Skip to main content
Log in

Volume transmission and its different forms in the central nervous system

  • Feature Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Volume transmission (VT) is a widespread mode of intercellular communication that occurs in the extracellular fluid (ECF) and in the cerebrospinal fluid (CSF) of the brain with VT signals moving from source to target cells via energy gradients leading to diffusion and convection (flow). The VT channels are diffuse forming a plexus in the extracellular space, while in wiring transmission (WT) the channels (axons, terminals) are private. The speed is slow (seconds-minutes) in VT while rapid in the millisecond range in WT. The extracellular space is the substrate for VT, which is modulated by the extracellular matrix. Extrasynaptic VT is linked to synaptic transmission and likely often takes place due to incomplete diffusion barriers with the synaptic transmitter reaching extrasynaptic domains of the pre-and post-synaptic membrane of the synapse, the astroglia, and even adjacent synapses. Indications exist for the existence of striatal D2-like receptor-mediated extrasynaptic form of dopamine (DA) VT at the local circuit level in vivo in the human striatum. Synaptic glutamate via extrasynaptic VT can act on extrasynaptic metabotropic glutamate receptors located on the astroglia leading to Ca2+ mediated astrocytic glutamate release into the extracellular space (ECS). Long distance peptide VT and CSF VT is the major long distance VT with distances more than 1 mm and flow in the CSF. Indications for long distance VT of beta-endorphin and oxytocin are obtained. We propose that monogamy in the female prairie vole may take place through an increase in oxytocin VT, especially in nucleus accumbens. Release of extracellular vesicles containing receptors, proteins, RNAs and mtDNA from cellular networks in the central nervous system (CNS) into the ECF and CSF may be a fundamental communication in the CNS. It represents a special form of volume transmission, the Roamer subtype of VT. It may greatly contribute to dynamic events of synaptic plasticity but also to spread of pathological proteins in protein conformational disorders. VT also occurs in the peripheral nervous system and associated cells. Short and long distance VT may take place in meridian channels via diffusion and flow in the interstitial fluid. Acupuncture can produce VT signals by releasing transmitters and modulators from nerve terminals and mast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fuxe K, Dahlstrom A, Hoistad M, Marcellino D, Jansson A, Rivera A, et al. From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission. Brain Res Rev 2007;55:17–54.

    Article  PubMed  CAS  Google Scholar 

  2. Descarries L, Mechawar N. Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog Brain Res 2000;125:27–47.

    Article  PubMed  CAS  Google Scholar 

  3. Agnati LF, Fuxe K, Zoli M, Ozini I, Toffano G, Ferraguti F. A correlation analysis of the regional distribution of central enkephalin and beta-endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission. Acta Physiol Scand 1986;128:201–207.

    Article  PubMed  CAS  Google Scholar 

  4. Fuxe K, Agnati LF, Zoli M, Cin-tra A, Härfstrand A, vonEuler G, et al. The opioid peptide sytems: their organization and role in volume transmission and neuroendocrine regulation. In Regulatory Roles of Opioid Peptides, eds. P. Illes and C. Farsang (Weinheim: VCH) 1988:33–68.

    Google Scholar 

  5. Fuxe K, Dahlstrom AB, Jonsson G, Marcellino D, Guescini M, Dam M, et al. The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog Neurobiol 2010;90:82–100.

    Article  PubMed  CAS  Google Scholar 

  6. Agnati LF, Guidolin D, Guescini M, Genedani S, Fuxe K. Understanding wiring and volume transmission. Brain Res Rev 2010;64:137–159.

    Article  PubMed  Google Scholar 

  7. Nicholson C, Sykova E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci 1998;21:207–215.

    Article  PubMed  CAS  Google Scholar 

  8. Hoistad M, Chen KC, Nicholson C, Fuxe K, Kehr J. Quantitative dual-probe microdialysis: evaluation of [3H] mannitol diffusion in agar and rat striatum. J Neurochem 2002;81:80–93.

    Article  PubMed  CAS  Google Scholar 

  9. Chen KC, Hoistad M, Kehr J, Fuxe K, Nicholson C. Quantitative dual-probe microdialysis: mathematical model and analysis. J Neurochem 2002;81:94–107.

    Article  PubMed  CAS  Google Scholar 

  10. De-Miguel FF, Trueta C. Synaptic and extrasynaptic secretion of serotonin. Cell Mol Neurobiol 2005;25:297–312.

    Article  PubMed  CAS  Google Scholar 

  11. Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Diaz-Cabiale Z, Rivera A, Ferraro L, et al. Extrasynaptic neurotransmission in the modulation of brain function. Focus on the striatal neuronal-glial networks. Front Physiol 2012;3:136–153.

    Article  PubMed  CAS  Google Scholar 

  12. Fuxe K, Marcellino D, Borroto-Escuela DO, Frankowska M, Ferraro L, Guidolin D, et al. The changing world of Gproteincoupled receptors: from monomers to dimers and receptor mosaics with allosteric receptor-receptor interactions. J Recept Signal Transduct Res 2010;30:272–283.

    Article  PubMed  CAS  Google Scholar 

  13. Borroto-Escuela DO, Tarakanov AO, Guidolin D, Ciruela F, Agnati LF, Fuxe K. Moon-lighting characteristics of G protein-coupled receptors: focus on receptor heteromers and relevance for neurodegeneration. IUBMB Life 2011;63:463–472.

    Article  PubMed  CAS  Google Scholar 

  14. Kenakin T, Agnati LF, Caron M, Fredholm B, Guidolin D, Kobilka B, et al. International Workshop at the Nobel Forum, Karolinska Institutet on G protein-coupled receptors: finding the words to describe monomers, oligomers and their molecular mechanisms and defining their meaning. Can a consensus be reached? J Recept Signal Transduct Res 2010;30:284–286.

    Article  PubMed  CAS  Google Scholar 

  15. Rice ME, Cragg SJ. Dopamine spillover after quantal release: rethinking dopaminetransmission in the nigrostriatal pathway. Brain Res Rev 2008;58:303–313.

    Article  PubMed  CAS  Google Scholar 

  16. Fuxe K. Dopamine receptor agonists in brain research and as therapeutic agents. Trends Neurosci 1979;2:1–4.

    Article  Google Scholar 

  17. Marcellino D, Kehr J, Agnati LF, Fuxe K. Increased affinity of dopamine for D(2)-like versus D(1)-like receptors. Relevance for volume transmission in interpreting PET findings. Synapse 2012;66:196–203.

    Article  PubMed  CAS  Google Scholar 

  18. Seneca N, Finnema SJ, Farde L, Gulyas B, Wikstrom HV, Halldin C, et al. Effect of amphetamine on dopamine D2 receptor binding in nonhuman primate brain: a comparison of the agonist radiolig and [11C] MNPA and antagonist [11C] raclopride. Synapse 2006;59:260–269.

    Article  PubMed  CAS  Google Scholar 

  19. Del Arco A, Segovia G, Fuxe K, Mora F. Changes in dialysate concentrations of glutamate and GABA in the brain: an index of volume transmission mediated actions. J Neurochem 2003;85:23–33.

    Article  PubMed  Google Scholar 

  20. Oláh S, Füle M, Komlósi G, Varga C, Báldi R, Barzó P, et al. Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 2009;461(7268):1278–1281.

    Article  PubMed  Google Scholar 

  21. Okubo Y, Sekiya H, Namiki S, Sakamoto H, Iinuma S, Yamasaki M. Imaging extrasynaptic glutamate dynamics in the brain. Proc Natl Acad Sci USA. 2010;107:6526–6531.

    Article  PubMed  CAS  Google Scholar 

  22. Jansson A, Goldstein M, Tinner B, Zoli M, Meador-Woodruff JH, Lew JY, et al. On the distribution patterns of D1, D2, tyrosinehydroxylase and dopamine transporter immunoreactivities in the ventral striatum of the rat. Neuroscience 1999;89:473–489.

    Article  PubMed  CAS  Google Scholar 

  23. Rivera A, Agnati LF, Horvath TL, Valderrama JJ, DeLaCalle A, Fuxe K. Uncoupling protein2/3 immunoreactivity and the ascending dopaminergic and noradrenergic neuronal systems: relevance for volume transmission. Neuroscience 2006;137:1447–1461.

    Article  PubMed  CAS  Google Scholar 

  24. Fuxe K. Cellular localization of monoamines in the median eminence and in the infundibular stem of some mammals. Acta Physiol Scand 1963;58:383–384.

    Article  PubMed  CAS  Google Scholar 

  25. Fuxe K. Cellular localization of monoamines in the median eminence and the infundibular stem of some mammals. Z Zellforsch Mikrosk Anat 1964;61:710–724.

    Article  PubMed  CAS  Google Scholar 

  26. Fuxe K, Hokfelt T, Nilsson O. Activity changes in the tuberoinfundibular dopamine neurons of the rat during various states of the reproductive cycle. Life Sci 1967;6:2057–2061.

    Article  PubMed  CAS  Google Scholar 

  27. MacLeod RM, Lehmeyer JE. Studies on the mechanism of the dopamine-mediated inhibition of prolactin secretion. Endocrinology 1974;94:1077–1085.

    Article  PubMed  CAS  Google Scholar 

  28. Hoistad M, Samskog J, Jacobsen KX, Olsson A, Hansson HA, Brodin E, et al. Detection of beta-endorphin in the cerebrospinal fluid after intrastriatal microinjection into the rat brain. Brain Res 2005;1041:167–180.

    Article  PubMed  Google Scholar 

  29. Agnati LF, Bjelke B, Fuxe K. Volume transmission in the brain. Am Sci 1992;80:362–373.

    Google Scholar 

  30. MacMillan SJ, Mark MA, Duggan AW. The release of betaendorphin and the neuropeptide-receptor mismatch in the brain. Brain Res 1998;794:127–136.

    Article  PubMed  CAS  Google Scholar 

  31. Young LJ, Wang Z. The neurobiology of pair bonding. Nat Neurosci 2004;7:1048–1054.

    Article  PubMed  CAS  Google Scholar 

  32. Young LJ, Lim MM, Gingrich B, Insel TR. Cellular mechanisms of social attachment. Horm Behav 2001;40:133–138.

    Article  PubMed  CAS  Google Scholar 

  33. Lim MM, Murphy AZ, Young LJ. Ventral striatopallidal oxytocin and vasopressin V1a receptors in the monogamous prairie vole (Microtus ochrogaster). J Comp Neurol 2004;468:555–570.

    Article  PubMed  CAS  Google Scholar 

  34. Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Ciruela F, Manger P, Leo G, et al. On the role of volume transmission and receptor-receptor interactions in social behaviour: focus on central catecholamine and oxytocin neurons. Brain Res 2012;1476:119–131.

    Article  PubMed  CAS  Google Scholar 

  35. Aragona BJ, Liu Y, Curtis JT, Stephan FK, Wang Z. A critical role for nucleus accumbens dopamine in partnerpreference formation in male prairie voles. J Neurosci 2003;23:3483–3490.

    PubMed  CAS  Google Scholar 

  36. Gingrich B, Liu Y, Cascio C, Wang Z, Insel TR. Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles (Microtus ochrogaster). Behav Neurosci 2000;114:173–183.

    Article  PubMed  CAS  Google Scholar 

  37. Romero-Fernandez W, Borroto-Escuela DO, Agnati LF, Fuxe K. Evidence for the existence of dopamine d2-oxytocin receptor heteromers in the ventral and dorsal striatum with facilitatory receptor-receptor interactions. Mol Psychiatry. Epub 2012 Jul 24

    Google Scholar 

  38. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol 2009;19:43–51.

    Article  PubMed  CAS  Google Scholar 

  39. Simons M, Raposo G. Exosomes-vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009;21:575–581.

    Article  PubMed  CAS  Google Scholar 

  40. Lakkaraju A, Rodriguez-Boulan E. Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol 2008;18:199–209.

    Article  PubMed  CAS  Google Scholar 

  41. Van-Niel G, Porto-Carreiro I, Simoes S, Raposo G. Exosomes: a common pathway for a specialized function. J Biochem 2006;140:13–21.

    Article  PubMed  CAS  Google Scholar 

  42. Smalheiser NR. Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol Direct 2007;30:2–35.

    Google Scholar 

  43. Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 2010;117:1–4.

    Article  PubMed  CAS  Google Scholar 

  44. Guescini M, Leo G, Genedani S, Carone C, Pederzoli F, Ciruela F, et al. Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures. Exp Cell Res 2012;318:603–613.

    Article  PubMed  CAS  Google Scholar 

  45. Potolicchio I, Carven GJ, Xu X, Stipp C, Riese RJ, Stern LJ, et al. Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol 2005;175:2237–2243.

    PubMed  CAS  Google Scholar 

  46. Vella LJ, Greenwood DL, Cappai R, Scheerlinck JP, Hill AF. Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid. Vet Immunol Immunopathol 2008;124:385–393.

    Article  PubMed  CAS  Google Scholar 

  47. Rajendran L, Honsho M, Zahn T, Keller P, Geiger KD, Verkade P, et al. Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci USA. 2006;103:11172–11177.

    Article  PubMed  CAS  Google Scholar 

  48. Ghidoni R, Benussi L, Binetti G. Exosomes: the Trojan horses of neurodegeneration. Med Hypotheses 2008;70:1226–1227.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kjell Fuxe.

Additional information

Supported by grants from the Swedish Research Council (04X-715), Torsten and Ragnar Söderberg Foundation, Hjärnfonden and Marianne and Marcus Wallenberg Foundation to KF, by a grants from the Swedish Royal Academy of Sciences and Karolinska Institutet Forskningsstiftelser 2012 to DOB-E

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuxe, K., Borroto-Escuela, D.O., Romero-Fernandez, W. et al. Volume transmission and its different forms in the central nervous system. Chin. J. Integr. Med. 19, 323–329 (2013). https://doi.org/10.1007/s11655-013-1455-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-013-1455-1

Keywords

Navigation