therapies for symptom management in palliative cancer care: systematic review and meta-analysis. Medicine (Baltimore). 2016;95:e2901.

    Article  Google Scholar 

  119. Chakravarthy K, Chaudhry H, Williams K, Christo PJ. Review of the uses of vagal nerve stimulation in chronic pain management. Curr Pain Headache Rep. 2015;19:54.

    Article  PubMed  Google Scholar 

  120. Napadow V, Edwards RR, Cahalan CM, et al. Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation. Pain Med. 2012;13:777–89.

    Article  PubMed  Google Scholar 

  121. Yuan H, Silberstein SD. Vagus nerve stimulation and headache. Headache. 2017;57(Suppl 1):29–33.

    Article  PubMed  Google Scholar 

  122. Hays SA. Enhancing rehabilitative therapies with vagus nerve stimulation. Neurotherapeutics. 2016;13:382–94.

    Article  PubMed  Google Scholar 

  123. Verrier RL, Nearing BD, Olin B, Boon P, Schachter SC. Baseline elevation and reduction in cardiac electrical instability assessed by quantitative T-wave alternans in patients with drug-resistant epilepsy treated with vagus nerve stimulation in the AspireSR E-36 trial. Epilepsy Behav. 2016;62:85–9.

    Article  PubMed  Google Scholar 

  124. Engineer CT, Hays SA, Kilgard MP. Vagus nerve stimulation as a potential adjuvant to behavioral therapy for autism and other neurodevelopmental disorders. J Neurodev Disord. 2017;9:20.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ekmekçi H, Hülagu Kaptan H. Vagus nerve stimulation. Open Access Maced J Med Sci. 2017;5:391–4.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Singh V, Manchikanti L, Calodney AK, et al. Percutaneous lumbar laser disc decompression: an update of current evidence. Pain Physician. 2013;16(2 Suppl):SE229–60.

    Article  PubMed  Google Scholar 

  127. Park CW, Lee JY, Choi WJ. Percutaneous disc coagulation therapy (PDCT) comparing with automated percutaneous lumbar discectomy (APLD) in patients of herniated lumbar disc disease: preliminary report. Korean J Spine. 2012;9:159–64.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kim SH, Kim SC, Cho KH. Clinical outcomes of percutaneous plasma disc coagulation therapy for lumbar herniated disc diseases. J Korean Neurosurg Soc. 2012;51:8–13.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Bonaldi G. Automated percutaneous lumbar discectomy: technique, indications and clinical follow-up in over 1000 patients. Neuroradiology. 2003;45:735–43.

    Article  CAS  PubMed  Google Scholar 

  130. Botsford JA. Radiological considerations: patient selection for percutaneous laser disc decompression. J Clin Laser Med Surg. 1994;12:255–9.

    Article  CAS  PubMed  Google Scholar 

  131. Bressler HB, Keyes WJ, Rochon PA, Badley E. The prevalence of low back pain in the elderly. A systemic review of the literature. Spine. 1999;24:1813–9.

    Article  CAS  PubMed  Google Scholar 

  132. Cassidy JD, Carroll LJ, Cote P. The Saskatchewan health and back pain survey: the prevalence of low back pain and related disability in Saskatchewan adults. Spine. 1998;23:1860–7.

    Article  CAS  PubMed  Google Scholar 

  133. Choy DS. Percutaneous laser disc decompression (PLDD): twelve years’ experience with 752 procedures in 518 patients. J Clin Laser Med Surg. 1998;16:325–31.

    Article  CAS  PubMed  Google Scholar 

  134. Abrishamkar S, Kouchakzadeh M. Mirhosseini a et al: comparison of open surgical discectomy versus plasma-laser nucleoplasty in patients with single lumbar disc herniation. J Res Med Sci. 2015;20:1133–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kumar N, Zaw AS, Kumar N, et al. Annulo-nucleoplasty using disc-fx in the management of degenerative lumbar disc pathology: how long can the effect last? Global Spine J. 2018;8:365–73.

    Article  PubMed  Google Scholar 

  136. Jolesz FA. MRI-guided focused ultrasound surgery. Annu Rev Med. 2009;60:417–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Martínez-Fernández R, Rodríguez-Rojas R, Del Álamo M, et al. Focused ultrasound subthalamotomy in patients with asymmetric Parkinson’s disease: a pilot study. Lancet Neurol. 2018;17:54–63.

    Article  PubMed  Google Scholar 

  138. Meng Y, Suppiah S, Mithani K, Solomon B, Schwartz ML, Lipsman N. Current and emerging brain applications of MR-guided focused ultrasound. J Ther Ultrasound. 2017;5:26.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zaaroor M, Sinai A, Goldsher D. Magnetic resonance-guided focused ultrasound thalamotomy for tremor: a report of 30 Parkinson’s disease and essential tremor cases. J Neurosurg. 2018;128:202–10.

    Article  PubMed  Google Scholar 

  140. Hindley J, Gedroyc WM, Regan L, et al. MRI guidance of focused ultrasound therapy of uterine fibroids: early results. AJR Am J Roentgenol. 2004;183:1713–9.

    Article  PubMed  Google Scholar 

  141. Clark NA, Mumford SL, Segars JH. Reproductive impact of MRI-guided focused ultrasound surgery for fibroids: a systematic review of the evidence. Curr Opin Obstet Gynecol. 2014;26:151–61.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Łoziński T, Filipowska J, Gurynowicz G, Gabriel I, Czekierdowski A. Non-invasive therapeutic use of high-intensity focused ultrasound (HIFU) with 3 tesla magnetic resonance imaging in women with symptomatic uterine fibroids. Ginekol Pol. 2017;88:497–503.

    Article  PubMed  Google Scholar 

  143. Lee HL, Kuo CC, Tsai JT, et al. Magnetic resonance-guided focused ultrasound versus conventional radiation therapy for painful bone metastasis: a matched-pair study. J Bone Joint Surg Am. 2017;99:1572–8.

    Article  PubMed  Google Scholar 

  144. Joo B, Park MS, Lee SH, et al. Pain palliation in patients with bone metastases using magnetic resonance-guided focused ultrasound with conformal bone system: a preliminary report. Yonsei Med J. 2015;56:503–9.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Barile A, Arrigoni F, Zugaro L, et al. Minimally invasive treatments of painful bone lesions: state of the art. Med Oncol. 2017;34:53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koki Shimoji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimoji, K., Kano, T. (2021). Other Methods: Minimally Invasive Techniques in Pain Clinic. In: Shimoji, K., Nader, A., Hamann, W. (eds) Chronic Pain Management in General and Hospital Practice. Springer, Singapore. https://doi.org/10.1007/978-981-15-2933-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2933-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2932-0

  • Online ISBN: 978-981-15-2933-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics