Skip to main content

Biocontrol of Soil Phytopathogens by Arbuscular Mycorrhiza – A Review

  • Chapter
  • First Online:
Mycorrhizosphere and Pedogenesis

Abstract

The symbiotic association of plants with fungus exhibited arbuscular mycorrhizal (AM) association that favour mineral and water nutrition and decrease abiotic and biotic stresses. It has been reported that approximately 90% of plants are colonized by the mycorrhizal fungi species ranging from angiosperms to gymnospermic plants, while several of them are devoid of AM fungi. During its life cycle, the arbuscular mycorrhizal fungi must have a host and this symbiotic association is reciprocally benign, where the AM provides help to the plant in nutrients uptake, and in return, the plant provides the fungus with carbon. The AM fungi have been used as a biocontrol agent in lieu of their antagonistic interaction with various soilborne plant pathogens. The review highlights various examples of use of AMF for the control of phytopathogenic flora and fauna. The present chapter reflects inclusive compilation that highlights the mechanisms adapted by AM Fungi for the control of pathogenic flora and fauna.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alban, R., Guerrero, R., & Toro, M. (2013). Interactions between a root knot nematode (Meloidogyne exigua) and arbuscular mycorrhizae in coffee plant development (Coffea arabica). American Journal of Plant Sciences, 4, 19–23.

    Article  Google Scholar 

  • Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3–42.

    Article  Google Scholar 

  • Azcon-Aguilar, C., & Barea, J. M. (1992). Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In M. F. Allen (Ed.), Mycorrhizal functioning: An integrative plant-fungal process (pp. 163–198). New York: Chapman and Hall.

    Google Scholar 

  • Azcon-Aguilar, C., Jaizme-Vega, M. C., & Calvet, C. (2002). The contribution of arbuscular mycorrhizal fungi for bioremediation. In S. Gianinazzi, H. Schuepp, J. M. Barea, & K. Haselwandter (Eds.), Mycorrhizal technology in agriculture. From genes to bioproducts (pp. 187–197). Berlin: Birkhauser Verlag.

    Chapter  Google Scholar 

  • Bago, B., Azcón-Aguilar, C., Goulet, A., & Piché, Y. (1998). Branched adsorbing structure (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. The New Phytologist, 139, 375–388.

    Article  Google Scholar 

  • Bagyaraj, D. J. (1984). Biological interactions with VA mycorrhizal fungi. In C. L. Powell & D. J. Bagyaraj (Eds.), VA Mycorrhiza (pp. 131–153). Florida: CRC Press.

    Google Scholar 

  • Bansal, M., & Mukerji, K. G. (1996). Root exudates and its rhizosphere biology. In K. G. Mukerji, V. P. Singh, & S. Dwivedi (Eds.), Concepts in applied microbiology and biotechnology (pp. 79–119). New Delhi: Aditya Books Pvt Ltd.

    Google Scholar 

  • Barea, J. M., Pozo, M. J., Azcón, R., & Azcón-Aguilar, C. (2013). Microbial interactions in the rhizosphere. In F. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (pp. 29–44). Hoboken: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Baum, C., El-Tohamy, W., & Gruda, N. (2015). Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Scientia Horticculturae (Amsterdam), 187, 131–141.

    Article  Google Scholar 

  • Bever, J. D., Morton, J. B., Antonovics, J., & Schultz, P. A. (1996). Host dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. Journal of Ecology, 84, 71–82.

    Article  Google Scholar 

  • Bodker, L., Kjoller, R., & Rosendahl, S. (1998). Effect of phosphate and the arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches. Mycorrhiza, 8, 169–174.

    Article  CAS  Google Scholar 

  • Bodker, L., Kjoller, R., Kristensen, K., & Rosendahl, S. (2002). Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza, 12, 7–12.

    Article  CAS  PubMed  Google Scholar 

  • Bonfante, P., & Desirò, A. (2015). Arbuscular mycorrhizas: The lives of beneficial fungi and their plant host. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions (pp. 235–245). Cham: Springer.

    Google Scholar 

  • Boyetchko, S. M. (1996). Impact of soil microorganisms on weed biology and ecology. Phytoprotection, 77, 41–56.

    Article  Google Scholar 

  • Braga, M. R., et al. (1991). Phytoalexins induction in Rubiacea. Journal of Chemical Ecology, 17, 1079–1090.

    Article  CAS  PubMed  Google Scholar 

  • Brendan, N. A., Hammerschmidt, R., & Safir, G. R. (1996). Postharvest suppression of potato dry rot (Fusarium sambucinum) in prenuclear minitubers by arbuscular mycorrhizal fungal inoculum. American Potato Journal, 73, 509–515.

    Article  Google Scholar 

  • Brundrett, M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320, 37–77.

    Article  CAS  Google Scholar 

  • Budi, S. W., van Tuinen, D., Martinotti, G., & Gianinazzi, S. (1999). Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Applied and Environmental Microbiology, 65, 5148–5150.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caron, M. (1989). Potential use of mycorrhizae in control of soil-borne diseases. Canadian Journal of Plant Pathology, 11, 177–179.

    Article  Google Scholar 

  • Caron, M., Fortin, J. A., & Richard, C. (1985). Influence of substrate on the interaction of Glomus intraradices and Fusarium oxysporum f. sp. radicis-lycopersici on tomatoes. Plant and Soil, 87, 233–239.

    Article  Google Scholar 

  • Caron, M., Fortin, J. A., & Richard, C. (1986). Effect of phosphorus concentration and Glomus intraradices on Fusarium crown and root rot of tomatoes. Phytopathology, 76, 942–946.

    Article  CAS  Google Scholar 

  • Cordier, C., Gianinazzi, S., & Gianinazzi-Pearson, V. (1996). Colonisation patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant and Soil, 185, 223–232.

    Article  CAS  Google Scholar 

  • Cordier, C., Pozo, M. J., Barea, J. M., Gianiniazzi, S., & Gianinazzi-Pearson, V. (1998). Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Molecular Plant Microbe Interactions, 11, 1017–1028.

    Article  CAS  Google Scholar 

  • Dehne, H. W., & Schonbeck, F. (1979). The influence of endotrophic mycorrhiza on plant diseases. II. Phenol metabolism and lignification Fusarium oxysporum. Untersuchungen zum Einfluss der endotrophen Mycorrhiza auf Pflanzenkrankheiten. II. Phenolstoffwechsel und Lignifizierung. Phytopathologische Zeitschrift, 95, 210–216.

    Article  CAS  Google Scholar 

  • Druzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E., et al. (2011). Trichoderma: The genomics of opportunistic success. Nature Reviews Microbiology, 9, 749–759.

    Article  CAS  PubMed  Google Scholar 

  • Elsen, A., Baimey, H., Swennen, R., & DeWaele, D. (2003). Relative mycorrhizal dependency and mycorrhiza nematode interaction in banana cultivars (Mus spp.) differing in nematode susceptibility. Plant and Soil, 256, 303–313.

    Article  CAS  Google Scholar 

  • Feldmann, F., & Boyle, C. (1998). Concurrent development of arbuscular mycorrhizal colonization and powdery mildew infection on three Begonia hiemalis cultivars. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 105, 121–129.

    Google Scholar 

  • Ferraz, L., & Brown, D. (2002). An introduction to nematodes—plant nematology. Sofia: Pensoft.

    Google Scholar 

  • Filion, M., St. Arnaud, M., & Fortin, J. A. (1999). Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. The New Phytologist, 141, 525–533.

    Article  Google Scholar 

  • Fitter, A. H., & Sanders, I. R. (1992). Interactions with the soil fauna. In M. F. Allen (Ed.), Mycorrhizal functioning: An integrative plant- fungal process (pp. 333–354). New York: Chapman and Hall.

    Google Scholar 

  • Frankenberger, W. T., & Arshad, M. (1995). Microbial biosynthesis of auxins. In W. T. Frankenberger & M. Arshad (Eds.), Phytohormones in soil (pp. 35–71). New York: Marcel Dekker.

    Google Scholar 

  • Frey-Klett, P., & Garbaye, J. (2005). Mycorrhiza helper bacteria: a promising model for the genomic analysis of fungal–bacterial interactions. The New Phytologist, 168, 4–8.

    Article  CAS  PubMed  Google Scholar 

  • Fritz, M., Jakobsen, I., Lyngkjaer, M. F., Thordal-Christensen, H., & Pons- Kühnemann, J. (2006). Arbuscular mycorrhiza reduces susceptibility of tomatoto Alternaria solani. Mycorrhiza, 16, 413–419.

    Article  PubMed  Google Scholar 

  • Garbaye, J. (1994). Tansley review No. 76 Helper bacteria: A new dimension to the mycorrhizal symbiosis. The New Phytologist, 128, 197–210.

    Article  PubMed  Google Scholar 

  • Gheysen, G., & Mitchum, M. G. (2011). How nematodes manipulate plant development pathways for infection. Current Opinion in Plant Biology, 14, 415–421.

    Article  PubMed  Google Scholar 

  • Gianinazzi, S., & Schuepp, H. (1994). Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems (p. 226). Basel: Birkhauser Verlag.

    Book  Google Scholar 

  • Gianinazzi, S., Gollotte, A., Binet, M.-N., van Tuinen, D., Redecker, D., & Wipf, D. (2010). Agroecology: The key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20, 519–530.

    Article  PubMed  Google Scholar 

  • Graham, T. L., & Graham, M. Y. (1991). Cellular coordination of molecular responses in plant defense. Molecular Plant-Microbe Interactions, 4, 415–422.

    Article  CAS  Google Scholar 

  • Graham, J. H., Leonard, R. T., & Menge, J. A. (1981). Membrane mediated decrease in root exudation responsible for inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiology, 68, 548–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grayston, S. J., Vaughan, D., & Jones, D. (1997). Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology, 5, 29–56.

    Article  Google Scholar 

  • Gutjahr, C., & Parniske, M. (2013). Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annual Review of Cell and Developmental Biology, 29, 593–617.

    Article  CAS  PubMed  Google Scholar 

  • Gutjahr, C., & Paszkowski, U. (2013). Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Frontiers in Plant Science, 4, 204.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hage-Ahmed, K., Moyses, A., Voglgruber, A., Hadacek, F., & Steinkellner, S. (2013). Alterations in root exudation of intercropped tomato mediated by the arbuscular mycorrhizal fungus Glomus mosseae and the soil borne pathogen Fusarium oxysporum f. sp. lycopersici. Journal of Phytopathology, 161, 763–773.

    Article  CAS  Google Scholar 

  • Hammer, E. C., Pallon, J., Wallander, H., & Olsson, P. A. (2011). Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiology Ecology, 76, 236–244.

    Article  CAS  PubMed  Google Scholar 

  • Handelsman, J., & Stabb, E. V. (1996). Biocontrol of soilborne plant pathogens. Plant Cell, 8, 1855–1869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao, Z., Fayolle, L., Van Tuinen, D., Chatagnier, O., Li, X., & Gianinazzi, S. (2012). Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. Journal of Experimental Botany, 63, 3657–3672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrier, L. A. (2001). The arbuscular mycorrhizal symbiosis: A molecular review of the fungal dimension. The Journal of Experimental Medicine, 52, 469–478.

    CAS  Google Scholar 

  • Harrier, L. A., & Watson, C. A. (2004). The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems (Special issue: Current research at the Scottish Agricultural College). Pest Management Science, 60, 149–157.

    Article  CAS  PubMed  Google Scholar 

  • Hodge, A., Campbell, C. D., & Fitter, A. H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic matter. Nature, 413, 297–299.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, S. F. (1988). Effect of VA mycorrhizae and metalaxyl on growth of alfalfa seedlings in soils from fields with “alfalfa sickness” in Alberta. Plant Disease, 72, 448–452.

    Article  Google Scholar 

  • Jabaji-Hare, S. H., & Stobbs, L. W. (1984). Electron microscopic examination of tomato roots coinfected with Glomus sp. and tobacco mosaic virus. Phytopathology, 74, 277–279.

    Article  Google Scholar 

  • Jaizme-Vega, M. C., Sosa-Hernandez, B., Hernandez, J. M., & Galan- Sauco, V. (1998). Interaction of arbuscular mycorrhizal fungi and the soil pathogen Fusarium oxysporum f. sp. cubense on the first stages of micropropagated Grande Naine banana. Acta Horticulturae, 490, 285–295.

    Article  Google Scholar 

  • Jansa, J., Mozafar, A., & Frossard, E. (2003). Long distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie, 23, 481–488.

    Article  CAS  Google Scholar 

  • Jeffries, P., & Barea, J. M. (2012). Arbuscular mycorrhiza-a key component of sustainable plant-soil ecosystems. In B. Hock (Ed.), The mycota (pp. 51–75). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., & Barea, J. M. (2003). The contribution of arbuscular mycorrhizal fungí in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 37, 1–16.

    Google Scholar 

  • Johnson, N. C., Copeland, P. J., Crookston, R. K., & Pfleger, F. L. (1992). Mycorrhizae: Possible explanation for yield decline with continuous corn and soybean. Agronomy Journal, 84, 387–390.

    Article  Google Scholar 

  • Johnson, D., Leake, J. R., Ostle, N., Ineson, P., & Read, D. J. (2002a). In situ (CO2)–C-13 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytologist, 153, 327–334.

    Article  CAS  Google Scholar 

  • Johnson, D., Leake, J. R., & Read, D. J. (2002b). Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: Short-term respiratory losses and accumulation of 14C. Soil Biology and Biochemistry, 34, 1521–1524.

    Article  CAS  Google Scholar 

  • Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Jones, D. L., Hodge, A., & Kuzyakov, Y. (2004). Plant and mycorrhizal regulation of rhizo deposition. The New Phytologist, 163, 459–480.

    Article  CAS  PubMed  Google Scholar 

  • Jones, J. T., Haegeman, A., Danchin, E. G. J., Gaur, H. S., Helder, J., MGK, J., et al. (2013). Top10plant-parasiticnematodesinmolecularplantpathology. Molecular Plant Pathology, 14, 946–961.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A., & Pozo, M. J. (2012). Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology, 38, 651–664.

    Article  CAS  PubMed  Google Scholar 

  • Khan, A. G., Kuek, C., Chaudhry, T. M., Khoo, C. S., & Hayes, W. J. (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41, 197–207.

    Article  CAS  PubMed  Google Scholar 

  • Kobra, N., Jalil, K., & Youbert, G. (2009). Effects of three Glomus species as biocontrol agents against Verticillium-induced wilt in cotton. Journal of Plant Protection Research, 49, 185–189.

    Article  Google Scholar 

  • Kulkarni, S. A., Kulkarni, S., Sreenivas, M. N., & Kulkarni, S. (1997). Interaction between vesicular-arbuscular (VA) mycorrhizae and Sclerotium rolfsii Sacc. in groundnut. Karnataka Journal of Agricultural Science, 10, 919–921.

    Google Scholar 

  • Lambais, M. R., & Mehdy, M. C. (1995). Differential expression of defense-related genes in arbuscular mycorrhiza. Canadian Journal of Botany, 73, S533–S540.

    Article  CAS  Google Scholar 

  • Lerat, S., Lapointe, L., Piché, Y., & Vierheilig, H. (2003). Strains colonizing barley roots. Canadian Journal of Botany, 81, 886–889.

    Article  Google Scholar 

  • Li, S. L., Zhao, S. J., Zhao, L. Z., Li, S. L., Zhao, S. J., & Zhao, L. Z. (1997). Effects of VA mycorrhizae on the growth of eggplant and cucumber and control of diseases. Acta Phytophylacica Sinica, 24, 117–120.

    Google Scholar 

  • Linderman, R. G. (1988). Mycorrhizal interactions with the rhizosphere microflora-The Mycorrhizosphere effect. Proceedings of the American Phytopathology Society, 78(3), 366–371.

    Google Scholar 

  • Linderman, R. G. (1994). Role of VAM fungi in biocontrol. In F. L. Pfleger & R. G. Linderman (Eds.), Mycorrhizae and plant health (pp. 1–27). St. Paul: The American Phytopathological Society.

    Google Scholar 

  • Lioussanne, L., Jolicoeur, M., & St-Arnaud, M. (2008). Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biology and Biochemistry, 40, 2217–2224.

    Article  CAS  Google Scholar 

  • López-Ráez, J. A., Charnikhova, T., Fernández, I., Bouwmeester, H., & Pozo, M. J. (2011a). Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. Journal of Plant Physiology, 168, 294–297.

    Article  PubMed  CAS  Google Scholar 

  • López-Ráez, J. A., Pozo, M. J., & García-Garrido, J. M. (2011b). Strigolactones: A cry for help in the rhizosphere. Botany, 89, 513–522.

    Article  Google Scholar 

  • Maillet, F., Poinsot, V., André, O., Puech-Pagés, V., Haouy, A., Gueunier, M., Cromer, L., Giraudet, D., FormeyD, N. A., Martinez, E. A., Driguez, H., Bécard, G., & Dénarié, J. (2011). Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 469, 58–64.

    Article  CAS  PubMed  Google Scholar 

  • McArthur, D. A., & Knowles, N. R. (1992). Resistance responses of potato to vesicular-arbuscular mycorrhizal fungi under varying abiotic phosphorus levels. Plant Physiology, 100, 341–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGonigle, T. P., & Miller, M. H. (1993). Mycorrhizal development and phosphorus absorption in maize under conventional and reduced tillage. Soil Science Society of America Journal, 57, 1002–1006.

    Article  CAS  Google Scholar 

  • McGonigle, T. P., & Miller, M. H. (1996). Mycorrhizae, phosphorus absorption, and yield of maize in response to tillage. Soil Science Society of America Journal, 60, 1856–1861.

    Article  CAS  Google Scholar 

  • Minerdi, D., Fani, R., Gallo, R., Boarino, A., & Bonfante, P. (2001). Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Applied and Environmental Microbiology, 67, 725–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morandi, D. (1996). Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant and Soil, 185, 241–251.

    Article  CAS  Google Scholar 

  • Mukerji, K. G., Manoharachary, C., & Chamola, B. P. (2002). Techniques in mycorrhizal studies (1st ed., pp. 285–296). London/Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Nemec, S. (1994). Soil microflora associated with pot cultures of Glomus intraradix-infected Citrus reticulata. Agriculture, Ecosystems and Environment, 1, 299–306.

    Google Scholar 

  • Nemec, S., & Myhre, D. (1984). Virus–Glomus etunicatum interactions in citrus rootstocks [Sour orange, Citrus macrophylla, Duncan grapefruit, potential of mycorrhizal citrus rootstock seedlings to protect against growth suppression by viruses]. Journal of Plant Disease, 68, 311–314.

    Article  Google Scholar 

  • Newsham, K. K., Fitter, A. H., & Watkinson, A. R. (1995). Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. Journal of Ecology, 83, 991–1000.

    Article  Google Scholar 

  • Nicol, J. M., Turner, S. J., Coyne, D. L., den Nijs, L., Hockland, S., & Tahna Maafi, Z. (2011). Current nematode threats to world agriculture. In J. Jones, G. Gheysen, & C. Fenoll (Eds.), Genomics and molecular genetics of plant-Nematode interactions (pp. 347–367). Heidelberg: Springer.

    Google Scholar 

  • Norman, J., Atkinson, D., & Hooker, J. (1996). Arbuscular mycorrhizal fungal- induced alteration to root Architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant and Soil, 185, 191–198.

    Article  CAS  Google Scholar 

  • Nuccio, E. E., Hodge, A., Pett-Ridge, J., Herman, D. J., Weber, P. K., & Firestone, M. K. (2013). An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environmental Microbiology, 15, 1870–1881.

    Article  CAS  PubMed  Google Scholar 

  • Otto, G., & Winkler, H. (1995). Colonization of rootlets of some species of Rosaceae by actinomycetes, endotrophic mycorrhiza, and endophytic nematodes in a soil conducive to specific cherry replant disease. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 102, 63–68.

    Google Scholar 

  • Paulitz, T. C., & Linderman, R. G. (1989). Interactions between fluorescent pseudomonads and VA mycorrhizal fungi. The New Phytologist, 113, 37–45.

    Article  Google Scholar 

  • Paxton, J. D. (1981). Phytoalexins- A working redefinition. Journal of Phytopathology, 101(2), 106–109.

    Article  Google Scholar 

  • Perry, R. N., & Moens, M. (2011). Introduction to plant-parasitic nematodes; modes of parasitism. In T. Jones, L. Gheysen, & C. Fenoll (Eds.), Genomics and molecular genetics of plant–nematode interactions (pp. 3–20). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Peterson, R. L., Massicotte, H. B., & Melville, L. H. (2004). Mycorrhizas: Anatomy and cell biology. Ottawa: NRC Research Press.

    Google Scholar 

  • Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. H. (2013). Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews. Microbiology, 11, 789–799.

    Article  CAS  PubMed  Google Scholar 

  • Pozo, M. J., & Azcón-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 10, 393–398.

    Article  CAS  PubMed  Google Scholar 

  • Pozo, M. J., Azcon-Aguilar, C., Dumas-Gaudot, E., & Barea, J. M. (1999). β-1,3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Science, 141, 149–157.

    Article  CAS  Google Scholar 

  • Pozo, M. J., Cordier, C., Dumas-Gaudot, E., Gianinazzi, S., Barea, J. M., & Azcon-Aguilar, C. (2002). Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal of Experimental Botany, 53, 525–534.

    Article  CAS  PubMed  Google Scholar 

  • Prashanthi, S. K., Kulkarni, S., Sreenivasa, M. N., & Kulkarni, S. (1997). Integrated management of root rot disease of safflower caused by Rhizoctonia bataticola. Environment and Ecology, 15, 800–802.

    Google Scholar 

  • Puppi, G., Azcón, R., & Hoflich, G. (1994). Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. In S. Gianinazzi & H. Schouepp (Eds.), Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems (pp. 201–215). Basel: Birkhäuser.

    Chapter  Google Scholar 

  • Rambelli, A. (1973). The rhizosphere of mycorrhizae. In G. L. Marks & T. T. Koslowski (Eds.), Ectomycorrhizae (pp. 299–343). New York: Academic.

    Chapter  Google Scholar 

  • Ratnayake, M., Leonard, R. T., & Menge, J. A. (1978). Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhiza formation. The New Phytologist, 81, 543–552.

    Article  CAS  Google Scholar 

  • Ravnskov, S., & Jakobsen, I. (1995). Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. The New Phytologist, 129, 611–618.

    Article  Google Scholar 

  • Read, D. J., & Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems – A journey towards relevance? The New Phytologist, 157, 475–492.

    Article  PubMed  Google Scholar 

  • Rhodes, L. H., & Gerdemann, J. W. (1975). Phosphate uptake zones of mycorrhizal and non-mycorrhizal onions. The New Phytologist, 75, 555–561.

    Article  Google Scholar 

  • Salvioli, A., & Bonfante, P. (2013). Systems biology and omics tools: A cooperation for next-generation mycorrhizal studies. Plant Science, 203–204, 107–114.

    Article  PubMed  CAS  Google Scholar 

  • Schaarschmidt, S., Gresshoff, P. M., & Hause, B. (2013). Analyzing the soybeantranscriptomeduringautoregulationofmycorrhizationidentifies the transcription factorsGmNF-YA1a/bas positive regulators of arbuscular mycorrhization. Genome Biology, 14, R62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schonbeck, F., & Spengler, G. (1979). The detection of TMV in mycorrhizal cells of the tomato plant by means of immunofluorescence. Phytopathologische Zeitschrift, 94, 84–86.

    Article  Google Scholar 

  • Schreiner, R. P., & Bethlenfalvay, G. J. (1997). Mycorrhizae, biocides, and biocontrol: 3. Effects of three different fungicides on developmental stages of three AM fungi. Biology and Fertility of Soils, 24, 18–26.

    Article  CAS  Google Scholar 

  • Schübler, A., & Walker, C. (2011). Evolution of the ‘plant-symbiotic’ fungal phylum, Glomeromycota. In S. Póggeler & J. Wostemeyer (Eds.), Evolution of fungi and fungal like organisms (pp. 163–185). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Schübler, A., Gehrig, H., Schwarzott, D., & Walker, E. (2001). Analysis of partial Glomales SSU rRNA gene sequences: Implications for primer design and phylogeny. Mycological Research, 105, 5–15.

    Article  Google Scholar 

  • Shalaby, A. M., & Hanna, M. M. (1998). Preliminary studies on interactions between VA mycorrhizal fungus Glomus mosseae, Bradyrhizobium japonicum and Pseudomonas syringae in soybean plants. Acta Microbiologica Polonica, 47, 385–391.

    Google Scholar 

  • Sharma, D. D., Govindaiah, S., Katiyar, R. S., Das, P. K., Janardhan, L., Bajpai, A. K., Choudhry, P. C., & Janardhan, L. (1995). Effect of VA-mycorrhizal fungi on the incidence of major mulberry diseases. Indian Journal of Sericulture, 34, 34–37.

    Google Scholar 

  • Sharma, S., Dohroo, N. P., & Sharma, S. (1997). Management of ginger yellows through organic amendment, fungicide seed treatment and biological methods. Indian Cocoa Arecanut Spice Journal, 21, 29–30.

    Google Scholar 

  • Shaul, O., Galili, S., Volpin, H., Ginzberg, I., Elad, Y., Chet, I., & Kapulnik, Y. (1999). Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Molecular Plant-Microbe Interactions, 12, 1000–1007.

    Article  CAS  PubMed  Google Scholar 

  • Sikora, R. A. (1997). Biological system management in the rhizosphere an inside-out/outside-in perspective. Mededelingen – Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, Universiteit Gent, 62, 105–112.

    Google Scholar 

  • Sikora, R. A., Pocasangre, L., FeldeZum, A., Niere, B., Vu, T. T., & Dababat, A. A. (2008). Mutualistic endophytic fungi and in planta suppressiveness to plant-parasitic nematodes. Biological Control, 46, 15–23.

    Article  Google Scholar 

  • Singh, L. P., Gill, S. S., & Tuteja, N. (2011). Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signaling & Behavior, 6, 175–191.

    Article  CAS  Google Scholar 

  • Slezack, S., Dumas-Gaudot, E., Paynot, M., & Gianinazzi, S. (2000). Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces euteiches. Molecular Plant-Microbe Interactions, 13, 238–241.

    Article  CAS  PubMed  Google Scholar 

  • Smith, F. A., & Smith, S. E. (2011). What is the significance of the arbuscular mycorrhizal colonization of many economically important crop plants? Plant and Soil, 348, 63–79.

    Article  CAS  Google Scholar 

  • Smith, S. E., & Smith, F. A. (2012). Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 104, 1–13.

    Article  PubMed  Google Scholar 

  • Sood, G. S. (2003). Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiology Ecology, 45, 219–227.

    Article  CAS  Google Scholar 

  • Srnith, S. E., & Read, D. I. (2008). Mycorrhizal symbiosis (3rd ed.). New York: Elsevier/Academic.

    Google Scholar 

  • St-Arnaud, M., Hamel, C., Vimard, B., Caron, M., & Fortin, J. A. (1995). Altered growth of Fusarium oxysporum f. sp. chrysanthemiin an in vitro dual culture system with the vesicular ar366buscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza, 5, 431–438.

    Google Scholar 

  • Steinkellner, S., Lendzemo, V., Langer, I., Schweiger, P., Khaosaad, T., Toussaint, J.-P., et al. (2007). Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules, 12, 1290–1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoffelen, R., Verlinden, R., Xuyen, N. T., DeWaele, D., & Swennen, R. (2000). Host plant response of Eumusa and Australimusa bananas(Musa spp.) to migratory endoparasitic and root-knot nematodes. Nematology, 2, 907–916.

    Article  Google Scholar 

  • Sundaresan, P., Raja, N. U., & Gunasekaran, P. (1993). Induction and accumulation of phytoalexins in cowpea roots infected with a mycorrhizal fungus Glomus fasciculatum and their resistance to Fusarium wilt disease. Journal of Biosciences, 18, 291–301.

    Article  CAS  Google Scholar 

  • Takahashi, T., Katano, H., & Yoshikawa, N. (1994). Evidence for vesicular-arbuscular mycorrhizal infection in viroid-infected hop root tissues. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 101, 267–271.

    CAS  Google Scholar 

  • Tisdall, J. M., & Oades, J. M. (1979). Stabilization of soil aggregates by the root systems of rye grass. Australian Journal of Soil Research, 17, 429–441.

    Article  Google Scholar 

  • Torres-Barragan, A., Zavaleta-Mejia, E., Gonzalez-Chavez, C., & Ferrera-Cerrato, R. (1996). The use of arbuscular mycorrhizae to control onion white rot (Sclerotium cepivorum Berk.) underfield conditions. Mycorrhiza, 6, 253–258.

    Article  Google Scholar 

  • Trotta, A., Varese, G. C., Gnavi, E., Fusconi, A., Sampo, S., & Berta, G. (1996). Interactions between the soil borne pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant and Soil, 185, 199–209.

    Article  CAS  Google Scholar 

  • van der Heijden, M. G. A., Martin, F. M., Selosse, M. A., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: The past, the present, and the future. The New Phytologist, 205, 1406–1423.

    Article  CAS  PubMed  Google Scholar 

  • VanEtten, H. D., Sandrock, R., Wasmann, C., Soby, S., Mccluskey, K., & Wang, P. (1995). Detoxification of phytoanticipins and phytoalexins by phytopathogenic fungi. Canadian Journal of Botany, 73, 518–525.

    Article  Google Scholar 

  • Vierheilig, H., Steinkellner, S., & Khaosaad, T. (2008). The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: One mechanism, two effects? In A. Varma (Ed.), Mycorrhiza (pp. 307–320). Berlin: Springer.

    Chapter  Google Scholar 

  • Vinayak, K., & Bagyaraj, D. J. (1990). Vesicular-arbuscular mycorrhizae screened for Troyer citrange. Biology and Fertility of Soils, 9, 311–314.

    Article  Google Scholar 

  • Vos, C. (2012). Arbusculaire mycorrhizenschimmels in de biocontrole van plantenparasitaire nematoden. Leuven: University of Leuven (KULeuven).

    Google Scholar 

  • Vos, C. M., Yang, Y., DeConinck, B., & Cammue, B. P. A. (2014). Fungal(-like) biocontrol organisms in tomato disease control. Biological Control, 74, 65–81.

    Article  Google Scholar 

  • Waschkies, C., Schropp, A., & Marschner, H. (1994). Relations between grapevine replant disease and root colonization of grapevine (Vitis sp.) by fluorescent pseudomonads and endomycorrhizal fungi. Plant and Soil, 162, 219–227.

    Article  Google Scholar 

  • Wesemael, W., Viaene, N., & Moens, M. (2011). Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology, 13, 3–16.

    Article  Google Scholar 

  • Wyss, P., Boller, T., & Wiemken, A. (1991). Phytoalexin response is elicited by a pathogen (Rhizoctonia solani) but not by a mycorrhizal fungus (Glomus mosseae) in soybean roots. Cellular and Molecular Life Sciences, 47(4), 395–399.

    Article  CAS  Google Scholar 

  • Xavier, L. J. C. (L. Johnny). (1999). Effects of interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum on pea and lentil. PhD dissertation. Saskatoon: University of Saskatchewan

    Google Scholar 

  • Xavier, L. J. C., & Germida, J. J. (2003). Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biology and Biochemistry, 35, 471–478.

    Article  CAS  Google Scholar 

  • Yang, H., Zhang, Q., Dai, Y., Liu, Q., Tang, J., Bian, X., et al. (2014). Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: A meta-analysis. Plant and Soil, 389, 361–374.

    Article  CAS  Google Scholar 

  • Zamioudis, C., & Pieterse, C. M. J. (2012). Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interactions, 25, 139–150.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Director, University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra (Haryana, India) and Management of Ambala College of Engineering and Applied Research, Ambala (Haryana, India), for providing necessary infrastructure to carry out literature search.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, P., Pundir, R.K. (2019). Biocontrol of Soil Phytopathogens by Arbuscular Mycorrhiza – A Review. In: Varma, A., Choudhary, D. (eds) Mycorrhizosphere and Pedogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-13-6480-8_14

Download citation

Publish with us

Policies and ethics