Skip to main content

Advertisement

Log in

Minimally invasive treatments of painful bone lesions: state of the art

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The role of the interventional radiology (IR) in the musculoskeletal system, and in particular in the bone, is a field of knowledge that is growing significantly in the last years with indications for treatment of both benign and malign lesions. In this paper, we review the state of the art of this application of the IR in the bone (bone metastasis and benign bone lesions) with discussion about all the techniques today used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Salvati F, Rossi F, Limbucci N, Pistoia ML, Barile A, Masciocchi C. Mucoid metaplastic-degeneration of anterior cruciate ligament. J Sports Med Phys Fitness. 2008;48(4):483–7.

    CAS  PubMed  Google Scholar 

  2. Ripani M, Continenza MA, Cacchio A, Barile A, Parisi A, et al. The ischiatic region: normal and MRI anatomy. J Sports Med Phys Fitness. 2006;46(3):468–75.

    CAS  PubMed  Google Scholar 

  3. Barile A, Lanni G, Conti L, Mariani S, Calvisi V, Castagna A, et al. Lesions of the biceps pulley as cause of anterosuperior impingement of the shoulder in the athlete: potentials and limits of MR arthrography compared with arthroscopy. Radiol Med. 2013;118(1):112–22. doi:10.1007/s11547-012-0838-2.

    Article  CAS  PubMed  Google Scholar 

  4. Zappia M, Reginelli A, Russo A, D’Agosto GF, Di Pietto F, Genovese EA, et al. Long head of the biceps tendon and rotator interval. Musculoskelet Surg. 2013;97(Suppl 2):S99–108. doi:10.1007/s12306-013-0290-z.

    Article  PubMed  Google Scholar 

  5. Masciocchi C, Barile A, Lelli S, Calvisi V. Magnetic resonance imaging (MRI) and arthro-MRI in the evaluation of the chondral pathology of the knee joint. Radiol Med. 2004;108(3):149–58.

    PubMed  Google Scholar 

  6. Splendiani A, Perri M, Grattacaso G, Di Tunno V, Marsecano C, Panebianco L, et al. Magnetic resonance imaging (MRI) of the lumbar spine with dedicated G-scan machine in the upright position: a retrospective study and our experience in 10 years with 4305 patients. Radiol Med. 2016;121(1):38–44. doi:10.1007/s11547-015-0570-9.

    Article  PubMed  Google Scholar 

  7. Splendiani A, Ferrari F, Barile A, Masciocchi C, Gallucci M. Occult neural foraminal stenosis caused by association between disc degeneration and facet joint osteoarthritis: demonstration with dedicated upright MRI system. Radiol Med. 2014;119(3):164–74. doi:10.1007/s11547-013-0330-7.

    Article  PubMed  Google Scholar 

  8. Barile A, Limbucci N, Splendiani A, Gallucci M, Masciocchi C. Spinal injury in sport. Eur J Radiol. 2007;62(1):68–78.

    Article  PubMed  Google Scholar 

  9. Caranci F, Tedeschi E, Leone G, Reginelli A, Gatta G, Pinto A, et al. Errors in neuroradiology. Radiol Med. 2015;120(9):795–801. doi:10.1007/s11547-015-0564-7.

    Article  PubMed  Google Scholar 

  10. Masciocchi C, Lanni G, Conti L, Conchiglia A, Fascetti E, Flamini S, et al. Soft-tissue inflammatory myofibroblastic tumors (IMTs) of the limbs: potential and limits of diagnostic imaging. Skeletal Radiol. 2012;41(6):643–9. doi:10.1007/s00256-011-1263-7.

    Article  PubMed  Google Scholar 

  11. Barile A, Regis G, Masi R, Maggiori M, Gallo A, Faletti C, et al. Musculoskeletal tumours: preliminary experience with perfusion MRI. Radiol Med. 2007;112(4):550–61 (English, Italian).

    Article  CAS  PubMed  Google Scholar 

  12. Aliprandi A, Di Pietto F, Minafra P, Zappia M, Pozza S, Sconfienza LM. Femoro-acetabular Impingement: what the general radiologist should know. Radiol Med. 2014;119(2):103–12. doi:10.1007/s11547-013-0314-7.

    Article  PubMed  Google Scholar 

  13. Rossi S, Fornari F, Pathies C, Buscarini L. Thermal lesions induced by 480 KHz localized current field in guinea pig and pig liver. Tumori. 1990;76(1):54–7.

    CAS  PubMed  Google Scholar 

  14. McGahan JP, Brock JM, Tesluk H, Gu WZ, Schneider P, Browning PD. Hepatic ablation with use of radio-frequency electrocautery in the animal model. J Vasc Interv Radiol. 1992;3(2):291–7.

    Article  CAS  PubMed  Google Scholar 

  15. Tatli S, Tapan U, Morrison PR, Silverman SG. Radiofrequency ablation: technique and clinical applications. Diagnostic and Interventional Radiology. 2011;. doi:10.4261/1305-3825.DIR.5168-11.1.

    PubMed  Google Scholar 

  16. Brace CL. Microwave Tissue Ablation: Biophysics, Technology and Applications. Crit Rev Biomed Eng. 2010;38(1):65–78.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zoccali C, Rossi B, Zoccali G, Barbarino E, Gregori L, Barile A, et al. A new technique for biopsy of soft tissue neoplasms: a preliminary experience using MRI to evaluate bleeding. Min Med. 2015;106(2):117–20.

    CAS  Google Scholar 

  18. Floridi C, Radaelli A, Abi-Jaoudeh N, Grass M, Lin M, Chiaradia M, et al. C-arm cone-beam computed tomography in interventional oncology: technical aspects and clinical applications. Radiol Med. 2014;119(7):521–32. doi:10.1007/s11547-014-0429-5.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Carrafiello G, Fontana F, Cotta E, Petullà M, Brunese L, Mangini M, et al. Ultrasound-guided thermal radiofrequency ablation (RFA) as an adjunct to systemic chemotherapy for breast cancer liver metastases. Radiol Med. 2011;116(7):1059–66. doi:10.1007/s11547-011-0697-2.

    Article  CAS  PubMed  Google Scholar 

  20. Cazzato RL, Garnon J, Ramamurthy N, Koch G, Tsoumakidou G, Caudrelier J, et al. Percutaneous image-guided cryoablation: current applications and results in the oncologic field. Med Oncol. 2016;33(12):140.

    Article  PubMed  Google Scholar 

  21. Carrafiello G, Fontana F, Mangini M, Ierardi AM, Cotta E, Floridi C, et al. Initial experience with percutaneous biopsies of bone lesions using XperGuide cone-beam CT (CBCT): technical note. Radiol Med. 2012;117(8):1386–97.

    Article  CAS  PubMed  Google Scholar 

  22. Briganti F, Napoli M, Leone G, Marseglia M, Mariniello G, et al. Treatment of intracranial aneurysms by flow diverter devices: long-term results from a single center. Eur J Radiol. 2014;83(9):1683–90. doi:10.1016/j.ejrad.2014.05.029.

    Article  PubMed  Google Scholar 

  23. Carrafiello G, Laganà D, Mangini M, Fontana F, Dionigi G, Boni L, et al. Microwave tumors ablation: principles, clinical applications and review of preliminary experiences. International Journal of Surgery. 2008;6:S65–9. doi:10.1016/j.ijsu.2008.12.028.

    Article  PubMed  Google Scholar 

  24. Gangi A. Percutaneous Bone Tumor Management. Semin Interv Radiol. 2010;. doi:10.1055/s-0030-1253511.

    Google Scholar 

  25. Rose PS, Morris JM. Cryosurgery/cryoablation in musculoskeletal neoplasms: history and state of the art. Curr Rev Musculoskelet Med. 2015;8(4):353–60. doi:10.1007/s12178-015-9307-6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ringe KI, Panzica M, von Falck C. Thermoablation of Bone Tumors. Rofo. 2016;188(6):539–50.

    Article  CAS  PubMed  Google Scholar 

  27. Napoli A, Anzidei M, Ciolina F, Marotta E, Cavallo Marincola B, Brachetti G, et al. MR-guided high-intensity focused ultrasound: current status of an emerging technology. Cardiovasc Interv Radiol. 2013;36(5):1190–203. doi:10.1007/s00270-013-0592-4.

    Article  Google Scholar 

  28. Arrigoni F, Gregori LM, Zugaro L, Barile A, Masciocchi C. MRgFUS in the treatment of MSK lesions: a review based on the experience of the University of L’Aquila, Italy. Transl Cancer Res. 2014;. doi:10.3978/j.issn.2218-676X.2014.10.04.

    Google Scholar 

  29. Masciocchi C, Conchiglia A, Gregori LM, Arrigoni F, Zugaro L, Barile A. Critical role of HIFU in musculoskeletal interventions. Radiol Med (Torino). 2014;. doi:10.1007/s11547-014-0414-z.

    Google Scholar 

  30. Odisio BC. Wallace MJ Image-guided interventions in oncology. Surg Oncol Clin N Am. 2014;23(4):937–55. doi:10.1016/j.soc.2014.06.004.

    Article  PubMed  Google Scholar 

  31. Barile A, La Marra A, Arrigoni F, Mariani S, Zugaro L, Splendiani A, et al. Anaesthetics, steroids and platelet-rich plasma (PRP) in ultrasound-guided musculoskeletal procedures. Br J Radiol. 2016;. doi:10.1259/bjr.20150355.

    Google Scholar 

  32. Kurup AN, Callstrom MR. Ablation of musculoskeletal Metastases_ Pain palliation, fracture risk reduction, and oligometastatic disease. Tech Vasc Interv Radiol. 2013;16(4):253–61. doi:10.1053/j.tvir.2013.08.007.

    Article  PubMed  Google Scholar 

  33. Masciocchi C, Arrigoni F, La Marra A, Mariani S, Zugaro L, Barile A. Treatment of focal benign lesions of the bone: MRgFUS and RFA. Br J Radiol. 2016;89:20150356.

    Article  PubMed  Google Scholar 

  34. Helms CA. “Don’t touch” lesions. In: Helms CA, editor. Fundamentals of Skeletal Radiology. 4th ed. Philadalphia: Elsevier; 2014.

    Google Scholar 

  35. Pellerin O, Medioni J, Vulser C, Déan C, Oudard S, Sapoval M. Management of painful pelvic bone metastasis of renal cell carcinoma using embolization, radio-frequency ablation, and cementoplasty: a prospective evaluation of efficacy and safety. Cardiovasc Interv Radiol. 2014;37(3):730–6. doi:10.1007/s00270-013-0740-x.

    Article  Google Scholar 

  36. Carrafiello G, Dionigi G, Boni L, Mangini M, Ierardi AM, Piacentino F, et al. Current role of interventions in metastatic kidney tumors: single center experience. Updates Surg. 2011;63(4):259–69. doi:10.1007/s13304-011-0118-z.

    Article  PubMed  Google Scholar 

  37. Chatziioannou AN, Johnson ME, Pneumaticos SG, Lawrence DD, Carrasco CH. Preoperative embolization of bone metastases from renal cell carcinoma. Eur Radiol. 2000;10(4):593–6.

    Article  CAS  PubMed  Google Scholar 

  38. Son HY, Kim EY, Ahn SB, Lee BC. Selective embolization for hypervascular metastasis from differentiated thyroid cancer: a case series. J Med Case Rep. 2014;8:405. doi:10.1186/1752-1947-8-405.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Smit JW, Links TP, Hew JM, Goslings BM, Vielvoye GJ, Vermey A. Embolization of skeletal metastases in patients with differentiated thyroid carcinoma. Ned Tijdschr Geneeskd. 2000;144(29):1406–10.

    CAS  PubMed  Google Scholar 

  40. Owen R. Embolization of Musculoskeletal Bone Tumors. Semin Interv Radiol. 2010;27(02):111–23. doi:10.1055/s-0030-1253510.

    Article  Google Scholar 

  41. Gangi A, Tsoumakidou G, Buy X, Quoix E. Quality improvement guidelines for bone tumour management. Cardiovasc Interv Radiol. 2010;33(4):706–13. doi:10.1007/s00270-009-9738-9.

    Article  CAS  Google Scholar 

  42. Filippiadis DK, Tutton S, Mazioti A, Kelekis A. Percutaneous image-guided ablation of bone and soft tissue tumours: a review of available techniques and protective measures. Insights Imaging. 2014;5:339–46. doi:10.1594/essr2013/P-O127.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nazario J, Hernandez J, Tam AL. Thermal ablation of painful bone metastases. Techn Vasc Interv Radiol. 2011;14(3):150–9. doi:10.1053/j.tvir.2011.02.007.

    Article  Google Scholar 

  44. Johnstone C, Lutz ST. External beam radiotherapy and bone metastases. Ann Palliat Med. 2014;3(2):114–22.

    PubMed  Google Scholar 

  45. Smith HS. Painful osseous metastases. Pain Phys. 2011;14(4):E373–403.

    Google Scholar 

  46. Jimenez-Andrade JM, Mantyh WG, Bloom AP, Ferng AS, Geffre CP, Mantyh PW. Bone cancer pain. Ann N Y Acad Sci. 2010;1198:173–81.

    Article  PubMed  Google Scholar 

  47. Middlemiss T, Laird BJ, Fallon MT. Mechanisms of cancer-induced bone pain. Clin Oncol (R Coll Radiol). 2011;23(6):387–92.

    Article  CAS  Google Scholar 

  48. Van der Linden YM, Lok JJ, Steenland E, et al. Single fraction radiotherapy is efficacious: a further analysis of the Dutch Bone Metastasis Study controlling for the influence of retreatment. Int J Radiat Oncol Biol Phys. 2004;59:528–37.

    Article  PubMed  Google Scholar 

  49. Callstrom MR, Charboneau JW, Goetz MP, Rubin J, Wong GY, Sloan JA, et al. Painful metastases involving bone: feasibility of percutaneous CT and US-guided radio-frequency ablation. Radiology. 2002;224:87–97.

    Article  PubMed  Google Scholar 

  50. Goetz MP, Callstrom MR, Charboneau JW, Farrell MA, Maus TP, Welch TJ, et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multi-center study. J Clin Oncol. 2004;22:300–6.

    Article  PubMed  Google Scholar 

  51. Dupuy DE, Liu D, Hartfeil D, Hanna L, Blume JD, Ahrar K, et al. Percutaneous radiofrequency ablation of painful osseous metastases. Cancer. 2010;116(4):989–97. doi:10.1002/cncr.24837.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Di Staso M, Zugaro L, Gravina GL, Bonfili P, Marampon F, Di Nicola L, et al. A feasibility study of percutaneous radiofrequency ablation followed by radiotherapy in the management of painful osteolytic bone metastases. Eur Radiol. 2011;21(9):2004–10. doi:10.1007/s00330-011-2133-3.

    Article  PubMed  Google Scholar 

  53. Di Staso M, Gravina GL, Zugaro L, Bonfili P, Gregori L, Franzese P, et al. Treatment of solitary painful osseous metastases with radiotherapy, cryoablation or combined therapy: propensity Matching analysis in 175 patients. PLoS ONE. 2015;10(6):e0129021. doi:10.1371/journal.pone.0129021.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Callstrom MR, Dupuy DE, Solomon SB, Beres RA, Littrup PJ, Davis KW, et al. Percutaneous image-guided cryoablation of painful metastases involving bone. Cancer. 2012;119(5):1033–41. doi:10.1002/cncr.27793.

    Article  PubMed  Google Scholar 

  55. Catane R, Beck A, Inbar Y, Rabin T, Shabshin N, Hengst S, et al. MR-guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases–preliminary clinical experience. Ann Oncol Off J Eur Soc Med Oncol. 2007;18(1):163–7. doi:10.1093/annonc/mdl335.

    Article  CAS  Google Scholar 

  56. Gianfelice D, Gupta C, Kucharczyk W, Bret P, Havill D, Clemons M. Palliative treatment of painful bone metastases with MR imaging–guided focused ultrasound. Radiology. 2008;249(1):355–63. doi:10.1148/radiol.2491071523.

    Article  PubMed  Google Scholar 

  57. Liberman B, Gianfelice D, Inbar Y, Beck A, Rabin T, Shabshin N, et al. Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. Ann Surg Oncol. 2009;16(1):140–6. doi:10.1245/s10434-008-0011-2.

    Article  PubMed  Google Scholar 

  58. Napoli A, Anzidei M, Cavallo Marincola B, Brachetti G, Ciolina F, Cartocci G, et al. Primary pain palliation and local tumor control in bone metastases treated with magnetic resonance-guided focused ultrasound. Investig Radiol. 2013;48(6):351–8. doi:10.1097/RLI.0b013e318285bbab.

    Article  Google Scholar 

  59. Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol. 1995;13:8–10.

    Article  CAS  PubMed  Google Scholar 

  60. Weichselbaum RR, Hellman S. Oligometastases revisited. Nat Rev Clin Oncol. 2011;8(6):378–82.

    CAS  PubMed  Google Scholar 

  61. McMenomy BP, Kurup AN, Johnson GB, Carter RE, McWilliams RR, Markovic SN, et al. Percutaneous cryoablation of musculoskeletal oligometastatic disease for complete remission. J Vasc Interv Radiol. 2013;24(2):207–13. doi:10.1016/j.jvir.2012.10.019.

    Article  PubMed  Google Scholar 

  62. Pusceddu C, Sotgia B, Fele RM, Ballicu N, Melis L. Combined microwave ablation and cementoplasty in patients with painful bone metastases at high risk of fracture. Cardiovasc Interv Radiol. 2016;39:74–80. doi:10.1007/s00270-015-1151-y.

    Article  Google Scholar 

  63. Sun G, Jin P, Liu X-W, Li M, Li L. Cementoplasty for managing painful bone metastases outside the spine. Eur Radiol. 2013;24(3):731–7. doi:10.1007/s00330-013-3071-z.

    Article  PubMed  Google Scholar 

  64. Cazzato LR, Palussiere J, Buy X, Denaro V, Santini D, Tonini G, et al. Percutaneous long bone cementoplasty for palliation of malignant lesions of the limbs: a systematic review. Cardiovasc Interv Radiol. 2015;38(6):1563–72. doi:10.1007/s00270-015-1082-7.

    Article  Google Scholar 

  65. Rosenthal DI, Alexander A, Rosenberg AE, Spriengfield D. Ablation of osteoid osteomas with a percutaneously placed electrode: a new procedure. Radiology. 1992;183(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  66. Chai JW, Hong SH, Choi J-Y, Koh YH, Lee JW, Choi J-A, Kang HS. Radiologic diagnosis of osteoid osteoma: from simple to challenging findings. RadioGraphics. 2010;30(3):737–49. doi:10.1148/rg.303095120.

    Article  PubMed  Google Scholar 

  67. Kransdorf MJ, Stull MA, Gilkey FW, Moser RP Jr. Osteoid osteoma. Radiographics. 1991;11(4):671–96.

    Article  CAS  PubMed  Google Scholar 

  68. Rosenthal DI, Hornicek FJ, Torriani M, Gebhardt MC, Mankin HJ. Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology. 2003;229(1):171–5. doi:10.1148/radiol.2291021053.

    Article  PubMed  Google Scholar 

  69. Rehnitz C, Sprengel SD, Lehner B, Ludwig K, Omlor G, Merle C, et al. CT-guided radiofrequency ablation of osteoid osteoma: correlation of clinical outcome and imaging features. Diagn Interv Radiol. 2013;. doi:10.5152/dir.2013.096.

    PubMed  Google Scholar 

  70. Rimondi E, Mavrogenis AF, Rossi G, Ciminari R, Malaguti C, Tranfaglia C, et al. Radiofrequency ablation for non-spinal osteoid osteomas in 557 patients. Eur Radiol. 2011;22(1):181–8. doi:10.1007/s00330-011-2240-1.

    Article  PubMed  Google Scholar 

  71. Campanacci M, Ruggieri P, Gasbarrini A, Ferraro A, Campanacci L. Osteoid osteoma direct visual identification and intralesional excision of the nidus with minimal removal of bone. J Bone Joint Surg Br. 1999;81:814–20.

    Article  CAS  PubMed  Google Scholar 

  72. Gangi A, Alizadeh H, Wong L, Buy X, Dietemann JL, Roy C. Osteoid osteoma: percutaneous laser ablation and follow-up in 114 patients. Radiology. 2007;242(1):293–301.

    Article  PubMed  Google Scholar 

  73. Etienne A, Waynberger É, Druon J. Interstitial laser photocoagulation for the treatment of osteoid osteoma: retrospective study on 35 cases. Diagn Interv Imaging. 2013;94(3):300–10. doi:10.1016/j.diii.2012.11.002.

    Article  CAS  PubMed  Google Scholar 

  74. Napoli A, Mastantuono M, Cavallo Marincola B, Anzidei M, Zaccagna F, Moreschini O, et al. Osteoid osteoma: MR-guided focused ultrasound for entirely noninvasive treatment. Radiology. 2013;267(2):514–21. doi:10.1148/radiol.13120873.

    Article  PubMed  Google Scholar 

  75. Geiger D, Napoli A, Conchiglia A, Gregori LM, Arrigoni F, Bazzocchi A, et al. MR-guided focused ultrasound (MRgFUS) ablation for the treatment of nonspinal osteoid osteoma: a prospective multicenter evaluation. J Bone Joint Surg Am. 2014;96(9):743–51. doi:10.2106/JBJS.M.00903.

    Article  CAS  PubMed  Google Scholar 

  76. Masciocchi C, Zugaro L, Arrigoni F, Gravina GL, Mariani S, La Marra A, et al. Radiofrequency ablation versus magnetic resonance guided focused ultrasound surgery for minimally invasive treatment of osteoid osteoma: a propensity score matching study. Eur Radiol. 2016;26:2472–81. doi:10.1007/s00330-015-4111-7.

    Article  PubMed  Google Scholar 

  77. Lucas DR. Osteoblastoma. Arch Pathol Lab Med. 2010;134:1460–6.

    PubMed  Google Scholar 

  78. Papaioannou G, Sebire NJ, McHugh K. Imaging of the unusual pediatric ‘blastomas’. Cancer Imaging. 2009;9:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Orguc S, Arkun R. Primary tumors of the spine. Semin Musculoskelet Radiol. 2014;18:280–99.

    Article  PubMed  Google Scholar 

  80. Rehnitz C, Sprengel SD, Lehner B, Ludwig K, Omlor G, Merle C, et al. CT-guided radiofrequency ablation of osteoid osteoma and osteoblastoma: clinical success and long-term follow up in 77 patients. Eur J Radiol. 2012;81(11):3426–34. doi:10.1016/j.ejrad.2012.04.037.

    Article  PubMed  Google Scholar 

  81. Weber MA, Sprengel SD, Omlor GW, Lehner B, Wiedenhöfer B, Kauczor HU, et al. Clinical long-term outcome, technical success, and cost analysis of radiofrequency ablation for the treatment of osteoblastomas and spinal osteoid osteomas in comparison to open surgical resection. Skeletal Radiol. 2015;44:981–93.

    Article  PubMed  Google Scholar 

  82. Erickson JK, Rosenthal DI, Zaleske DJ, Gebhardt MC, Cates JM. Primary Treatment of chondroblastoma with percutaneous radio-frequency heat ablation: report of three cases1. Radiology. 2001;221(2):463–8. doi:10.1148/radiol.2212010262.

    Article  CAS  PubMed  Google Scholar 

  83. Petsas T, Megas P, Papathanassiou Z. Radiofrequency ablation of two femoral head chondroblastomas. Eur J Radiol. 2007;63(1):63–7.

    Article  PubMed  Google Scholar 

  84. Farfalli GL, Slullitel PA, Muscolo DL, Ayerza MA, Aponte-Tinao LA. What happens to the articular surface after curettage for epiphyseal chondroblastoma? A report on functional results, arthritis, and arthroplasty. Clin Orthop Relat Res. 2017;475(3):760–6. doi:10.1007/s11999-016-4715-5.

    Article  PubMed  Google Scholar 

  85. Aponte-Tinao L, Ayerza MA, Muscolo DL, Farfalli GL. Survival, recurrence, and function after epiphyseal preservation and allograft reconstruction in osteosarcoma of the knee. Clin Orthop Relat Res. 2015;473(5):1789–96. doi:10.1007/s11999-014-4028-5.

    Article  PubMed  Google Scholar 

  86. Zheng K, Yu X, Xu S, Xu M. Periosteal chondroma of the femur: a case report and review of the literature. Oncol Lett. 2015;. doi:10.3892/ol.2015.2889.

    Google Scholar 

  87. Bauer TW, Dorfman HD. Intraosseous ganglion. A clinicopathologic study of 11 cases. Am J Surg Pathol. 1982;6:207–13.

    Article  CAS  PubMed  Google Scholar 

  88. Corby RR, Stacy GS, Peabody TD, et al. Radiofrequency ablation of solitary eosinophilic granuloma of bone. Am J Roentgenol. 2008;190:1492–4.

    Article  Google Scholar 

  89. Kujak JL, Liu PT, Johnson GB, et al. Early experience with percutaneous cryoablation of extra-abdominal desmoid tumors. Skelet Radiol. 2010;39:175–82.

    Article  Google Scholar 

Download references

Acknowledgements

Angela Martella is kindly acknowledged for translation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Barile.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical standards

All procedures performed in this study were in accordance with the Helsinki Declaration and its later amendments; an informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barile, A., Arrigoni, F., Zugaro, L. et al. Minimally invasive treatments of painful bone lesions: state of the art. Med Oncol 34, 53 (2017). https://doi.org/10.1007/s12032-017-0909-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-017-0909-2

Keywords

Navigation