Skip to main content

Wheat Responses and Tolerance to Terminal Heat Stress: A Review

  • Chapter
  • First Online:
Wheat Production in Changing Environments

Abstract

Supraoptimal temperatures and unpredictable fluctuations in global climate adversely affect plant growth and development resulting in a severe threat to wheat production. Although all the growth stages of wheat are sensitive to supraoptimal temperatures, the reproductive phase is the most sensitive one as it affects both grain setting and grain filling (GF). High temperature can alter biochemical, physiological, and morpho-anatomical behavior in wheat, which in turn affects its growth and development causing a reduction in pollen viability, duration of GF, and starch synthesis in the endosperm. At flowering, temperature above optimum results in seed sterility, while post-anthesis heat stress (HS) causes a reduction in starch biosynthesis and alters its composition. Wheat crop has evolved appropriate mechanisms such as escape, avoidance, and/or stay green to cope with HS. In addition, plants hasten the production of HS-related proteins such as heat shock proteins (HSPs) as their defense approach. An overview of wheat responses and tolerance to HS at biochemical, physiological, and morpho-anatomical behavior may help in formulating appropriate breeding strategies for wheat crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGPase:

Glucose-1-phosphate adenylyltransferase

CT:

Canopy temperature

EC:

Electrical conductivity

GBSS:

Granule-bound starch synthase

GF:

Grain filling

GFD:

Grain filling duration

GN:

Grain number

GW:

Grain weight

GY:

Grain yield

HMW:

High molecular weight

HS:

Heat stress

HSF:

Heat shock factor

HSP:

Heat shock protein

LMW:

Low molecular weight

PT:

Productive tillers

QTLs:

Quantitative trait loci

ROS:

Reactive oxygen species

RWC:

Relative water content

SBE:

Starch branching enzyme

SS:

Starch synthase

SSS:

Soluble starch synthase

TGW:

Thousand grain weight

THS:

Terminal heat stress

References

  • Abdullah M, Rehman A, Ahmad N, Rasul I (2007) Planting time effect on grain and quality characteristics of wheat. Pak J Agric Sci 44:200–202

    Google Scholar 

  • Acuña TLB, Rebetzke GJ, He X, Maynol E, Wade LJ (2014) Mapping quantitative trait loci associated with root penetration ability of wheat in contrasting environments. Mol Breed 34:631–642

    Article  CAS  Google Scholar 

  • Ahmad A, Diwan H, Abrol YP (2010a) Global climate change stress and plant productivity. In: Pareek A, Sopory SK, Bohnert GHJ (eds) Abiotic stress adaptation in plants: physiological molecular and genome foundation. Springer, Dordrecht, pp 503–521

    Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010b) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Physiol 154:526–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akter N, Islam MR (2017) Heat stress effects and management in wheat. A review. Agron Sustain Dev 37:37

    Article  CAS  Google Scholar 

  • Alam MN, Mannaf MA, Sarker MAZ, Akhter MM (2013) Effect of terminal high temperature imposed by late sowing on phenological traits of wheat (Triticum aestivum L.). Int J Agric Res 3:6–10

    Google Scholar 

  • Alam MN, Bodruzzaman M, Hossain MM, Sadekuzzaman M (2014) Growth performance of spring wheat under heat stress conditions. Int J Agric Res 4:91–103

    Google Scholar 

  • Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171:382–388

    Article  CAS  PubMed  Google Scholar 

  • Almeselmani M, Deshmukh PS, Chinnusamy V (2012) Effect of prolonged high temperature stress on respiration, photosynthesis and gene expression in wheat (Triticum aestivum L.) varieties differing in their thermotolerance. Plant Stress 6:25–32

    Google Scholar 

  • Anjum F, Wahid A, Javed F, Arshad M (2008) Influence of foliar applied thiourea on flag leaf gas exchange and yield parameters of bread wheat (Triticum aestivum L.) cultivars under salinity and heat stresses. Int J Agric Biol 10:619–626

    CAS  Google Scholar 

  • Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D et al (2014) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147

    Article  Google Scholar 

  • Bala S, Asthir B, Bains NS (2014) Effect of terminal heat stress on yield and yield attributes of wheat. Indian J Appl Res 4:1–2

    Google Scholar 

  • Barnabás B, Jäger K, Féher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  Google Scholar 

  • Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T (2012) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet 125:1473–1485

    Article  PubMed  Google Scholar 

  • Boghireddy S, Mangrauthia SK, Sarla N, Rao VS (2014) Transcriptomics of heat stress in plants. In: Improvement of crops in the era of climatic changes. Springer, New York, pp 49–89

    Google Scholar 

  • Castro M, Peterson CJ, Rizza MD, Dellavalle PD, V’azquez D, Ibanez V, Ross A (2007) Influence of heat stress on wheat grain characteristics and protein molecular weight distribution. In: Buck HT, Nisi JE, Salomon N (eds) Wheat production in stressed environment. Springer, Dordrecht, pp 365–371

    Chapter  Google Scholar 

  • Caverzan A, Casassola A, Brammer SA (2016) Antioxidant responses of wheat plants under stress. Genet Mol Biol 39:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty U, Pradhan D (2011) High temperature-induced oxidative stress in Lens culinaris role of antioxidants and amelioration of stress by chemical pre-treatments. J Plant Interact 6:43–52

    Article  CAS  Google Scholar 

  • Chapman SC, Chakraborty S, Dreccer MF, Howden SC (2012) Plant adaptation to climate change-opportunities and priorities in breeding. Crop Pasture Sci 63:251–268

    Article  Google Scholar 

  • Chauhan H, Khurana N, Tyagi AK, Khurana JP, Khurana P (2011) Identification and characterization of high temperature stress responsive genes in bread wheat (Triticum aestivum L.) and their regulation at various stages of development. Plant Mol Biol 75:35–51

    Article  CAS  PubMed  Google Scholar 

  • Cheng FM, Zhong LJ, Zhao NC, Liu Y, Zhang GP (2005) Temperature induced changes in the starch components and biosynthetic enzymes of two rice varieties. Plant Growth Regul 46:87–95

    Article  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Cossani CM, Reynolds MP (2012) Physiological traits for improving heat tolerance in wheat. Plant Physiol 160:1710–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dat J, Vandenbeele S, Vranova E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • De Costa WAJM (2011) A review of the possible impacts of climate change on forests in the humid tropics. J Natl Sci Found Sri Lanka 39:281–302

    Article  Google Scholar 

  • Demotes-Mainard S, Jeuffroy MH (2004) Effects of nitrogen and radiation on dry matter and nitrogen accumulation in the spike of winter wheat. Field Crop Res 87:221–233

    Article  Google Scholar 

  • Dengate HN (1984) Swelling, pasting and gelling of wheat starch. In: Pomeranz Y (ed) Advances in cereal science and technology. American Association of Cereal Chemists, Saint Paul, pp 49–82

    Google Scholar 

  • Denyer K, Hylton CM, Smith AM (1994) The effect of high temperature on starch synthesis and the activity of starch synthase. Aust J Plant Physiol 21:783–789

    CAS  Google Scholar 

  • Denyer K, Clarke B, Hylton C, Tatge H, Smith AM (1996) The elongation of amylose and amylopectin chains in isolated starch granules. Plant J 10:1135–1143

    Article  CAS  Google Scholar 

  • Devos KM, Doležel J, Feuillet C (2009) Genome organization and comparative genomics. In: Carver BF (ed) Wheat science and trade. Wiley Blackwell, Ames, pp 327–367

    Chapter  Google Scholar 

  • Diamant S, Eliahu N, Rosenthal D, Goloubinoff P (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586–39591

    Article  CAS  PubMed  Google Scholar 

  • Diane MB, Thitisaksakul M (2013) How environmental stress affects starch composition and functionality in cereal endosperm? Starch/Stärke 65:1–14

    Article  CAS  Google Scholar 

  • Dias AS, Lidon FC (2009) Evaluation of grain filling rate and duration in bread and durum wheat under heat stress after anthesis. J Agron Crop Sci 195:137–147

    Article  Google Scholar 

  • Dias AS, Bagulho AS, Lidon FC (2008) Ultrastructue and biochemical traits of bread and durum wheat grains under heat stress. Braz J Plant Physiol 20:323–333

    Article  Google Scholar 

  • Dias AS, Lidon FC, Ramalho JC (2009) Heat stress in Triticum: kinetics of Fe and Mg accumulation. Braz J Plant Physiol 21:153–164

    Article  Google Scholar 

  • Din K, Singh RM (2005) Grain filling duration: An important trait in wheat improvement. SAIC Newsl 15:4–5

    Google Scholar 

  • Dupont F, Altenbach S (2003) Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. J Cereal Sci 38:133–146

    Article  CAS  Google Scholar 

  • Enghiad A, Ufer D, Countryman AM, Thilmany DD (2017) An overview of global wheat market fundamentals in an era of climate concerns. Int J Agron 2017:1–15. https://doi.org/10.1155/2017/3931897

    Article  Google Scholar 

  • Farooq M, Wahid A, Ito O, Lee DJ, Siddique KHM (2009) Advances in drought resistance of rice. Crit Rev Plant Sci 28:199–217

    Article  CAS  Google Scholar 

  • Farooq M, Bramley H, Palta JA, Siddique KHM (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30:1–17

    Article  Google Scholar 

  • Ferris R, Ellis RH, Wheeler TR, Hadley P (1998) Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann Bot 82:631–639

    Article  Google Scholar 

  • Fu J, Momclovic I, Prasad V (2012) Molecular bases and improvement of heat tolerance incropplants. In: Josipovic S, Ludwig E (eds) Heat stress: causes. Prevention and treatments. Nova Science, New York, pp 185–214

    Google Scholar 

  • Garg D, Sareen S, Dalal S, Tiwari R, Singh R (2012) Heat shock protein based SNP marker for terminal heat stress in wheat (Triticum aestivum L.). Aust J Crop Sci 6:516–1521

    Google Scholar 

  • Garg D, Sareen S, Dalal S, Tiwari R, Singh R (2013) Grain filling duration and temperature pattern influence on the performance of wheat genotypes under late planting. Cereal Res Commun 41:500–507

    Article  Google Scholar 

  • Gibson LR, Paulsen GM (1999) Yield components of wheat grown under high temperature stress during reproductive growth. Crop Sci 39:1841–1846

    Article  Google Scholar 

  • Gong M, Chen SN, Song YQ, Li ZG (1997) Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Aust J Plant Physiol 24:371–379

    CAS  Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra R, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86:377–384

    Article  CAS  PubMed  Google Scholar 

  • Hakim MA, Hossain A, Teixeira da Silva JA, Zvolinsky VP, Khan MM (2012) Yield protein and starch content of 20 wheat (Triticum aestivum L.) genotypes exposed to high temperature under late sowing conditions. J Sci Res 4:477–489

    Article  CAS  Google Scholar 

  • Hall AE (2001) Crop responses to environment. CRC Press, Boca Raton

    Google Scholar 

  • Hanchinal RR, Tandon JP, Salimath PM (1994) Variation and adaptation of wheat varieties for heat tolerance in Peninsular India. In: Saunders DA, Hettel GP (eds) Wheat in heat stressed environments: irrigated dry areas and rice-wheat farming systems. CIMMYT, Mexico, pp 175–183

    Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2010) Physiological and biochemical mechanisms of nitric oxide induced abiotic stress tolerance in plants. Am J Plant Physiol 5:295–324

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hays DB, Do JH, Mason RE, Morgan G, Finlayson SA (2007) Heat stress induced ethylene production in developing wheat grains induces grain abortion and increased maturation in a susceptible cultivar. Plant Sci 172:1113–1123

    Article  CAS  Google Scholar 

  • Hedhly A, Hormaza JI, Herrero M (2009) Global warming and sexual plant reproduction. Trends Plant Sci 14:30–36

    Article  CAS  PubMed  Google Scholar 

  • Hemantaranjan A, Nishant BA, Singh MN, Yadav DK, Patel PK, Singh R, Katiyar D (2014) Heat stress responses and thermotolerance. Adv Plants Agric Res 1:62–70

    Google Scholar 

  • Hossain A, Sarker MAZ, Saifuzzaman M, Teixeira da Silva JA, Lozovskaya MV, Akhter MM (2013) Evaluation of growth yield relative performance and heat susceptibility of eight wheat (Triticum aestivum L.) genotypes grown under heat stress. Int J Plant Prod 7:615–636

    Google Scholar 

  • Huang B, Rachmilevitch S, Xu J (2012) Root carbon and protein metabolism associated with heat tolerance. J Exp Bot 63:3455–3465

    Article  CAS  PubMed  Google Scholar 

  • Hurkman WJ, McCue KF, Altenbach SB, Korn A, Tanaka CK, Kotharia KM, Johnson EL, Bechtel DB, Wilson JD, Anderson OD, DuPont FM (2003) Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci 164:873–881

    Article  CAS  Google Scholar 

  • Iqbal M, Raja NI, Yasmeen F, Hussain M, Ejaz M, Shah MA (2017) Impacts of heat stress on wheat: a critical review. Adv Crop Sci Technol 5:251–259

    Article  CAS  Google Scholar 

  • Ito S, Hara T, Kawanami Y, Watanabe T, Thiraporn K, Ohtake N, Sueyoshi K, Mitsui T, Fukuyama T, Takahashi Y, Sato T, Sato A, Ohyama T (2009) Carbon and nitrogen transport during grain filling in rice under high-temperature conditions. J Agron Crop Sci 195:368–376

    Article  CAS  Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part a: global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, p 1132

    Google Scholar 

  • Iwaia M, Yokonoa M, Inadab N, Minagawa J (2010) Live-cell imaging of photosystem II antenna dissociation during state transitions. Proc Natl Acad Sci U S A 107:2337–2342

    Article  Google Scholar 

  • Jiang H, Dian W, Wu P (2003) Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. Phytochemistry 218:1062–1070

    Google Scholar 

  • Joyce SM, Cassells AC, Mohan JS (2003) Stress and aberrant phenotypes in vitro culture. Plant Cell Tissue Organ Cult 74:103–121

    Article  CAS  Google Scholar 

  • Kaur V, Behl RK (2010) Grain yield in wheat as affected by short periods of high temperature, drought and their interaction during pre- and post-anthesis stages. Cereal Res Commun 38:514–520

    Article  Google Scholar 

  • Kaur N, Gupta AK (2005) Signal transduction pathways under abiotic stresses in plants. Curr Sci 88:1771–1780

    CAS  Google Scholar 

  • Keeling PL, Bacon PJ, Holt DC (1993) Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta 191:342–348

    Article  CAS  Google Scholar 

  • Khurana P, Chauhan H, Khurana N (2011) Characterization and expression of high temperature stress responsive genes in bread wheat. J Genet Plant Breed 47:94–97

    Article  Google Scholar 

  • Kuchel H, Fox R, Reinheimer J, Mosionek L, Willey N, Bariana H, Jefferies S (2007) The successful application of a marker-assisted wheat breeding strategy. Mol Breed 20:295–308

    Article  Google Scholar 

  • Labuschagne MT, Elago O, Koen E (2009) The influence of temperature extremes on quality and starch characteristics in bread, biscuit and durum wheat. J Cereal Sci 49:184–189

    Article  CAS  Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide and ethylene. J Plant Physiol 161:405–413

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid. Plant Physiol 128:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leterrier M, Holappa LD, Broglie KE, Beckles DM (2008) Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications. BMC Plant Biol 8:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li YF, Wu Y, Hernandez-Espinosa N, Pena RJ (2013) Heat and drought stress on durum wheat: responses of genotypes, yield, and quality parameters. J Cereal Sci 57:398–404

    Article  Google Scholar 

  • Liu HT, Li B, Shang ZL, Li XZ, Mu RL, Sun DY, Zhou RG (2003) Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol 132:1186–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Guo W, Jiang Z, Pu H, Feng C, Zhu X, Peng Y, Kuang A, Little CR (2011) Effects of high temperature after anthesis on starch granules in grains of wheat (Triticum aestivum L.). J Agric Sci 149:159–169

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Asseng S, Müller C, Ewert F, Elliott J, Lobell DB, Martre P, Ruane AC, Wallach D, Jones JW, Rosenzweig C (2016) Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat Clim Chang 6:1130–1136

    Article  Google Scholar 

  • Lizana XC, Calderini DF (2013) Yield and grain quality of wheat in response to increased temperatures at key periods for grain number and grain weight determination: considerations for the climatic change scenarios of Chile. J Agric Sci 151:209–221

    Article  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Article  CAS  PubMed  Google Scholar 

  • Longnecker N, Kirby EJM, Robson A (1993) Leaf emergence tiller growth and apical development of nitrogen-deficient spring wheat. Crop Sci 33:154–160

    Article  Google Scholar 

  • Lopes MS, Reynolds MP (2012) Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J Exp Bot 63:3789–3798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majoul T, Bancel E, Tribol E, Hamida JB, Branlard G (2004) Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from non-prolamins fraction. Proteomics 4:505–513

    Article  CAS  PubMed  Google Scholar 

  • Mangelsen E, Kilian J, Harter K, Jansson C, Wanke D, Sundberg E (2011) Transcriptome analysis of high-temperature stress in developing barley caryopses: early stress responses and effects on storage compound biosynthesis. Mol Plant 4:97–115

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Ballesta MC, Lopez-Perez L, Muries B, Munoz-Azcarate O, Carvajal M (2009) Climate change and plant water balance: the role of aquaporins – a review. In: Lichtfouse E (ed) Climate change, intercropping, pest control and beneficial microorganisms. Springer, Dordrecht, pp 71–89

    Chapter  Google Scholar 

  • Mason RE, Mondal S, Beecher FW, Pacheco A, Jampala B, Ibrahim AMH, Hays DB (2010) QTL associated with heat susceptibility index in wheat (Triticum aestivum L) under short-term reproductive stage heat stress. Euphytica 174:423–436

    Article  Google Scholar 

  • Mason RE, Mondal S, Beecher FW, Hays DB (2011) Genetic loci linking improved heat tolerance in wheat (Triticum aestivum L.) to lower leaf and spike temperatures under controlled conditions. Euphytica 180:181–194

    Article  Google Scholar 

  • Mason RE, Hays DB, Mondal S, Basnett BR, Ibrahim AMH (2013) QTL for yield components and canopy temperature depression in wheat (Triticum aestivum L.) under late sown field conditions. Euphytica 194:243–259

    Article  Google Scholar 

  • Mathur S, Jajoo A, Mehta P, Bharti S (2011) Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum L.). Plant Biol 13:1–6

    Article  CAS  PubMed  Google Scholar 

  • Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J Photochem Photobiol B Biol 137:116–126

    Article  CAS  Google Scholar 

  • Matsuki J, Yasui T, Kohyama K, Sasaki T (2003) Effects of environmental temperature on structure and gelatinization properties of wheat starch. Cereal Chem 80:476–480

    Article  CAS  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid, systemic signaling in response to diverse stimuli. Sci Signal 2:26–35

    Google Scholar 

  • Mitra R, Bhatia CR (2008) Bioenergetic cost of heat tolerance in wheat crop. Curr Sci 94:1049–1053

    CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K et al (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Modhe A, Naderi A, Emam Y, Aynehband A, Normohamadi G (2008) Effects of post- anthesis heat stress and nitrogen levels on grain yield in wheat (T durum and T aestivum) genotypes. Int J Plant Prod 2:257–268

    Google Scholar 

  • Mohammadi V, Zali AA, Bihamta MR (2008) Mapping QTLs for heat tolerance in wheat. J Agric Sci Technol 10:261–267

    Google Scholar 

  • Morell MK, Li Z, Regina A, Rahman S, D’Hulst C, Ball S (2007) Control of starch biosynthesis in vascular plants and algae. In: Plaxton WC, McManus MT (eds) Annual plant reviews. Blackwell, Oxford, pp 258–289

    Google Scholar 

  • Nahar KK, Ahamed U, Fujita M (2010) Phenological variation and its relations with yield in several wheat (Triticum aestivum L) cultivars under normal and late sowing mediated heat stress condition. Not Sci Biol 2:51–56

    Article  Google Scholar 

  • Nguyen HT, Joshi CP, Klueva N, Weng J, Hendershot KL, Blum A (1994) The heat-shock response and expression of heat-shock proteins in wheat under diurnal heat stress and field conditions. Aust J Plant Physiol 21:857–867

    CAS  Google Scholar 

  • Ohdan K, Sawada T, Nakamura Y (2011) Effect of temperature on starch branching enzyme properties of rice. J Appl Glycosci 58:19–26

    Article  CAS  Google Scholar 

  • Osborne TB (1907) The proteins of the wheat kernel. Carnegie Institute, Washington, DC

    Book  Google Scholar 

  • Paliwal R, Röder MS, Kumar U, Srivastava J, Joshi AK (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 125:561–575

    Article  PubMed  Google Scholar 

  • Panchuk II, Volkov RA, Schoffl F (2002) Heat stress and heat shock transcription factor dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pask AJD, Pietragalla J, Mullan DM, Reynolds MP (2012) Physiological breeding II: a field guide to wheat phenotyping. CIMMYT, Mexico

    Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Plaut Z, Butow B, Blumenthal C, Wrigley C (2004) Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crop Res 86:185–198

    Article  Google Scholar 

  • Porter JR, Gawith M (1999) Temperature and the growth and development of wheat: a review. Eur J Agron 10:23–36

    Article  Google Scholar 

  • Prasad PVV, Staggenborg SA, Ristic Z (2008) Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In: Ahuja LH, Saseendran SA (eds) Response of crops to limited water: understanding and modeling water stress effects on plant growth processes. ASA, CSSA, Madison, pp 301–355

    Google Scholar 

  • Qin D, Wu H, Peng H, Yao Y, Ni Z, Li Z, Zhou C, Sun Q (2008) Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics 9:432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin D, Wang F, Geng X, Zhang L, Yao Y, Ni Z, Peng H, Sun Q (2015) Overexpression of heat stress-responsive TaMBF1c, a wheat (Triticum aestivum L.) multiprotein bridging factor, confers heat tolerance in both yeast and rice. Plant Mol Biol 87:31–45

    Article  CAS  PubMed  Google Scholar 

  • Raines CA (2011) Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol 155:36–42

    Article  CAS  PubMed  Google Scholar 

  • Rane J, Pannu RK, Sohu VS, Saini RS, Mishra B, Shoran J, Crossa J, Vargas M, Joshi AK (2007) Performance of yield and stability of advanced wheat genotypes under heat stressed environments of Indo-Gangetic Plains. Crop Sci 47:1561–1573

    Article  Google Scholar 

  • Ristic Z, Bukovnik U, Momcilovic I, Fu J, Prasad PVV (2008) Heat induced accumulation of chloroplast protein synthesis elongation factor, EF-Tu, in winter wheat. J Plant Physiol 165:192–202

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotecnol Apl 22:1–10

    Google Scholar 

  • Sangwan V, Dhindsa RS (2002) In vivo and in vitro activation of temperature responsive plant MAP kinases. FEBS Lett 531:561–564

    Article  CAS  PubMed  Google Scholar 

  • Savicka M, Å kute N (2010) Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija 56:26–33

    Article  CAS  Google Scholar 

  • Scarpeci TE, Zanor MI, Carrillo N, Mueller RB, Valle EM (2008) Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol Biol 66:361–378

    Article  CAS  PubMed  Google Scholar 

  • Semenov MA (2009) Impacts of climate change on wheat in England and Wales. J R Soc Interface 6:343–350

    Article  PubMed  Google Scholar 

  • Sharma D, Mamrutha HM, Gupta VK, Tiwari R, Singh R (2015) Association of SSCP variants of HSP genes with physiological and yield traits under heat stress in wheat. Res Crops 16:139–146

    Article  Google Scholar 

  • Sharma D, Singh R, Rane J, Gupta VK, Mamrutha HM, Tiwari R (2016) Mapping quantitative trait loci associated with grain filling duration and grain number under terminal heat stress in bread wheat (Triticum aestivum L.). Plant Breed 135:538–545

    Article  CAS  Google Scholar 

  • Sharma D, Tiwari R, Gupta VK, Rane J, Singh R (2018) Genotype and ambient temperature during growth can determine the quality of starch from wheat. J Cereal Sci 79:240–246

    Article  CAS  Google Scholar 

  • Shewry PR, Halford NG, Lafiandra D (2003) The genetics of wheat gluten proteins. In: Hall JC, Dunlap JC, Friedman T (eds) Advances in genetics, vol 49. Academic, San Diego, pp 111–184

    Google Scholar 

  • Singh A, Khurana P (2016) Molecular and functional characterization of a wheat B2 protein imparting adverse temperature tolerance and influencing plant growth. Front Plant Sci 7:642

    PubMed  PubMed Central  Google Scholar 

  • Singh S, Singh G, Singh P, Singh N (2008) Effect of water stress at different stages of grain development on the characteristics of starch and protein of different wheat cultivars. Food Chem 108:130–139

    Article  CAS  Google Scholar 

  • Soh HN, Sissons MJ, Turner MA (2006) Effect of starch granule size distribution and elevated amylose content on durum dough rheology and spaghetti cooking quality. Cereal Chem 83:513–519

    Article  CAS  Google Scholar 

  • Spiertz JHJ, Hamer RJ, Xu H, Primo-Martin C, Don C, van der Putten PEL (2006) Heat stress in wheat (Triticum aestivum L): effects on grain growth and quality traits. Eur J Agron 25:89–95

    Article  CAS  Google Scholar 

  • Streck NA (2005) Climate change and agroecosystems: the effect of elevated CO2 and temperature on crop growth, development, and yield. Ciênc Rural 35:730–740

    Article  Google Scholar 

  • Sung DY, Vierling E, Guy CL (2001) Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol 126:789–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Suzuki Y, Sano Y, Ishikawa T, Sasaki T (2004) Differences in starch characteristics of rice strains having different sensitivities to maturation temperatures. J Agron Crop Sci 190:218–221

    Article  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  • Szydlowski N, Ragel P, Hennen-Bierwagen TA, Planchot V, Myers AM, Merida A, d’Hulst C, Wattebled F (2011) Integrated functions among multiple starch synthases determine both amylopectin chain length and branch linkage location in Arabidopsis leaf starch. J Exp Bot 62:4547–4559

    Article  CAS  PubMed  Google Scholar 

  • Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology. Sinauer Associates, Sunderland

    Google Scholar 

  • Talukder SK, Babar MA, Vijayalakshmi K, Poland J, Venkata P, Prasad V, Bowden R, Fritz A (2014) Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L). BMC Genet 15:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Tashiro T, Wardlaw IF (1989) A comparison of the effect of high temperature on grain development in wheat and rice. Ann Bot 64:59–65

    Article  Google Scholar 

  • Tashiro T, Wardlaw I (1990) The response to high temperature shock and humidity changes prior to and during the early stages of grain development in wheat. Funct Plant Biol 17:551–561

    Article  Google Scholar 

  • Tester RF, Karkalas J, Qi X (2004) Starch-composition fine structure and architecture. J Cereal Sci 39:15–65

    Google Scholar 

  • Tiwari C, Wallwork H, Kumar U, Dhari R, Arun B, Mishra VK, Reynolds MP, Joshi AK (2013) Molecular mapping of high temperature tolerance in bread wheat adapted to the Eastern Gangetic Plain region of India. Field Crop Res 154:2012–2210

    Article  Google Scholar 

  • Vignjevic M, Wang X, Olesen JE, Wollenweber B (2015) Traits in spring wheat cultivars associated with yield loss caused by a heat stress episode after anthesis. J Agron Crop Sci 201:32–48

    Article  CAS  Google Scholar 

  • Vijayalakshmi K, Fritz AK, Paulsen GM, Bai G, Pandravada S, Gill BS (2010) Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed 26:163–175

    Article  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Dinler BS, Vignjevic M, Jacobsen S, Wollenweber B (2015) Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars. Plant Sci 230:33–50

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang H, Shao H, Tang X (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67

    PubMed  PubMed Central  Google Scholar 

  • Wardlaw IF (2002) Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment. Ann Bot 90:469–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Wardlaw IF, Moncur L (1995) The response of wheat to high temperature following anthesis I. The rate and duration of kernel filling. Aust J Plant Physiol 22:391–397

    Google Scholar 

  • Waters RE (2013) The evolution function structure and expression of the plant sHSPs. J Exp Bot 64:391–403

    Article  CAS  PubMed  Google Scholar 

  • Webb AAR, Mcainsh MR, Taylor JE, Hetherington AM (1996) Calcium ions as intercellular second messengers in higher plants. Adv Bot Res 22:45–96

    Article  CAS  Google Scholar 

  • Wollenweber B, Porter JR, Schellberg J (2003) Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. J Agron Crop Sci 189:142–150

    Article  Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xue GP, Drenth J, Mcintyre CL (2015) TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. J Exp Bot 66:1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144:258–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan SH, Yin YP, Li WY, Li YL, Wu TB, Geng YH, Wang QHZL (2008) Effect of high temperature after anthesis on starch formation of two wheat cultivars differing in heat tolerance. Acta Ecol Sin 28:6138–6147

    Google Scholar 

  • Yang J, Zhang J (2006) Grain filling of cereals under soil drying. New Phytol 169:223–236

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Sears RG, Gill BS, Paulsen GM (2002) Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica 126:275–282

    Article  CAS  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ, Xu GW, Zhu QS (2004) Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol 135:1621–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Ni Z, Peng H, Sun F, Xin M, Sunkar R, Zhu JK, Sun Q (2010) Non-coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L.). Funct Integr Genomics 10:187–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Guo W, Spiertz JH (2009) Aquantitative approach to characterize sink-source relationships during grain filling in contrasting wheat genotypes. Field Crop Res 114:119–126

    Article  Google Scholar 

  • Zahedi M, Jenner CF (2003) Analysis of effects in wheat of high temperature on grain filling attributes estimated from mathematical models of grain filling. J Agric Sci 141:203–221

    Article  Google Scholar 

  • Zhang Y, Pan J, Huang X, Guo D, Lou H, Hou Z, Su M, Liang R, Xie C, You M, Li B (2017a) Differential effects of a postanthesis heat stress on wheat (Triticum aestivum L.) grain proteome determined by iTRAQ. Sci Rep 7:3468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Geng X, Zhang H, Zhou C, Zhao A, Wang F, Zhao Y, Tian X, Hu Z, Xin M (2017b) Isolation and characterization of heat-responsive gene TaGASR1 from wheat (Triticum aestivum L.). J Plant Biol 60:57–65

    Article  CAS  Google Scholar 

  • Zhao H, Dai T, Jiang D, Cao W (2008) Effects of high temperature on key enzymes involved in starch and protein formation in grains of two wheat cultivars. J Agron Crop Sci 194:47–54

    Article  CAS  Google Scholar 

  • Zheng B, Chenu K, Dreccer MF, Chapman SC (2012) Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivum) varieties? Glob Chang Biol 18:2899–2914

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, D., Singh, R., Tiwari, R., Kumar, R., Gupta, V.K. (2019). Wheat Responses and Tolerance to Terminal Heat Stress: A Review. In: Hasanuzzaman, M., Nahar, K., Hossain, M. (eds) Wheat Production in Changing Environments. Springer, Singapore. https://doi.org/10.1007/978-981-13-6883-7_7

Download citation

Publish with us

Policies and ethics