Skip to main content

Nanozymes: Biomedical Applications of Enzymatic Fe3O4 Nanoparticles from In Vitro to In Vivo

  • Chapter
  • First Online:
Biological and Bio-inspired Nanomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1174))

Abstract

Fe3O4, also called magnetite, is a naturally occurring mineral and has been widely used in biomedical applications. However, in the past, all the applications were based on its excellent magnetic properties and neglected its catalytic properties. In 2007, we found that Fe3O4 nanoparticles are able to perform intrinsic enzyme-like activities. A specific term, “nanozyme”, is used to describe the new property of intrinsic enzymatic activity of nanomaterials. Since then, Fe3O4 nanoparticles have been used as enzyme mimics, which broadens their applications beyond simply their magnetic properties, with applications in biomedical diagnosis and therapy, environmental monitoring and treatment, the food industry and chemical synthesis. In this chapter, we will summarize the basic features of Fe3O4 as an enzyme mimetic and its applications in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABTS:

2, 2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid)

AD:

Alzheimer’s disease

APTES:

3-Aminopropyltriethoxysilane

CNT:

Carbon nanotube

DAB:

3, 3′-Diaminobenzidine

EBOV:

Ebola virus

EPR:

Enhanced permeability and retention

Fe3O4 :

Magnetite or iron oxide

GO:

Graphene oxide

GOx:

Glucose oxidase

H2O2 :

Hydrogen peroxide

HCG:

Human chorionic gonadotropin

HFn:

Human heavy-chain ferritin

HRP:

Horseradish peroxidase

M-HFn:

Magnetoferritin nanoparticles

MNPs:

Magnetic nanoparticles

MRI:

Magnetic resonance imaging

MRSA:

Staphylococcus aureus

NPs:

Nanoparticles

NTs:

Nanotubes

NWs:

Nanowires

OPD:

o-phenylenediamine

PD:

Parkinson’s disease

PEG:

Polyethylene glycol

RES:

Reticuloendothelial system

RGO:

Reduced graphene oxide

ROS:

Reactive oxygen species

TMB:

3, 3′, 5, 5′-Tetramethylbenzidine

References

  1. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem 46(8):1222–1244

    Article  CAS  Google Scholar 

  2. Polshettiwar V, Luque R, Fihri A, Zhu HB, Bouhrara M, Bassett JM (2011) Magnetically recoverable nanocatalysts. Chem Rev 111(5):3036–3075

    Article  CAS  PubMed  Google Scholar 

  3. Unsoy G, Gunduz U, Oprea O, Ficai D, Sonmez M, Radulescu M, Alexie M, Ficai A (2015) Magnetite: from synthesis to applications. Curr Top Med Chem 15(16):1622–1640

    Article  CAS  PubMed  Google Scholar 

  4. Xie J, Huang J, Li X, Sun S, Chen X (2009) Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 16(10):1278–1294

    Article  CAS  PubMed  Google Scholar 

  5. Pan Y, Du XW, Zhao F, Xu B (2012) Magnetic nanoparticles for the manipulation of proteins and cells. Chem Soc Rev 41(7):2912–2942

    Article  CAS  PubMed  Google Scholar 

  6. Frimpong RA, Hilt JZ (2010) Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomedicine-UK 5(9):1401–1414

    Article  CAS  Google Scholar 

  7. Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Bohm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41(11):4306–4334

    Article  CAS  PubMed  Google Scholar 

  8. Ho D, Sun XL, Sun SH (2011) Monodisperse magnetic nanoparticles for theranostic applications. Accounts Chem Res 44(10):875–882

    Article  CAS  Google Scholar 

  9. Gao LZ, Fan KL, Yan XY (2017) Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics 7(13):3207–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  PubMed  Google Scholar 

  11. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093

    Article  CAS  PubMed  Google Scholar 

  12. Gao L, Yan X (2016) Nanozymes: an emerging field bridging nanotechnology and biology. Sci China Life Sci 59(4):400–402

    Article  PubMed  Google Scholar 

  13. Gao LZ, Yan XY (2013) Discovery and current application of nanozyme. Prog Biochem Biophys 40(10):892–902

    CAS  Google Scholar 

  14. Shin HY, Park TJ, Kim MI (2015) Recent research trends and future prospects in nanozymes. J Nanomater

    Google Scholar 

  15. Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47(4):1097–1105

    Article  CAS  PubMed  Google Scholar 

  16. Chen Z, Yin JJ, Zhou YT, Zhang Y, Song L, Song M, Hu S, Gu N (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5):4001–4012

    Article  CAS  PubMed  Google Scholar 

  17. Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80(6):2250–2254

    Article  CAS  PubMed  Google Scholar 

  18. Liu S, Lu F, Xing R, Zhu JJ (2011) Structural effects of Fe3O4 nanocrystals on peroxidase-like activity. Chemistry 17(2):620–625

    Article  CAS  PubMed  Google Scholar 

  19. Wang H, Jiang H, Wang S, Shi WB, He JC, Liu H, Huang YM (2014) Fe3O4-MWCNT magnetic nanocomposites as efficient peroxidase mimic catalysts in a Fenton-like reaction for water purification without pH limitation. RSC Adv 4(86):45809–45815

    Article  CAS  Google Scholar 

  20. Wang LJ, Min Y, Xu DD, Yu FJ, Zhou WZ, Cuschieri A (2014) Membrane lipid peroxidation by the peroxidase-like activity of magnetite nanoparticles. Chem Commun 50(76):11147–11150

    Article  CAS  Google Scholar 

  21. Liu Y, Yuan M, Qiao LJ, Guo R (2014) An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosens Bioelectron 52:391–396

    Article  CAS  PubMed  Google Scholar 

  22. Zhang SX, Zhao XL, Niu HY, Shi YL, Cai YQ, Jiang GB (2009) Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J Hazard Mater 167(1–3):560–566

    Article  CAS  PubMed  Google Scholar 

  23. Wu XC, Zhang Y, Han T, Wu HX, Guo SW, Zhang JY (2014) Composite of graphene quantum dots and Fe3O4 nanoparticles: peroxidase activity and application in phenolic compound removal. RSC Adv 4(7):3299–3305

    Article  CAS  Google Scholar 

  24. Qian J, Yang XW, Jiang L, Zhu CD, Mao HP, Wang K (2014) Facile preparation of Fe3O4 nanospheres/reduced graphene oxide nanocomposites with high peroxidase-like activity for sensitive and selective colorimetric detection of acetylcholine. Sens Actuat B-Chem 201:160–166

    Article  CAS  Google Scholar 

  25. Qi CC, Zheng JB (2015) Novel nonenzymatic hydrogen peroxide sensor based on Fe3O4/PPy/Ag nanocomposites. J Electroanal Chem 747:53–58

    Article  CAS  Google Scholar 

  26. Yang X, Wang LN, Zhou GZ, Sui N, Gu YX, Wan J (2015) Electrochemical detection of H2O2 based on Fe3O4 nanoparticles with graphene oxide and polyamidoamine dendrimer. J Clust Sci 26(3):789–798

    Article  CAS  Google Scholar 

  27. Wang N, Zhu LH, Wang DL, Wang MQ, Lin ZF, Tang HQ (2010) Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason Sonochem 17(3):526–533

    Article  CAS  PubMed  Google Scholar 

  28. Peng FF, Zhang Y, Gu N (2008) Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles. Chin Chem Lett 19(6):730–733

    Article  CAS  Google Scholar 

  29. Cheng XL, Jiang JS, Jiang DM, Zhao ZJ (2014) Synthesis of rhombic dodecahedral Fe3O4 nanocrystals with exposed high-energy {110} facets and their peroxidase-like activity and Lithium storage properties. J Phys Chem C 118(24):12588–12598

    Article  CAS  Google Scholar 

  30. Zhang K, Zuo W, Wang ZY, Liu J, Li TR, Wang BD, Yang ZY (2015) A simple route to CoFe2O4 nanoparticles with shape and size control and their tunable peroxidase-like activity. RSC Adv 5(14):10632–10640

    Article  CAS  Google Scholar 

  31. Ma M, Xie J, Zhang Y, Chen ZP, Gu N (2013) Fe3O4@Pt nanoparticles with enhanced peroxidase-like catalytic activity. Mater Lett 105:36–39

    Article  CAS  Google Scholar 

  32. Wang CQ, Qian J, Wang K, Yang XW, Liu Q, Hao N, Wang CK, Dong XY, Huang XY (2016) Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator. Biosens Bioelectron 77:1183–1191

    Article  CAS  PubMed  Google Scholar 

  33. Lee Y, Garcia MA, Frey Huls NA, Sun S (2010) Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles. Angew Chem 49(7):1271–1274

    Article  CAS  Google Scholar 

  34. Sun HY, Jiao XL, Han YY, Jiang Z, Chen DR (2013) Synthesis of Fe3O4-Au Nanocomposites with enhanced peroxidase-like activity. Eur J Inorg Chem 1:109–114

    Article  CAS  Google Scholar 

  35. Fan KL, Wang H, Xi JQ, Liu Q, Meng XQ, Duan DM, Gao LZ, Yan XY (2017) Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem Commun 53(2):424–427

    Article  CAS  Google Scholar 

  36. Zhang XQ, Gong SW, Zhang Y, Yang T, Wang CY, Gu N (2010) Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J Mater Chem 20(24):5110–5116

    Article  CAS  Google Scholar 

  37. Hu SL, Zhang XQ, Zang FC, Zhang Y, Zhang W, Wu YH, Song MJ, Wang YH, Gu N (2016) Surface modified Iron oxide nanoparticles as Fe source precursor to induce the formation of Prussian blue nanocubes. J Nanosci Nanotechnol 16(2):1967–1974

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Z, Zhang X, Liu B, Liu J (2017) Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J Am Chem Soc 139(15):5412–5419

    Article  CAS  PubMed  Google Scholar 

  39. Lee JW, Jeon HJ, Shin HJ, Kang JK (2012) Superparamagnetic Fe3O4 nanoparticles-carbon nitride nanotube hybrids for highly efficient peroxidase mimetic catalysts. Chem Commun 48(3):422–424

    Article  CAS  Google Scholar 

  40. An Q, Sun C, Li D, Xu K, Guo J, Wang C (2013) Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells. ACS Appl Mater Interfaces 5(24):13248–13257

    Article  CAS  PubMed  Google Scholar 

  41. Li Q, Tang GG, Xiong XW, Cao YL, Chen LL, Xu FG, Tan HL (2015) Carbon coated magnetite nanoparticles with improved water-dispersion and peroxidase-like activity for colorimetric sensing of glucose. Sens Actuat B-Chem 215:86–92

    Article  CAS  Google Scholar 

  42. Zubir NA, Yacou C, Motuzas J, Zhang X, Diniz da Costa JC (2014) Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction. Sci Rep 4:4594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Dong YL, Zhang HG, Rahman ZU, Su L, Chen XJ, Hu J, Chen XG (2012) Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4(13):3969–3976

    Article  CAS  PubMed  Google Scholar 

  44. Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210

    Article  CAS  PubMed  Google Scholar 

  45. Gao LZ, Wu JM, Lyle S, Zehr K, Cao LL, Gao D (2008) Magnetite nanoparticle-linked immunosorbent assay. J Phys Chem C 112(44):17357–17361

    Article  CAS  Google Scholar 

  46. Wang X, Niessner R, Tang DP, Knopp D (2016) Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal Chim Acta 912:10–23

    Article  CAS  PubMed  Google Scholar 

  47. Tang ZW, Wu H, Zhang YY, Li ZH, Lin YH (2011) Enzyme-mimic activity of ferric nano-core residing in ferritin and its biosensing applications. Anal Chem 83(22):8611–8616

    Article  CAS  PubMed  Google Scholar 

  48. Bhattacharya D, Baksi A, Banerjee I, Ananthakrishnan R, Maiti TK, Pramanik P (2011) Development of phosphonate modified Fe(1-x)MnxFe2O4 mixed ferrite nanoparticles: novel peroxidase mimetics in enzyme linked immunosorbent assay. Talanta 86:337–348

    Article  CAS  PubMed  Google Scholar 

  49. Yang MZ, Guan YP, Yang Y, Xie L, Xia TT, Xiong WB, Guo C (2014) Immunological detection of hepatocellular carcinoma biomarker GP73 based on dissolved magnetic nanoparticles. Colloid Surf A 443:280–285

    Article  CAS  Google Scholar 

  50. Liu Y, Du JJ, Yan M, Lau MY, Hu J, Han H, Yang OO, Liang S, Wei W, Wang H, Li JM, Zhu XY, Shi LQ, Chen W, Ji C, Lu YF (2013) Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat Nanotechnol 8(3):187–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang MZ, Guan YP, Yang Y, Xia TT, Xiong WB, Guo C (2014) A sensitive and rapid immunoassay for mycoplasma pneumonia based on Fe3O4 nanoparticles. Mater Lett 137:113–116

    Article  CAS  Google Scholar 

  52. Woo MA, Kim MI, Jung JH, Park KS, Seo TS, Park HG (2013) A novel colorimetric immunoassay utilizing the peroxidase mimicking activity of magnetic nanoparticles. Int J Mol Sci 14(5):9999–10014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Il Kim M, Kim MS, Woo MA, Ye Y, Kang KS, Lee J, Park HG (2014) Highly efficient colorimetric detection of target cancer cells utilizing superior catalytic activity of graphene oxide-magnetic-platinum nanohybrids. Nanoscale 6(3):1529–1536

    Article  Google Scholar 

  54. Perez JM (2007) Iron oxide nanoparticles – hidden talent. Nat Nanotechnol 2(9):535–536

    Article  CAS  PubMed  Google Scholar 

  55. Duan DM, Fan KL, Zhang DX, Tan SG, Liang MF, Liu Y, Zhang JL, Zhang PH, Liu W, Qiu XG, Kobinger GP, Gao GF, Yan XY (2015) Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron 74:134–141

    Article  CAS  PubMed  Google Scholar 

  56. Park KS, Kim MI, Cho DY, Park HG (2011) Label-free colorimetric detection of nucleic acids based on target-induced shielding against the peroxidase-mimicking activity of magnetic nanoparticles. Small 7(11):1521–1525

    Article  CAS  PubMed  Google Scholar 

  57. Thiramanas R, Jangpatarapongsa K, Tangboriboonrat P, Polpanich D (2013) Detection of Vibrio cholerae using the intrinsic catalytic activity of a magnetic polymeric nanoparticle. Anal Chem 85(12):5996–6002

    Article  CAS  PubMed  Google Scholar 

  58. Liu QY, Zhang LY, Li H, Jia QY, Jiang YL, Yang YT, Zhu RR (2015) One-pot synthesis of porphyrin functionalized gamma-Fe2O3 nanocomposites as peroxidase mimics for H2O2 and glucose detection. Mater Sci Eng C-Mater 55:193–200

    Article  CAS  Google Scholar 

  59. Gao Y, Wang GN, Huang H, Hu JJ, Shah SM, Su XG (2011) Fluorometric method for the determination of hydrogen peroxide and glucose with Fe3O4 as catalyst. Talanta 85(2):1075–1080

    Article  CAS  PubMed  Google Scholar 

  60. Kim MI, Shim J, Li T, Lee J, Park HG (2011) Fabrication of nanoporous nanocomposites entrapping Fe3O4 magnetic nanoparticles and oxidases for colorimetric biosensing. Chem-Eur J 17(38):10700–10707

    Article  CAS  PubMed  Google Scholar 

  61. Liu CH, Tseng WL (2011) Oxidase-functionalized Fe3O4 nanoparticles for fluorescence sensing of specific substrate. Anal Chim Acta 703(1):87–93

    Article  CAS  PubMed  Google Scholar 

  62. Ma YH, Zhang ZY, Ren CL, Liu GY, Chen XG (2012) A novel colorimetric determination of reduced glutathione in A549 cells based on Fe3O4 magnetic nanoparticles as peroxidase mimetics. Analyst 137(2):485–489

    Article  CAS  PubMed  Google Scholar 

  63. Wang H, Li S, Si YM, Sun ZZ, Li SY, Lin YH (2014) Recyclable enzyme mimic of cubic Fe3O4 nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis. J Mater Chem B 2(28):4442–4448

    Article  CAS  Google Scholar 

  64. Yang ZH, Chai YQ, Yuan R, Zhuo Y, Li Y, Han J, Liao N (2014) Hollow platinum decorated Fe3O4 nanoparticles as peroxidase mimetic couple with glucose oxidase for pseudobienzyme electrochemical immunosensor. Sens Actuat B-Chem 193:461–466

    Article  CAS  Google Scholar 

  65. Chang Q, Tang HQ (2014) Optical determination of glucose and hydrogen peroxide using a nanocomposite prepared from glucose oxidase and magnetite nanoparticles immobilized on graphene oxide. Microchim Acta 181(5–6):527–534

    Article  CAS  Google Scholar 

  66. Liu QY, Li H, Zhao QR, Zhu RR, Yang YT, Jia QY, Bian B, Zhuo LH (2014) Glucose-sensitive colorimetric sensor based on peroxidase mimics activity of porphyrin-Fe(3)o(4) nanocomposites. Mater Sci Eng C-Mater 41:142–151

    Article  CAS  Google Scholar 

  67. Shi Y, Su P, Wang YY, Yang Y (2014) Fe3O4 peroxidase mimetics as a general strategy for the fluorescent detection of H2O2-involved systems. Talanta 130:259–264

    Article  CAS  PubMed  Google Scholar 

  68. Pan Y, Li N, Mu JS, Zhou RH, Xu Y, Cui DZ, Wang Y, Zhao M (2015) Biogenic magnetic nanoparticles from Burkholderia sp. YN01 exhibiting intrinsic peroxidase-like activity and their applications. Appl Microbiol Biotechnol 99(2):703–715

    Article  CAS  PubMed  Google Scholar 

  69. Wang YH, Zhou B, Wu S, Wang KM, He XX (2015) Colorimetric detection of hydrogen peroxide and glucose using the magnetic mesoporous silica nanoparticles. Talanta 134:712–717

    Article  CAS  PubMed  Google Scholar 

  70. Shi Y, Huang J, Wang JN, Su P, Yang Y (2015) A magnetic nanoscale Fe3O4/P beta-CD composite as an efficient peroxidase mimetic for glucose detection. Talanta 143:457–463

    Article  CAS  PubMed  Google Scholar 

  71. Kim MI, Cho D, Park HG (2015) Colorimetric quantification of glucose and cholesterol in human blood using a nanocomposite entrapping magnetic nanoparticles and oxidases. J Nanosci Nanotechnol 15(10):7955–7961

    Article  CAS  PubMed  Google Scholar 

  72. Zhang J, Yang C, Chen CX, Yang XR (2013) Determination of nitrite and glucose in water and human urine with light-up chromogenic response based on the expeditious oxidation of 3,3′, 5,5′-tetramethylbenzidine by peroxynitrous acid. Analyst 138(8):2398–2404

    Article  CAS  PubMed  Google Scholar 

  73. Liang MM, Fan KL, Pan Y, Jiang H, Wang F, Yang DL, Lu D, Feng J, Zhao JJ, Yang L, Yan XY (2013) Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal Chem 85(1):308–312

    Article  CAS  PubMed  Google Scholar 

  74. Kim MI, Shim J, Li T, Woo MA, Cho D, Lee J, Park HG (2012) Colorimetric quantification of galactose using a nanostructured multi-catalyst system entrapping galactose oxidase and magnetic nanoparticles as peroxidase mimetics. Analyst 137(5):1137–1143

    Article  CAS  PubMed  Google Scholar 

  75. Kim MI, Shim J, Parab HJ, Shin SC, Lee J, Park HG (2012) A convenient alcohol sensor using one-pot nanocomposite entrapping alcohol oxidase and magnetic nanoparticles as peroxidase mimetics. J Nanosci Nanotechnol 12(7):5914–5919

    Article  CAS  Google Scholar 

  76. Zhuang J, Fan KL, Gao LZ, Lu D, Feng J, Yang DL, Gu N, Zhang Y, Liang MM, Yan XY (2012) Ex vivo detection of Iron oxide magnetic nanoparticles in mice using their intrinsic peroxidase-mimicking activity. Mol Pharm 9(7):1983–1989

    Article  CAS  PubMed  Google Scholar 

  77. Fan KL, Cao CQ, Pan YX, Lu D, Yang DL, Feng J, Song LN, Liang MM, Yan XY (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7(7):459–464

    Article  CAS  PubMed  Google Scholar 

  78. Huang DM, Hsiao JK, Chen YC, Chien LY, Yao M, Chen YK, Ko BS, Hsu SC, Tai LA, Cheng HY, Wang SW, Yang CS, Chen YC (2009) The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 30(22):3645–3651

    Article  CAS  PubMed  Google Scholar 

  79. Wang XQ, Tu Q, Zhao B, An YF, Wang JC, Liu WM, Yuan MS, Ahmed SM, Xu J, Liu R, Zhang YR, Wang JY (2013) Effects of poly(L-lysine)-modified Fe3O4 nanoparticles on endogenous reactive oxygen species in cancer stem cells. Biomaterials 34(4):1155–1169

    Article  CAS  PubMed  Google Scholar 

  80. Zhang Y, Wang ZY, Li XJ, Wang L, Yin M, Wang LH, Chen N, Fan CH, Song HY (2016) Dietary Iron oxide nanoparticles delay aging and ameliorate neurodegeneration in Drosophila. Adv Mater 28(7):1387–1393

    Article  CAS  PubMed  Google Scholar 

  81. Zhang D, Zhao YX, Gao YJ, Gao FP, Fan YS, Li XJ, Duan ZY, Wang H (2013) Anti-bacterial and in vivo tumor treatment by reactive oxygen species generated by magnetic nanoparticles. J Mater Chem B 1(38):5100–5107

    Article  CAS  Google Scholar 

  82. Pan WY, Huang CC, Lin TT, Hu HY, Lin WC, Li MJ, Sung HW (2016) Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites. Nanomed-Nanotechnol 12(2):431–438

    Article  CAS  Google Scholar 

  83. Gao LZ, Liu Y, Kim D, Li Y, Hwang G, Naha PC, Cormode DP, Koo H (2016) Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 101:272–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gao L, Giglio KM, Nelson JL, Sondermann H, Travis AJ (2014) Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 6(5):2588–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. You X, Kim J, Pak YK, Pak JJ (2013) Preparation and application of graphene-poly (diallyldimethylammoniumchloride)-Iron oxide nanoparticles buckypaper for hydrogen peroxide detection. J Nanosci Nanotechno 13(11):7349–7357

    Article  CAS  Google Scholar 

  86. Gao Y, Wei Z, Li F, Yang ZM, Chen YM, Zrinyi M, Osada Y (2014) Synthesis of a morphology controllable Fe3O4 nanoparticle/hydrogel magnetic nanocomposite inspired by magnetotactic bacteria and its application in H2O2 detection. Green Chem 16(3):1255–1261

    Article  CAS  Google Scholar 

  87. Ye YP, Kong T, Yu XF, Wu YK, Zhang K, Wang XP (2012) Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta 89:417–421

    Article  CAS  PubMed  Google Scholar 

  88. Jiang ZL, Kun L, Ouyang HX, Liang AH, Jiang HS (2011) A simple and sensitive fluorescence quenching method for the determination of H2O2 using Rhodamine B and Fe3O4 nanocatalyst. J Fluoresc 21(5):2015–2020

    Article  CAS  PubMed  Google Scholar 

  89. Chang Q, Deng KJ, Zhu LH, Jiang GD, Yu C, Tang HQ (2009) Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst. Microchim Acta 165(3–4):299–305

    Article  CAS  Google Scholar 

  90. Zhuang J, Zhang JB, Gao LZ, Zhang Y, Gu N, Feng J, Yang DL, Yan XY (2008) A novel application of iron oxide nanoparticles for detection of hydrogen peroxide in acid rain. Mater Lett 62(24):3972–3974

    Article  CAS  Google Scholar 

  91. Fang HT, Pan YL, Shan WQ, Guo ML, Nie Z, Huang Y, Yao SZ (2014) Enhanced nonenzymatic sensing of hydrogen peroxide released from living cells based on Fe3O4/self-reduced graphene nanocomposites. Anal Method-UK 6(15):6073–6081

    Article  CAS  Google Scholar 

  92. Guan GJ, Yang L, Mei QS, Zhang K, Zhang ZP, Han MY (2012) Chemiluminescence switching on peroxidase-like Fe3O4 nanoparticles for selective detection and simultaneous determination of various pesticides. Anal Chem 84(21):9492–9497

    Article  CAS  PubMed  Google Scholar 

  93. Jia Y, Yu HM, Wu L, Hou XD, Yang L, Zheng CB (2015) Three birds with one Fe3O4 nanoparticle: integration of microwave digestion, solid phase extraction, and magnetic separation for sensitive determination of arsenic and antimony in fish. Anal Chem 87(12):5866–5871

    Article  CAS  PubMed  Google Scholar 

  94. Nie DX, Shi GY, Yu YY (2016) Fe3O4 magnetic nanoparticles as peroxidase mimetics used in colorimetric determination of 2,4-Dinitrotoluene. Chin J Anal Chem 44(2):179–184

    Article  CAS  Google Scholar 

  95. Wei SL, Li JW, Liu Y (2015) Colourimetric assay for beta-estradiol based on the peroxidase-like activity of Fe3O4@mSiO(2)@HP-beta-CD nanoparticles. RSC Adv 5(130):107670–107679

    Article  CAS  Google Scholar 

  96. Wang W, Liu Y, Li TL, Zhou MH (2014) Heterogeneous Fenton catalytic degradation of phenol based on controlled release of magnetic nanoparticles. Chem Eng J 242:1–9

    Article  CAS  Google Scholar 

  97. Zhang JB, Zhuang J, Gao LZ, Zhang Y, Gu N, Feng J, Yang DL, Zhu JD, Yan XY (2008) Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere 73(9):1524–1528

    Article  CAS  PubMed  Google Scholar 

  98. Wang W, Mao Q, He HH, Zhou MH (2013) Fe3O4 nanoparticles as an efficient heterogeneous Fenton catalyst for phenol removal at relatively wide pH values. Water Sci Technol 68(11):2367–2373

    Article  CAS  PubMed  Google Scholar 

  99. Huang RX, Fang ZQ, Fang XB, Tsang EP (2014) Ultrasonic Fenton-like catalytic degradation of bisphenol A by ferroferric oxide (Fe3O4) nanoparticles prepared from steel pickling waste liquor. J Colloid Interf Sci 436:258–266

    Article  CAS  Google Scholar 

  100. Huang RX, Fang ZQ, Yan XM, Cheng W (2012) Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition. Chem Eng J 197:242–249

    Article  CAS  Google Scholar 

  101. Wang XS, Huang H, Li GQ, Liu Y, Huang JL, Yang DP (2014) Hydrothermal synthesis of 3D hollow porous Fe3O4 microspheres towards catalytic removal of organic pollutants. Nanoscale Res Lett 9:648

    Article  PubMed  CAS  Google Scholar 

  102. Zhang XL, He ML, Liu JH, Liao R, Zhao LQ, Xie JR, Wang RJ, Yang ST, Wang HF, Liu YF (2014) Fe3O4@C nanoparticles as high-performance Fenton-like catalyst for dye decoloration. Chin Sci Bull 59(27):3406–3412

    Article  CAS  Google Scholar 

  103. Niu HY, Dizhang NH, Meng ZF, Cai YQ (2012) Fast defluorination and removal of norfloxacin by alginate/Fe@Fe3O4 core/shell structured nanoparticles. J Hazard Mater 227:195–203

    Article  PubMed  CAS  Google Scholar 

  104. Zhu MY, Diao GW (2011) Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of Xylenol Orange. J Phys Chem C 115(39):18923–18934

    Article  CAS  Google Scholar 

  105. Niu HY, Zhang D, Zhang SX, Zhang XL, Meng ZF, Cai YQ (2011) Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole. J Hazard Mater 190(1–3):559–565

    Article  CAS  PubMed  Google Scholar 

  106. Wang N, Zhu LH, Wang MQ, Wang DL, Tang HQ (2010) Sono-enhanced degradation of dye pollutants with the use of H2O2 activated by Fe3O4 magnetic nanoparticles as peroxidase mimetic. Ultrason Sonochem 17(1):78–83

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Foundation of the Thousand Talents Plan for Young Professionals and Jiangsu Specially-Appointed Professor, the Interdisciplinary Funding at Yangzhou University, Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09030306), National Natural Science Foundation of China (Grant No. 31530026 and 81671810), Natural Science Foundation of Jiangsu (Grant No. BK20161333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiyun Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, L., Yan, X. (2019). Nanozymes: Biomedical Applications of Enzymatic Fe3O4 Nanoparticles from In Vitro to In Vivo. In: Perrett, S., Buell, A., Knowles, T. (eds) Biological and Bio-inspired Nanomaterials. Advances in Experimental Medicine and Biology, vol 1174. Springer, Singapore. https://doi.org/10.1007/978-981-13-9791-2_9

Download citation

Publish with us

Policies and ethics