Skip to main content

Secondary Metabolite Pathways in Medicinal Plants: Approaches in Reconstruction and Analysis

  • Chapter
  • First Online:
Molecular Approaches in Plant Biology and Environmental Challenges

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Medicinal plants are the abundant source of varied secondary metabolites with important therapeutic properties. These plants and their extracts have been the basis of several traditional medicines and their usage and demand has grown ever since. This ever increasing fetish has attracted plant biologists, who in the past two decades have made enormous efforts towards exploring and engineering the biosynthetic pathways of these sparsely available molecules. Until recently, endeavors to unravel biosynthetic pathways were limited mainly due to limited plant genomics resources. However, recent advancements in generating high-throughput “omics” datasets, computational tools, functional genomics approaches and analytical methods, along with their seamless integration have leads to the explanation of biosynthetic pathways enormous plant bio-active metabolites. Researchers have gone a step ahead in creating alternative sustainable source of these biomolecules through synthetic biology approaches, thereby developing microbial systems producing plant origin bioactive metabolites. Here, we have reviewed the contributions of major biotechnological approaches and their integration towards elucidating, analyzing and reconstructing biosynthetic pathways of bioactive metabolites in plants. We have briefly discussed different approaches that utilize omics datasets to extract biologically relevant knowledge with intentions to build in depth understanding of metabolic models of secondary metabolite biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdurakhmonov IY et al (2016) RNA interference for functional genomics and improvement of cotton (Gossypium sp.). Front Sci 7

    Google Scholar 

  • Aharoni A, Galili G (2011) Metabolic engineering of the plant primary–secondary metabolism interface. Curr Opin Biotechnol 22(2):239–244

    Article  CAS  PubMed  Google Scholar 

  • Aitchison JD, Galitski T (2003) Inventories to insights. J cell Biol 161(3):465–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ajikumar PK et al (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330(6000):70–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert M-A et al (2005) Experimental and in silico analyses of glycolytic flux control in bloodstream form Trypanosoma brucei. J Biol Chem 280(31):28306–28315

    Article  CAS  PubMed  Google Scholar 

  • Ambrósio SR et al (2008) Constituents of glandular trichomes of Tithonia diversifolia: relationships to herbivory and antifeedant activity. Phytochemistry 69(10):2052–2060

    Article  PubMed  CAS  Google Scholar 

  • Ashihara H, Sano H, Crozier A (2008) Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering. Phytochemistry 69(4):841–856

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Lange M (2010) VIGS—genomics goes functional. Trends Plant Sci 15(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Berger RG (2007) Flavours and fragrances: chemistry, bioprocessing and sustainability. Springer Science & Business Media, Berlin

    Google Scholar 

  • Boudet A-M (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68(22):2722–2735

    Article  CAS  PubMed  Google Scholar 

  • Breitling R et al (2013) Metabolomics for secondary metabolite research. Metabolites 3(4):1076–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briskin DP (2000) Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol 124(2):507–514

    Google Scholar 

  • Broeckling CD et al (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56(410):323–336

    Article  CAS  PubMed  Google Scholar 

  • Cankar K, Jongedijk E, Klompmaker M, Majdic T, Mumm R, Bouwmeester H et al (2015) (+)‐Valencene production in Nicotiana benthamiana is increased by down‐regulation of competing pathways. Biotechnol J 10(1):180–189

    Google Scholar 

  • Carrari F et al (2006) Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol 142(4):1380–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang MC et al (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3(5):274–277

    Article  CAS  PubMed  Google Scholar 

  • Chang MCY, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2(12):674–681

    Google Scholar 

  • Chemler JA, Koffas MA (2008) Metabolic engineering for plant natural product biosynthesis in microbes. Curr Opin Biotechnol 19(6):597–605

    Article  CAS  PubMed  Google Scholar 

  • Chen W et al (2015) MR VIGS: MicroRNA-based virus-induced gene silencing in plants. Methods Protocols, Plant Gene Silencing, pp 147–157

    Google Scholar 

  • Chiang L, Abdullah MA (2007) Enhanced anthraquinones production from adsorbent-treated Morinda elliptica cell suspension cultures in production medium strategy. Process Biochem 42(5):757–763

    Article  CAS  Google Scholar 

  • Corchete P, Bru R (2013) Proteome alterations monitored by DIGE analysis in Silybum marianum cell cultures elicited with methyl jasmonate and methyl B cyclodextrin. J Proteomics 85:99–108

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR et al (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11(1):163

    Article  PubMed  PubMed Central  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). Biochem Mol Biol Plants 24:1250–1319

    Google Scholar 

  • Croteau R et al (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5(1):75–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davuluri GR, Van Tuinen, A, Fraser PD, Manfredonia A, Newman R, Burgess D et al (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23(7):890

    Google Scholar 

  • De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 5(4):168–173

    Google Scholar 

  • Desgagné-Penix I et al (2012) Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy. Plant Mol Biol 79(3):295–313

    Article  PubMed  CAS  Google Scholar 

  • Dhar N et al (2015) A decade of molecular understanding of withanolide biosynthesis and in vitro studies in Withania somnifera (L.) Dunal: prospects and perspectives for pathway engineering. Front Plant Sci 6

    Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4(9):721–726

    Article  CAS  PubMed  Google Scholar 

  • Franco-Zorrilla JM et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39(8):1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Franklin G, Oliveira M, Dias ACP (2007) Production of transgenic Hypericum perforatum plants via particle bombardment-mediated transformation of novel organogenic cell suspension cultures. Plant Sci 172(6):1193–1203

    Article  CAS  Google Scholar 

  • Gachon CM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10(11):542–549

    Article  CAS  PubMed  Google Scholar 

  • Gandhi SG, Mahajan V, Bedi YS (2015) Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 241(2):303–317

    Article  CAS  PubMed  Google Scholar 

  • Goossens A et al (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci 100(14):8595–8600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Güell M et al (2009) Transcriptome complexity in a genome-reduced bacterium. Science 326(5957):1268–1271

    Article  PubMed  CAS  Google Scholar 

  • Gupta P et al (2013) De novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis. PLoS ONE 8(5):e62714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu XC, Chen JF, Xiao Y, Di P, Xuan HJ, Zhou X et al (2012) Overexpression of allene oxide cyclase promoted tanshinone/phenolic acid production in Salvia miltiorrhiza. Plant Cell Rep 31(12) 2247–2259

    Google Scholar 

  • Hagel JM et al (2015) Transcriptome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biol 15(1):227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418(6894):244–251

    Article  CAS  PubMed  Google Scholar 

  • Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4(6):226–231

    Article  CAS  PubMed  Google Scholar 

  • Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68(22):2831–2846

    Article  CAS  PubMed  Google Scholar 

  • Hill R (2002) Dictionary of natural products on CD-ROM, Ed. version 10. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26(3):290–300

    Article  CAS  Google Scholar 

  • Jacobs DI et al (2005) Proteome analysis of the medicinal plant Catharanthus roseus. Planta 221(5):690–704

    Article  CAS  PubMed  Google Scholar 

  • Johnson MT et al (2012) Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLoS ONE 7(11):e50226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadomura-Ishikawa Y, Miyawaki K, Noji S, Takahashi A (2013) Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa fruits. J Plant Res 126(6):847–857

    Google Scholar 

  • Kaimoyo E et al (2008) Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites. Biotechnol Prog 24(2):377–384

    Article  CAS  PubMed  Google Scholar 

  • Kalra S et al (2013) De novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant, Chlorophytum borivilianum. PLoS ONE 8(12):e83336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan MIR et al (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signaling Behav 8(11):e26374

    Article  CAS  Google Scholar 

  • Kim PS, Levy D, Lee PP (2009) Modeling and simulation of the immune system as a self-regulating network. Methods Enzymol 467:79–109

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Ono E, Morimoto K, Yamagaki T, Okazawa A, Kobayashi, A, Satake H (2009) Metabolic engineering of lignan biosynthesis in Forsythia cell culture. Plant Cell Physiol 50(12):2200–2209

    Google Scholar 

  • Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355

    Article  CAS  PubMed  Google Scholar 

  • Klein TM et al (1988) Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc Natl Acad Sci 85(22):8502–8505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kliebenstein D (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ 27(6):675–684

    Article  CAS  Google Scholar 

  • Krishnan NM et al (2012) A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica. BMC Genom 13(1):1

    Article  CAS  Google Scholar 

  • Kühner S et al (2009) Proteome organization in a genome-reduced bacterium. Science 326(5957):1235–1240

    Article  PubMed  CAS  Google Scholar 

  • Kumagai M et al (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci 92(5):1679–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A et al (2012) Seasonal low temperature plays an important role in increasing metabolic content of secondary metabolites in Withania somnifera (L.) Dunal and affects the time of harvesting. Acta physiologiae plantarum 34(5):2027–2031

    Google Scholar 

  • Kutchan TM (1995) Alkaloid biosynthesis—the basis for metabolic engineering of medicinal plants. Plant Cell 7(7):1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei Z et al (2010) Comparative proteomics of yeast-elicited Medicago truncatula cell suspensions reveals induction of isoflavonoid biosynthesis and cell wall modifications. J Proteome Res 9(12):6220–6231

    Article  CAS  PubMed  Google Scholar 

  • Li C et al (2013) Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng CA Meyer. BMC Genom 14(1):1

    Article  CAS  Google Scholar 

  • Li H, Flachowsky H, Fischer TC, Hanke MV, Forkmann G, Treutter D et al (2007) Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.) Planta 226(5):1243–1254

    Google Scholar 

  • Li W, Wang B, Wang M, Chen M, Yin JM, Kaleri GM et al (2014) Cloning and characterization of a potato StAN11 gene involved in Anthocyanin biosynthesis regulation. J Integr Plant Biol 56(4):364–372

    Google Scholar 

  • Liscombe DK et al (2005) Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66(11):1374–1393

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Esteso M et al (2009) Changes of defense proteins in the extracellular proteome of grapevine (Vitis vinifera cv. Gamay) cell cultures in response to elicitors. J Proteomics 73(2):331–341

    Google Scholar 

  • Martinez-Esteso M et al (2011) DIGE analysis of proteome changes accompanying large resveratrol production by grapevine (Vitis vinifera cv. Gamay) cell cultures in response to methyl-β-cyclodextrin and methyl jasmonate elicitors. J Proteomics 74(8):1421–1436

    Google Scholar 

  • Mast FD, Ratushny AV, Aitchison JD (2014) Systems cell biology. The Journal of cell biology 206(6):695–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra P et al (2010) Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiol 152(4):2258–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazar R et al (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168(8):807–815

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova VJ et al (2005) Integrative gene-metabolite network with implemented causality deciphers informational fluxes of sulphur stress response. J Exp Bot 56(417):1887–1896

    Article  CAS  PubMed  Google Scholar 

  • Noble D (2002) Modeling the heart–from genes to cells to the whole organ. Science 295(5560):1678–1682

    Article  CAS  PubMed  Google Scholar 

  • Oksman-Caldentey K-M, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9(9):433–440

    Article  CAS  PubMed  Google Scholar 

  • Pan XW, Han L, Zhang YH, Chen DF, Simonsen HT (2015) Sclareol production in the moss Physcomitrella patens and observations on growth and terpenoid biosynthesis. Plant Biotechnol Rep 9(3):149–159

    Google Scholar 

  • Pandey A, Misra P, Chandrashekar K, Trivedi PK (2012) Development of AtMYB12-expressing transgenic tobacco callus culture for production of rutin with biopesticidal potential. Plant Cell Rep 31(10):1867–1876

    Google Scholar 

  • Pandey A, Misra P, Khan MP, Swarnkar G, Tewari MC, Bhambhani S et al (2014) Co‐expression of Arabidopsis transcription factor, At MYB 12, and soybean isoflavone synthase, Gm IFS 1, genes in tobacco leads to enhanced biosynthesis of isoflavones and flavonols resulting in osteoprotective activity. Plant Biotechnol J 12(1):69–80

    Google Scholar 

  • Pathak S et al (2013) Comparative transcriptome analysis using high papaverine mutant of Papaver somniferum reveals pathway and uncharacterized steps of Papaverine biosynthesis. PLoS ONE 8(5):e65622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennisi E (2013) The CRISPR craze. Science 341(6148):833–836

    Google Scholar 

  • Pi Y, Jiang K, Lin J, Cao Y, Wang Q, Yang J et al (2012) Effects of over-expression of allene oxide cyclase on camptothecin production by cell cultures of Camptotheca acuminata. Afr J Biotechnol 11(24):6535–6541

    Google Scholar 

  • Polturak G, Breitel D, Grossman N, Sarrion‐Perdigones A, Weithorn E, Pliner M et al (2016) Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants. New Phytol 210(1):269–283

    Google Scholar 

  • Ramani S, Chelliah J (2007) UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC Plant Biol 7(1):61

    Google Scholar 

  • Rippert P et al (2009) Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis. Plant Physiol 149(3):1251–1260

    Google Scholar 

  • Rischer H et al (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci 103(14):5614–5619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts AF et al (2015) Biosafety research for non-target organism risk assessment of RNAi-based GE plants. Front Plant Sci 6​

    Google Scholar 

  • Roberts SC (2007) Production and engineering of terpenoids in plant cell culture. Nat Chem Biol 3(7):387–395​

    Google Scholar 

  • Robson B, Baek O (2009) The engines of Hippocrates: From the dawn of medicine to medical and pharmaceutical informatics, vol 5. Wiley New York

    Google Scholar 

  • Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10(6):937–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito K (2013) Phytochemical genomics—a new trend. Curr Opin Plant Biol 16(3):373–380

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Mizukami H (2002) Plant cell cultures as producers of secondary compounds. Plant Biotechnol Transgenic Plants 77–109

    Google Scholar 

  • Satdive RK, Fulzele DP, Eapen S (2007) Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media optimization. J Biotechnol 128(2):281–289

    Google Scholar 

  • Schliesky S et al (2012) RNA-seq assembly—are we there yet? Front Plant Sci 3:220

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwab R et al (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18(5):1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahid M et al (2013) Recent trends in biotechnology and therapeutic applications of medicinal plants. Springer, Berlin

    Google Scholar 

  • Sharma A et al (2019) Jasmonate responsive transcription factor WsMYC2 regulates the biosynthesis of triterpenoid withanolides and phytosterol via key pathway genes in Withania somnifera (L.) Dunal. Plant Mol Biol 100(4–5):543–560

    Article  PubMed  Google Scholar 

  • Sharma D et al (2016) Microrna858 is a potential regulator of phenylpropanoid pathway and plant development. Plant Physiol 171(2):944–959

    Google Scholar 

  • Sharma P, Padh H, Shrivastava N (2013) Hairy root cultures: a suitable biological system for studying secondary metabolic pathways in plants. Eng Life Sci 13(1):62–75

    Google Scholar 

  • Sharafi A, Sohi HH, Mousavi A, Azadi P, Khalifani BH, Razavi K (2013) Metabolic engineering of morphinan alkaloids by over-expression of codeinone reductase in transgenic hairy roots of Papaver bracteatum, the Iranian poppy. Biotechnol Lett 35(3):445–453

    Google Scholar 

  • Sharma V, Sarkar IN (2013) Bioinformatics opportunities for identification and study of medicinal plants. Brief Bioinform 14(2):238–250

    Google Scholar 

  • Shkryl YN, Veremeichik GN, Bulgakov VP, Zhuravlev YN (2011) Induction of anthraquinone biosynthesis in Rubia cordifolia cells by heterologous expression of a calcium‐dependent protein kinase gene. Biotechnol Bioeng 108(7):1734–1738

    Google Scholar 

  • Short B (2009) Cell biologists expand their networks. J Cell Biol 186(3):305–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK et al (2015) Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance. Plant Biotechnol J 13(9):1287–1299

    Article  CAS  PubMed  Google Scholar 

  • Soetaert SS et al (2013) Differential transcriptome analysis of glandular and filamentous trichomes in Artemisia annua. BMC Plant Biol 13(1):1

    Article  CAS  Google Scholar 

  • Sudžuković N, Schinnerl J, Brecker L (2015) Phytochemical meanings of tetrahydro-β-carboline moiety in strictosidine derivatives. Bioorganic Med Chem

    Google Scholar 

  • Sun C et al (2010) De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genom 11(1):262

    Article  CAS  Google Scholar 

  • Takahashi S et al (2004) Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray. Plant Mol Biol 56(1):29–55

    Article  CAS  PubMed  Google Scholar 

  • Tan EC et al (2012) Proteomic analysis of cell suspension cultures of Boesenbergia rotunda induced by phenylalanine: identification of proteins involved in flavonoid and phenylpropanoid biosynthesis pathways. Plant Cell Tissue Organ Culture (PCTOC) 111(2):219–229

    Google Scholar 

  • Tang G, Tang X (2013) Short tandem target mimic: a long journey to the engineered molecular landmine for selective destruction/blockage of microRNAs in plants and animals. Journal of Genetics and Genomics 40(6):291–296

    Article  CAS  PubMed  Google Scholar 

  • Tatsis EC, O’Connor SE (2016) New developments in engineering plant metabolic pathways. Curr Opin Biotechnol 42:126–132

    Article  CAS  PubMed  Google Scholar 

  • Tavhare SD, Nishteswar K, Shukla VJ (2016) Effect of seasonal variations on the phytoconstituents of Aśvagandhā wr to lunar cycles. Ancient Sci Life 35(3):150

    Article  Google Scholar 

  • Teotia S et al (2016) Essential RNA-based technologies and their applications in plant functional genomics. Trends Biotechnol

    Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9(3):297–304

    Article  CAS  PubMed  Google Scholar 

  • Tisserat B, Berhow M (2009) Production of pharmaceuticals from Papaver cultivars in vitro. Eng Life Sci 9(3):190–196

    Article  CAS  Google Scholar 

  • Tong Y et al (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS synthetic biology 4(9):1020–1029

    Article  CAS  PubMed  Google Scholar 

  • Tugizimana F, Piater L, Dubery I (2013) Plant metabolomics: a new frontier in phytochemical analysis. S Afr J Sci 109(5–6):01–11

    Article  CAS  Google Scholar 

  • Turner GW, Gershenzon J, Croteau RB (2000) Development of peltate glandular trichomes of peppermint. Plant Physiol 124(2):665–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja N (2007) Chapter Twenty-four-mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  CAS  PubMed  Google Scholar 

  • Vaccaro M, Malafronte N, Alfieri M, De Tommasi N, Leone A (2014) Enhanced biosynthesis of bioactive abietane diterpenes by overexpressing AtDXS or AtDXR genes in Salvia sclarea hairy roots. Plant Cell, Tissue Organ Cult (PCTOC) 119(1):65–77

    Google Scholar 

  • Verma M et al (2014) Transcriptome analysis of Catharanthus roseus for gene discovery and expression profiling. PLoS ONE 9(7):e103583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vieites JM et al (2009) Metagenomics approaches in systems microbiology. FEMS Microbiol Rev 33(1):236–255

    Article  CAS  PubMed  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3(1):2–20

    Article  CAS  PubMed  Google Scholar 

  • Wagner GJ, Kroumova AB (2008) The use of RNAi to elucidate and manipulate secondary metabolite synthesis in plants. In: Current perspectives in microRNAs (miRNA). Springer, Berlin, pp 431–459

    Google Scholar 

  • Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2(11):e123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber T, Kim HU (2016) The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production. Synthetic and Systems Biotechnology 1(2):69–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Wege S et al (2007) Highly efficient virus-induced gene silencing (VIGS) in California poppy (Eschscholzia californica): an evaluation of VIGS as a strategy to obtain functional data from non-model plants. Ann Bot 100(3):641–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Wink M (2006) Importance of plant secondary metabolites for protection against insects and microbial infections. Nat Occur Bioactive Compounds 3:251–268

    Article  CAS  Google Scholar 

  • Winkel BS (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107

    Article  CAS  PubMed  Google Scholar 

  • Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr Opin Plant Biol 5(4):300–307

    Article  CAS  PubMed  Google Scholar 

  • Yang CQ et al (2012) Transcriptional regulation of plant secondary metabolism. J Integr Plant Biol 54(10):703–712

    Article  CAS  PubMed  Google Scholar 

  • Yang L et al (2013) Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis. PLoS ONE 8(11):e80464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8(3):301–307

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZJ (2014) Artificial trans-acting small interfering RNA: a tool for plant biology study and crop improvements. Planta 239(6):1139–1146

    Article  CAS  PubMed  Google Scholar 

  • Zhan X, Zhang YH, Chen DF, Simonsen HT (2014) Metabolic engineering of the moss Physcomitrella patens to produce the sesquiterpenoids patchoulol and α/β-santalene. Front Plant Sci 5

    Google Scholar 

  • Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769

    Article  CAS  PubMed  Google Scholar 

  • Zulak KG et al (2007) Gene transcript and metabolite profiling of elicitor-induced opium poppy cell cultures reveals the coordinate regulation of primary and secondary metabolism. Planta 225(5):1085–1106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SP and AVA acknowledge DST for NPDF as well as STI PDF grant. PA Acknowledge DBT for JRF as well as SRF grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumya Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathak, S., Agarwal, A.V., Agarwal, P., Trivedi, P.K. (2019). Secondary Metabolite Pathways in Medicinal Plants: Approaches in Reconstruction and Analysis. In: Singh, S., Upadhyay, S., Pandey, A., Kumar, S. (eds) Molecular Approaches in Plant Biology and Environmental Challenges. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0690-1_16

Download citation

Publish with us

Policies and ethics