Skip to main content

Climate Change and Plant Water Balance: The Role of Aquaporins – A Review

  • Chapter
  • First Online:
Climate Change, Intercropping, Pest Control and Beneficial Microorganisms

Abstract

In the context of global change, attention has been focused on the increases in CO2 and temperature, as well as a reduction in the global solar irradiance. In this chapter we have explored how components of global change such as CO2, temperature and radiation will affect water uptake by plants. We focus on how aquaporins will respond to these environmental factors in order to maintain water balance in plants according to the water demand. Plant growth may be stimulated directly by increasing CO2 concentration, through enhanced photosynthesis, or, indirectly, through induced plant water consumption. However, the fine regulation of aquaporins, also involved in CO2 transport through membranes, will be crucial in the control of H2O and CO2 diffusion. Raised temperatures may benefit some crops but disadvantage others through increased evapotranspiration and thermal damage. However, in general, plants can develop different adaptive mechanisms in order to avoid water-deficit stress and excess transpiration modulating the hydraulic conductance, which involve the expression and activity of aquaporins. In the same way, the response of plants to the amount of perceived radiation affects water balance. Therefore, the study of aquaporin regulation is necessary for establishing future adaptation of plants to global change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth E.A., Long S.P. (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytol. 165, 351–371.

    PubMed  Google Scholar 

  • Albritton D.L. (and 58 others) (2001) Technical summary. In: Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K., Johnson C.A. (Eds.), Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK, pp. 21–83.

    Google Scholar 

  • Alleva K., Niemietz C.M., Sutra M., Maurel C., Parisi M., Tyerman S.D., Amodeo G. (2006) Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations. J. Exp. Bot. 57, 609–621.

    PubMed  CAS  Google Scholar 

  • Arnone J.A. III, Zaller J.G., Spehn E.M., Niklaus P.A., Wells C.E., Körner C. (2000) Dynamics of root systems in native grasslands: effects of elevated atmospheric CO2. New Phytol. 147, 73–85.

    CAS  Google Scholar 

  • Baiges, I., Schäffner, A.R., Affenzeller, M.J., Mas, A. (2002) Plant aquaporins, Physiol. Plant. 115, 175–182.

    Article  CAS  Google Scholar 

  • BassiriRad H., Radin J.W., Matsuda K. (1991) Temperature-dependent water and ion transport properties of barley and sorghum roots. Plant Physiol. 97, 426–432.

    PubMed  CAS  Google Scholar 

  • Beaudette P.C., Chlup M., Yee J., Emmery, N.R.J. (2007) Relationships of root conductivity and aquaporin gene expression in Pisum sativum: diurnal patterns and the response to HgCl2 and ABA. J. Exp. Bot. 58, 1291–1300.

    PubMed  CAS  Google Scholar 

  • Bernacchi C.J., Kimball B.A., Quarles D.R., Long S.P., Ort D.R. (2007) Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreased in ecosystem evapotranspiration. Plant Physiol. 143, 134–144.

    PubMed  CAS  Google Scholar 

  • Blumthaler M., Ambach W. (1990) Indication of increasing solar ultraviolet-B radiation flux in alpine regions. Science 248, 206–208.

    PubMed  CAS  Google Scholar 

  • Brown A.L.P., Day F.P., Hungate B.A., Drake B.G., Hinkle C.R. (2007) Root biomass and nutrient dynamics in a scrub-oak ecosystem under the influence of elevated atmospheric CO2. Plant Soil 292, 219–232.

    CAS  Google Scholar 

  • Cabañero F.J., Martínez V., Carvajal, M. (2004) Does calcium determine water uptake under saline conditions in pepper plants, or is it water flux which determines calcium uptake? Plant. Sci. 166, 443–450.

    Google Scholar 

  • Carvajal M., Cooke D.T., Clarkson D.T. (1996) Plasma membrane fluidity and hydraulic conductance in wheat roots: interaction between root temperature and nirate or phosphate deprivation. Plant, Cell and Environment 19, 1110–1114.

    CAS  Google Scholar 

  • Cen Y.P., Bornman J.F. (1990) The response of bean plants to UV-B radiation under different irradiances of background visible light. J. Exp. Bot. 41, 1489–1495.

    Google Scholar 

  • Centritto M., Lee H.S.J., Jarvis P.J. (1999) Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings. I. Growth, whole-plant water use efficiency and water loss. New Phytol. 141, 129–140.

    Google Scholar 

  • Centritto M., Lucas M.E., Jarvis P.G. (2002) Gas exchange, biomass, whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability. Tree Physiol. 22, 699–706.

    PubMed  Google Scholar 

  • Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M.J., Jung, R. (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol. 125, 1206–1215.

    PubMed  CAS  Google Scholar 

  • Chrispeels, M.J. Maurel, C. (1994) Aquaporins: the molecular basis of facilitated water movement through living plants cell? Plant Physiol. 105, 9–13.

    PubMed  CAS  Google Scholar 

  • Cochard H., Martin R., Gross P., Bogeat-Triboulot M.B. (2000) Temperature effects on hydraulic conductance and water relations of Quercus robur L. J. Exp. Bot. 51, 1255–1259.

    CAS  Google Scholar 

  • Cochard H., Venisse J.S., Barigah T.S., Brunel N., Herbette S., Guilliot A., Tyree M.T., Sakr S. (2007) Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiol. 143, 122–133.

    PubMed  CAS  Google Scholar 

  • Dodd I.C., He J., Turnbull C., Lee S.K., Critchley C. (2000) The influence of supra-optimal root-zone temperatures on growth and stomatal conductance in Capsicum annuum L. J. Exp. Bot. 51, 239–248.

    CAS  Google Scholar 

  • Farkhutdinov R.G., Veselova S.V., Veselov D.S., Mitrichenko A.N., Dedov A.V., Kudoyarova G.R. (2003) The effect of rapid temperature increase on the growth rate of wheat leaves. Russ. J. Plant Physiol. 50, 247–250.

    CAS  Google Scholar 

  • Feng H., An L., Chen T., Qiang W., Xu S., Zhang M., Wang X., Cheng G. (2003) The effect of ultraviolet-B radiation on growth photosynthesis and stable carbon isotope composition (δ13C) of two soybean cultivars (Glycine max) under field conditions. Environ. Exp. Bot. 49, 1–8.

    CAS  Google Scholar 

  • Fernandez-García N., Martínez V., Cerda, A. Carvajal M. (2002) Water and nutrient uptake of tomato grafted plants grown under saline conditions. J. Plant Physiol. 159, 899–905

    Google Scholar 

  • Fischer R.A., Turner N.C. (1978) Plant productivity in arid and semi-arid zones. Annu. Rev. Plant Physiol. Plant Mol. Biol. 29, 277–317.

    CAS  Google Scholar 

  • Flexas J., Ribas-Carbó M., Hanson D.T., Bota J., Otto B., Cifre J., McDowell N., Medrano H., Kaldenhoff R. (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J. 48, 427–439.

    PubMed  CAS  Google Scholar 

  • Folland C.K. (and 148 others) (2001) Observed climate variability and change. In: Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K., Johnson C.A. (Eds.), Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK, pp. 99–181.

    Google Scholar 

  • Forsher P.M.R., Joshi M. (2005) The role of halocarbons in the climate change of the troposphere and stratosphere. Climatic Change 71, 249–266.

    Google Scholar 

  • Gedney N., Cox P.M., Betts R.A., Boucher O., Huntingford C., Stott P.A. (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439, 835–838.

    PubMed  CAS  Google Scholar 

  • Giorgi F., Bi X., Qian Y. (2003) Indirect vs. direct effects of anthropogenic sulphate on the climate of east Asia as simulated with a regional coupled climate chemistry/aerosol model. Climate Change 58, 345–376.

    CAS  Google Scholar 

  • Gitz D.C., Liu-Gitz L. (2003) How do photomorphogenic responses confer water stress tolerance? Photochem. Photobiol. 78, 529–534.

    PubMed  CAS  Google Scholar 

  • Gitz D.C., Liu-Gitz L., Britz S.J., Sullivan J.H. (2005) Ultraviolet-B effects on stomatal density, water-use efficiency, and stable carbon isotope discrimination in four glasshouse-grown soybean (Glycine max) cultivars. Environ. Exp. Bot. 53, 343–355.

    CAS  Google Scholar 

  • Gleason J.F., Bhartia P.K., Herman J.R., McPeters R., Newman P., Stolarski R.S., Flynn L., Labow G., Larko D., Seftor C., Wellemeyer C., Komhyr W.D., Miller A.J., Planet W. (1993) Record Low Global Ozone in 1992. Science 260, 523–526.

    PubMed  CAS  Google Scholar 

  • Glenn D.M., Wunsche J., Mclvor I., Nissen R., George A. (2008) Ultraviolet radiation effects on fruit surface respiration and chlorophyll fluorescence. J. Hort. Sci. Biotech. 83, 43–50.

    Google Scholar 

  • Goyal R.K. (2004) Sensitity of evapotranspiration to global warming: a case study of arid zone of Rajasthan, Agr. Water Manag. 69, 1–11.

    Google Scholar 

  • Hammond G.P. Kallu S., McManus M.C. (2008) Development of biofuels for the UK automotive market. App. Energy 85, 506–515.

    CAS  Google Scholar 

  • Hanba Y.T., Shibasaka M., Hayashi Y., Hayakawa T., Kasamo K., Terashima I., Katsuhara M. (2004) Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol. 45, 521–529.

    PubMed  CAS  Google Scholar 

  • Handa T., Hagedorn F., Hättenschwiler S. (2008) No stimulation in root production in response to 4 years of in situ CO2 enrichment at the Swiss treeline. Funct. Ecol. 22, 348–358.

    Google Scholar 

  • Henzler T., Waterhouse R.N., Smyth A.J., Carvajal M., Cooke D.T., Schäffner A.R., Steudle E., Clarkson D.T. (1999) Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta 210, 50–60.

    PubMed  CAS  Google Scholar 

  • Hertel A., Steudle E. (1997) The function of water channels in Chara: the temperature dependence of water and solute flows provides evidence for composite membrane transport and for a slippage of small organic solutes across water channels. Planta 202, 324–335.

    CAS  Google Scholar 

  • Hobbs P. (1993) Aerosol–Cloud–Climate Interactions. Academic Press Inc., New York.

    Google Scholar 

  • Houghton J.T., Ding Y. and Intergovernmental Panel on Climate Change. Working Group 1 (2001) Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Huxman K.A., Smith S.D., Neuman D.S. (1999) Root hydraulic conductivity of Larrea tridentata and Helianthus annuus under elevated CO2. Plant Cell Environ. 22, 325–330.

    Google Scholar 

  • Jang J.Y., Kim D.G., Kim Y.O., Kim J.S., Kang H. (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol. Biol. 54, 713–725.

    PubMed  CAS  Google Scholar 

  • Johanson, U., Karlsson, M., Johansson, I., Gustavsson, S., Sjovall, S., Fraysse, L., Weig, A.R., Kjellbom, P. (2001) The complete set of genes encoding Major Intrinsic Proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol. 126, 1358–1369.

    PubMed  CAS  Google Scholar 

  • Johansson I., Karlsson M., Shukla V.K., Chrispeels M.J., Larsson C., Kjellbom P. (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation, Plant Cell. 10, 451–459.

    PubMed  CAS  Google Scholar 

  • Johansson I., Larsson C., Ek B., Kjellbom P. (1996) The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. Plant Cell. 8, 1181–1191.

    PubMed  CAS  Google Scholar 

  • Johnson J.D., Tognetti R., Paris P. (2002) Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO2. Physiol. Plant. 115, 93–100.

    PubMed  CAS  Google Scholar 

  • Jones H.G. (1998) Stomatal control of photosynthesis and transpiration. J. Exp Bot. 49, 387–398.

    Google Scholar 

  • Kamaluddin M., Zwiazek J.J. (2004) Effects of root medium pH on water transport in paper birch (Betula papyrifera) seedlings in relation to root temperature and abscisic acid treatments. Tree Physiol. 26, 1025–1033.

    Google Scholar 

  • Kammerloher, W., Fischer, U., Piechottka, G.P., Schäffner, A.R. (1994) Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J. 6, 187–199.

    PubMed  CAS  Google Scholar 

  • Katsuhara M., Koshio K., Shibasaka M., Kasamo K. (2003) Expression of an aquaporin at night in relation to the growth and root water permeability in barley seedlings. Soil Sci. Plant Nut. 49, 883–888.

    CAS  Google Scholar 

  • Keeling C., Whorf T.P. (2005) Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge Nacional Laboratory, Oak Ridge, TN, USA.

    Google Scholar 

  • Kim Y.X., Steudle E. (2007) Light and turgor affects the water permeability (aquaporins) of parenchyma cells in the midrib of leaves of Zea Mays. J. Exp. Bot. 58, 4119–4129.

    PubMed  CAS  Google Scholar 

  • Kristian R.A., Teis N.M., Helge Ro-Poulsena. (2008) Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum. Physiol. Plant. 133, 199–210.

    Google Scholar 

  • Laakso K., Sullivan J.H., Huttunen, S. (2000) The effects of UV-B radiation on epidermal anatomy in loblolly pine (Pinus taeda L.) and Scots pine (P. sylvestris L.). Plant Cell Environ. 23, 461–472.

    Google Scholar 

  • Lal R. (2007) Anthropogenic influences on world soils and implications to global food security. Ad. Agron. 93, 69–93.

    CAS  Google Scholar 

  • Lo Gullo M.A., Noval L.C., Salleo S., Nardini A. (2004) Hydraulic architecture of plants of Helianthus annuus L. cv. Margot: evidence for plant segmentation in herbs. J. Exp. Bot. 55, 1549–1556.

    PubMed  CAS  Google Scholar 

  • Lopez F., Bousser A., Sissoëff I., Gaspar M., Lachaise B., Hoarau J., Mahé A. (2003) Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins. Plant Cell Physiol. 44, 1384–1395.

    PubMed  CAS  Google Scholar 

  • Luu D., Maurel C. (2005) Aquaporins in challenging environment: molecular gears for adjusting plants water status. Plant Cell Environ. 28, 85–96.

    CAS  Google Scholar 

  • Maherali H., DeLucia E.H. (2000) Interactive effects of elevated CO2 and temperature on water transport in ponderosa pine. Am. J. Bot. 87, 243–249.

    PubMed  Google Scholar 

  • Manetas Y., Petropoulou Y., Stamatakis K., Nikolopoulos D., Levizou E., Psaras G., Karabourniotis G. (1997) Beneficial effects of UV-B radiation under field conditions: improvement of needle water relations and survival capacity of Pinus pinea L seedlings during the dry Mediterranean summer. Plant Ecol. 128, 100–108.

    Google Scholar 

  • Martínez-Ballesta M.C., Silva C., López-Berenguer C., Cabañero F.J., Carvajal M. (2006) Plant aquaporins: new perspectives on water and nutrient uptake in saline environment. Plant Biol. 8, 535–546.

    PubMed  Google Scholar 

  • Martínez-Ballesta M.C., Aparicio F., Pallas V., Martínez V., Carvajal M. (2003a) Root hydraulic conductance and water channels expression in Arabidopsis under saline stress. J. Plant Physiol. 160, 689–697.

    PubMed  Google Scholar 

  • Martínez-Ballesta M.C., Díaz R., Martínez V., Carvajal M. (2003b) Different blocking effect of HgCl2 and NaCl on aquaporins of pepper roots. J. Plant Physiol. 160, 1487–1492.

    PubMed  Google Scholar 

  • Matamala R., Schlesinger W.H. (2000) Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biol. 25, 967–979.

    Google Scholar 

  • Matzner S., Comstock J. (2001) The temperature dependence of shoot hydraulic resistance: implications for stomatal behaviour and hydraulic limitation. Plant Cell Environ. 24, 1299–1307.

    Google Scholar 

  • Maurel, C., Reizer, J., Schroeder, J. I., Chrispeels, M.J. (1993) The vacuolar membrane protein γ-TIP creates water specific channels in Xenopus oocytes. EMBO J. 12, 2241–2247.

    PubMed  CAS  Google Scholar 

  • Maurel, C., Tacnet, F., Güclü, J., Guern, J., Ripoche, P. (1997) Purified vesicles of tobacco cell vacuolar and plasma membranes exhibit dramatically different water permeability and water channel activity. Proc. Nat. Acad. Sci. USA 94, 7103–7108.

    PubMed  CAS  Google Scholar 

  • Medlyn B.E., Barton C.V.M., Broadmeadow M.S.J., Ceulemans R., De Angelis P., Forstreuter M., Freeman M., Jackson S.B., Kellomaki S., Laitat E. (2001) Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–264.

    Google Scholar 

  • Mirecki R.M., Teramura A.H. (1984) Effects of ultraviolet-B irradiance on soybean. 5. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiol. 74, 475–480.

    PubMed  CAS  Google Scholar 

  • Moore L.A., Field C.B. (2006) The effects of elevated atmospheric CO2 on the amount and depth distribution of plant water uptake in a California annual grassland. Global Change Biol. 12, 578–587.

    Google Scholar 

  • Morgan J.A., Pataki D.E., Korner C., Clark H., Del Grosso S.J., Grunzweig J.M., Knapp A.K., Mosier A.R., Newton P.C.D., Niklaus P.A., Nippert J.B., Nowak R.S., Parton W.J., Polley H.W., Shaw M.R. (2004) Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140, 11–25.

    PubMed  CAS  Google Scholar 

  • Morton O. (2007) Is this what it takes to save the world? Nature 447, 132–136.

    PubMed  CAS  Google Scholar 

  • Murali N.S., Teramura A.H. (1985) Effects of ultraviolet-B irradiance on soybean. 7. Biomass and concentration and uptake of nutrients at varying P-supply. J. Plant Nutr. 8, 177–192.

    CAS  Google Scholar 

  • Nardini A., Salleo S., Andri S. (2005) Circadian regulation of leaf hydraulic conductance in sunflower (Helianthus annuus L. cv Margot). Plant Cell. Environ. 28, 750–759.

    CAS  Google Scholar 

  • Nielsen K.F. (1974) Roots and root temperatures. In: Carson E.W. (Ed.), The Plant Root and its Environment: Proceedings. University of Virginia Press, Charlottesville, VA, USA, pp. 293–333.

    Google Scholar 

  • Nogués S., Allen D.J, Morison J.I.L., Baker N.R. (1998) Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis. Plant Physiol. 117, 173–181.

    PubMed  Google Scholar 

  • Nogués S., Allen D.J., Morison J.I.L., Baker N.R. (1999) Characterization of stomatal closure caused by ultraviolet-B radiation. Plant Physiol. 121, 489–496.

    PubMed  Google Scholar 

  • Nogués S., Baker N.R. (2000) Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J. Exp. Bot. 51, 1309–1317.

    PubMed  Google Scholar 

  • Norby R.J., Ledford J., Reilly C.D., Miller N.E., O’Neill E.G. (2004) Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. P. Natl. Acad. Sci. USA 101, 9689–9693.

    CAS  Google Scholar 

  • Norby R.J., Wullschleger S.D., Gunderson C.A., Johnson D.W., Ceulemans R. (1999) Tree response to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ. 22, 683–714.

    CAS  Google Scholar 

  • Nowak R.S., Ellsworth D.S., Smith S.D. (2004) Functional responses of plants to elevated atmospheric CO2 – do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol. 162, 253–280.

    Google Scholar 

  • Pritchard S.G., Prior S.A., Rogers H.H., Davis M.A., Runion G.B., Popham T.W. (2006) Effects of elevated atmospheric CO2 on root dynamics and productivity of sorghum grown under conventional and conservation agricultural management practices. Agric. Ecosyst. Environ. 113, 175–183.

    Google Scholar 

  • Pritchard, S.G., Strand, A.E., McCormack, M.L., Davis, M.A., Finzi, A.C., Jackson, R.B., Matamala, R, Rogers, H.H., Oren, R. (2008) Fine root dynamics in a loblolly pine forest are influenced by free-air-CO2-enrichment: a six-year-minirhizotron study. Global Change Biol. 14, 588–602.

    Google Scholar 

  • Quigley F., Rosenberg J.M., Shachar-Hill Y., Bohnert H.J. (2002) From genome to function: the Arabidopsis aquaporins. Gen. Biol. 3, 1–17.

    Google Scholar 

  • Ramanathan V., Crutzen P.J., Kiehl J.T., Rosenfeld D. (2001) Aerosols, climate, and the hydrological cycle. Science 294, 2119–2124.

    PubMed  CAS  Google Scholar 

  • Ripullone F., Guerrieri M.R., Nole’ A., Magnani F., Borguetti M. (2007) Stomatal conductance and leaf water potential responses to hydraulic conductance variation in Pinus pinaster seedlings. Trees 21, 371–378.

    Google Scholar 

  • Robinson A.B., Robinson N.E., Soon W. (2007) Environmental effects of increased atmospheric carbon dioxide. J. Am. Phys. Surg. 12, 79–90.

    Google Scholar 

  • Robredo A., Pérez-López U., Sainz de la Maza H., González-Moro B., Lacuesta M., Mena-Petite A., Muñoz-Rueda A. (2007) Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environ. Exp. Bot. 59, 252–263.

    CAS  Google Scholar 

  • Robson T.M., Pancotto V.A., Flint S.D., Balleré C.L., Sala O.L., Scopel A.L., Caldwell M.M. (2003) Six years of solar UV-B manipulations affect growth of Sphagnum and vascular plants in a Tierra del Fuego peatland. New Phytol. 160, 379–389.

    Google Scholar 

  • Roderick M., Farquhar G.D. (2002) The cause of decreased pan evaporation over the past 50 years. Science 298, 1410–1411.

    PubMed  CAS  Google Scholar 

  • Roderick M.L., Farquhar G.D., Berry S.L., Noble I.R. (2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129, 21–30.

    Google Scholar 

  • Sack L., Cowan P.D., Jaikumar N., Holbrook N.M. (2003) The ‘hydrology’ of leaves: coordination of structure and function in temperate woody species. Plant Cell Environ. 26, 1343–1356.

    Google Scholar 

  • Sakurai, J., Ishikawa, F., Yamaguchi, T., Uemura, M., Maeshima, M. (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol. 46, 1568–1577.

    PubMed  CAS  Google Scholar 

  • Searles P.S., Flint S.D., Caldwell M.M. (2001) A meta-analysis of plant field studies simulating stratospheric ozone depletion, Oecologia 127, 1–10.

    Google Scholar 

  • Sellin A., Kupper P. (2005) Variation in leaf conductance of silver birch: effects of irradiance, vapour pressure deficit, leaf water status and position within a crown. Forest Ecol. Manage. 206, 153–166.

    Google Scholar 

  • Sellin A., Kupper P. (2007) Temperature, light and leaf conductance of little-leaf linden (Tilia cordata) in a mixed forest canopy. Tree Physiol. 27(5), 679–688.

    PubMed  Google Scholar 

  • Shabala S., Newman I. (1999) Light-induced changes in hydrogen, calcium, potassium, and chloride ion fluxes and concentrations from the mesophyll and epidermal tissues of bean leaves. Understanding the ionic basis of light-induced bioelectrogenesis. Plant Physiol. 119, 1115–1124.

    PubMed  CAS  Google Scholar 

  • Soussana J.F., Lüschert A. (2007) Temperate grasslands and global atmospheric change. A review. Grass Forage Sci. 62, 127–134.

    CAS  Google Scholar 

  • Steudle E. (2000) Water uptake by roots: an integration of views. Plant Soil 226, 15–56.

    Google Scholar 

  • Steudle E., Peterson C. (1998) How does water get through roots? J. Exp. Bot. 49, 775–788.

    CAS  Google Scholar 

  • Stiles K.A., Van Volkenburgh E. (2004) Role of K+ in leaf growth: K+ uptake is required for light-stimulated H+ efflux but not solute accumulation. Plant Cell Environ. 27, 315–325.

    CAS  Google Scholar 

  • Stoelzle S., Kagawa T., Wada M., Hedrich R., Dietrich P. (2003) Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signalling pathway. Proc. Nat. Acad. Sci. USA 100, 1456–1461.

    PubMed  CAS  Google Scholar 

  • Sullivan J.H., Teramura A.H. (1990) Field study of the interaction between solar ultraviolet-B radiation and drought on photosynthesis and growth in soybean. Plant Physiol. 92, 141–146.

    PubMed  Google Scholar 

  • Tahir I.S.A., Nakata N., Yamaguchi T., Nakano J., Ali A.M. (2008) Influence of high shoot and root-zone temperatures on growth of three wheat genotypes during early vegetative stages. J. Agron. Crop Sci. 194, 141–151.

    Google Scholar 

  • Takagi S., Nagai R. (1988) Light-affected Ca2+ fluxes in protoplasts from Vallisneria mesophyll cells. Plant Physiol. 88, 228–232.

    PubMed  CAS  Google Scholar 

  • Tardieu F., Davies W.J. (1993) Root-shoot communication and whole plant regulation of water flux. In: Smith J.A., Griffiths H. (Eds.), Water Deficit: Plant Responses from Cell to Community. Bios, Oxford, pp. 147–162.

    Google Scholar 

  • Terashima I., Ono K. (2002) Effects of HgCl2 on CO2 dependence of leaf photosynthesis: evidence indicating involvement of aquaporins in CO2 diffusion across the plasma membrane. Plant Cell Physiol. 43, 70–78.

    PubMed  CAS  Google Scholar 

  • Tournaire-Roux C., Sutka M., Javot H., Gout E., Gerbeau P., Luu D.T., Bligny R., Maurel C. (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425, 393–397.

    PubMed  CAS  Google Scholar 

  • Tsuda M., Tyree M.T. (2000) Plant hydraulic conductance measured by the high pressure flow meter in crop plants. J. Exp. Bot. 51, 823–828.

    PubMed  CAS  Google Scholar 

  • Tyerman, S.D., Bohnert, H.J., Maurel, C., Steudle, E., Smith, J.A.C. (1999) Plant aquaporins their molecular biology, biophysics and significance for plant water relations. J. Exp. Bot. 50, 1055–1071.

    CAS  Google Scholar 

  • Tyree M.T., Nardini A., Salleo S., Sack L., Omaro B.E. (2005) The dependence of leaf hydraulic conductance on irradiation during HPFM measurements: any role for stomatal response? J. Exp. Bot. 56, 737–744.

    PubMed  CAS  Google Scholar 

  • Uehlein N., Lovisolo C., Siefritz F., Kalenhoff R. (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425, 734–737.

    PubMed  CAS  Google Scholar 

  • Uehlein N., Otto B., Hanson D.T., Fischer M., McDowell N., Kaldenhoff R (2008) Function of Nicotiana tabacum aquaporins as chloroplasts gas pores challenges the concept of membrane CO2 permeability. Plant Cell Preview, 20, 648–657.

    Google Scholar 

  • Urrestarazu M., Salas M.C., Valera D., Gomez A., Mazuela P.C. (2008) Effects of heating nutrient solution on water and mineral uptake and early yield of two cucurbits under soilless culture. J. Plant Nutr. 31, 527–538.

    CAS  Google Scholar 

  • Weisenseel M.H., Ruppert H.K. (1977) Phytochrome and calcium ions are involved in light-induced membrane depolarization in Nitella. Planta 137, 225–229.

    CAS  Google Scholar 

  • Whitehead D. (1998) Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiol. 18, 633–644.

    PubMed  Google Scholar 

  • Wullschleger S.D., Norby R.J. (2001) Sap velocity and canopy transpiration in a sweetgum stand exposed to free-air CO2 enrichment (FACE). New Phytol. 150, 489–498.

    Google Scholar 

  • Wullschleger S.D., Tschaplinski T.J., Norby R.J. (2002) Plant water relations at elevated CO2–implications for water-limited environments. Plant Cell Environ. 25, 319–331.

    PubMed  Google Scholar 

  • Xiong L., Schumaker K.S., Zhu J.K. (2002) Cell signaling during cold, drought and salt stress. Plant Cell 14, 165–183.

    Google Scholar 

  • Zhang X., Wollenweber B., Jiang D., Zhao J. (2008) Water deficits and heat shock effects on phtosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor, J. Exp. Bot. 59, 839–848.

    PubMed  CAS  Google Scholar 

  • Zimmermann H.M., Steudle E. (1998) Apoplastic transport across young maize roots: effect of the exodermis. Planta 206, 7–19.

    CAS  Google Scholar 

  • Zivanovic B.D., Pang J., Shabala S. (2005) Light-induced transient ion influx response from maize leaves and their association with leaf growth and photosynthesis. Plant Cell Environ. 28, 340–352.

    PubMed  CAS  Google Scholar 

  • Zivanovic B.D., Tracey A.C., Sergey S. (2007) Spectral and dose dependence of light-induced ion flux responses from maize leaves and their involvement in leaf expansion growth. Plant Cell Physiol. 48, 598–605.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micaela Carvajal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Martínez-Ballesta, M.C., López-Pérez, L., Muries, B., Muñoz-Azcarate, O., Carvajal, M. (2009). Climate Change and Plant Water Balance: The Role of Aquaporins – A Review. In: Lichtfouse, E. (eds) Climate Change, Intercropping, Pest Control and Beneficial Microorganisms. Sustainable Agriculture Reviews, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2716-0_5

Download citation

Publish with us

Policies and ethics