Skip to main content

Transcriptomic Studies Revealing Enigma of Plant-Pathogen Interaction

  • Chapter
  • First Online:
Molecular Aspects of Plant-Pathogen Interaction

Abstract

Plants being sessile organisms encounter numerous attacks by pathogens and pests with different lifestyles and modes of attack. In response, plants undergo cellular reprogramming in order to perceive these attacks and activate specific defense pathways. Plants possess extensive regulatory mechanisms which come into play during defense responses so as to coordinate the perception and activation of pathways specific to the type of pathogen in question. Further, many small molecule hormones play pivotal role in defense pathways and cross communicate with each other, thereby helping plant to finely regulate its response. This suggests that plant defense is controlled by intricate transcriptional regulatory network, therefore urging the need to develop genome- and transcriptome-based strategies to unravel these mechanisms. Transcriptomics has fuelled a better understanding of many biological processes and can therefore be used for understanding the host-pathogen interactions as well. Transcriptome analysis can provide more comprehensive picture of the pathways that come into play in response to different pathogens and also decipher the cascade of transcriptional events involved. This may also help in identifying the regulatory nodes in the transcriptional networks and understanding the hierarchical relationship between them. These resources in turn will help in understanding of the complex architecture of plant/host defense system which will have a long-term impact and value for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aerts S, Haeussler M, van Vooren S, Griffith OL, Hulpiau P, Jones SJ, Montgomery SB, Bergman CM (2008) Text-mining assisted regulatory annotation. Genome Biol 9:R31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akiyama K, Chikayama E, Yuasa H, Shimada Y, Tohge T, Shinozaki K, Hirai MY, Sakurai T, Kikuchi J, Saito K (2008) PRIMe: a web site that assembles tools for metabolomics and transcriptomics. In Silico Biol 8:0027

    Google Scholar 

  • An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker JR, Guo H (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Bancroft I (2013) Association genetics and more from crop transcriptome sequences ISB news report

    Google Scholar 

  • Bethke G, Unthan T, Uhrig JF, Poschl Y, Gust AA, Scheel D, Lee J (2009) Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. PNAS, USA 106:8067–8072

    Article  CAS  Google Scholar 

  • Bodenhausen N, Reymond P (2007) Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol Plant Microb Interact 20:1406–1420

    Article  CAS  Google Scholar 

  • Boguski MS, Lowe TM, Tolstoshev CM (1993) dbEST – database for “expressed sequence tags”. Nat Genet 10:369–371

    Article  Google Scholar 

  • Brady SM, Long TA, Benfey PN (2006) Unraveling the dynamic transcriptome. Plant Cell 18(9):2101–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeygunawardena N, Holloway E, Kapushesky M, Kemmeren P, Lara GG, Oezcimen A, Rocca-Serra P, Sansone SA (2003) ArrayExpress – a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 31:68–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodersen P, Petersen M, Nielsen HB, Zhu S, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–546

    Article  CAS  PubMed  Google Scholar 

  • Buscaill P, Rivas S (2014) Transcriptional control of plant defence responses. Curr Opin Plant Biol 20C:35–46

    Article  CAS  Google Scholar 

  • Buschiazzo E, Gemmell NJ (2006) The rise, fall and renaissance of microsatellites in eukaryotic genomes. BioEssays 28:1040–1050

    Article  CAS  PubMed  Google Scholar 

  • Cai M, Qiu D, Yuan T, Ding X, Li H, Duan L, Xu C, Li X, Wang S (2008) Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant Cell Environ 31(1):86–96

    CAS  PubMed  Google Scholar 

  • Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49:825–837

    Article  CAS  PubMed  Google Scholar 

  • Cao WL, Chu RZ, Zhang Y, Luo J, Su YY et al (2015) OsJAMyb, a R2R3-type MYB transcription factor, enhanced blast resistance in transgenic rice. Physiol Mol Plant Pathol 83:79–99

    Google Scholar 

  • Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, Kodira CD, Huang S, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.) BMC Genomics 11:569–586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang C (2003) Ethylene signaling: the MAPK module has finally landed. Trends Plant Sci 8:365–368

    Article  CAS  PubMed  Google Scholar 

  • Chang WC, Lee TY, Huang HD, Huang HY, Pan RL (2008) PlantPAN: plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics 9:561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129:706–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Singh KB (1999) The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J 19:667–677

    Article  CAS  PubMed  Google Scholar 

  • Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung HS, Koo AJK, Gao X, Jayanty S, Thines B, Jones AD et al (2008) Regulation and function of ArabidopsisJASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol 146:952–964. https://doi.org/10.1104/pp.107.115691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cominelli E et al (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Bari RP, Stitt M, Scheible W, Udvardi MK (2004) Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific gene. Plant J 38:366–379

    Article  CAS  PubMed  Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RMP et al (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microb Interact 18:923–937

    Article  CAS  Google Scholar 

  • De Vos M, Van Zaanen W, Koornneef A, Korzelius JP, Dicke M, Van Loon LC, Pieterse CMJ (2006) Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol 142:352–363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dey N, Sarkar S, Acharya S, Maiti IB (2015) Synthetic promoters in planta. Planta 242:1077–1094

    Article  CAS  PubMed  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93:6025–6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T (2008) Identifying functional modules in protein–protein interaction networks: an integrated exact approach. Bioinformatics 24(13):i223–i231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51(1):21–37

    Article  CAS  PubMed  Google Scholar 

  • Dong Q, Schlueter SD, Brendel V (2004) PlantGDB, plant genome database and analysis tools. Nucleic Acids Res 32:354–359

    Article  CAS  Google Scholar 

  • Dou D, Zhou JM (2012) Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host Microbe 12(4):484–495

    Article  CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C et al (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14(7):1457–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gough C, Hemon P, Tronchet M, Lacomme C, Marco Y, Roby D (1995) Developmental and pathogen-induced activation of an msr gene, str246C, from tobacco involves multiple regulatory elements. Mol Gen Genet 247(3):323–337

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Rustgi S (2004) Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genom 4(3):139–162

    Article  CAS  Google Scholar 

  • Harlizius B, van Wijk R, Merks JW (2004) Genomics for food safety and sustainable animal production. J Biotechnol 113(1–3):33–42

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119

    Article  PubMed  CAS  Google Scholar 

  • Hocquette JF (2005) Where are we in genomics. J Physiol Pharmacol 56:37–70

    PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Higo H (1998) PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res 26(1):358–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himmelbach A et al (2010) Promoters of the barley germin-like GER4 gene cluster enable strong transgene expression in response to pathogen attack. Plant Cell 22:937–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendrop F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform e420747. doi:https://doi.org/10.1155/2008/420747

  • Hugot K, Riviere MP, Moreilhon C, Dayem MA, Cozzitorto J, Arbiol G, Barbry P, Weiss C, Galiana E (2004) Coordinated regulation of genes for secretion in tobacco at late developmental stages: association with resistance against oomycetes. Plant Physiol 134:858–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang SH, Lee IA, Yie SW, Hwang DJ (2008) Identification of an OsPR10a promoter region responsive to salicylic acid. Planta 227:1141–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibraheem F, Gaffoor I, Tan Q, Shyu CR, Chopra SA (2015) Sorghum MYB transcription factor induces 3-deoxyanthocyanidins and enhances resistance against leaf blights in maize. Molecules 20(2):2388–2404

    Article  PubMed  CAS  Google Scholar 

  • Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB gene family. Plant Mol Biol 41:577–585

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Zhang H, Kong L, Gao G, Luo J (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:D1182–D1187

    Article  CAS  PubMed  Google Scholar 

  • Jin J, He K, Tang X, Li Z, Lv L, Zhao Y, Luo J, Gao G (2015) An Arabidopsis transcriptional regulatory map reveals distinct functional and evolutionary features of novel transcription factors. Mol Biol Evol 32(7):1767–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson ET, Dowd PF (2004) Differentially enhanced insect resistance, at a cost, in Arabidopsis thaliana constitutively expressing a transcription factor of defensive metabolites. J Agric Food Chem 52:5135–5138

    Article  CAS  PubMed  Google Scholar 

  • Katiyar-Agarwal S, Jin H (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48:225–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD (2008) The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res 18:30–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K-C, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20:2357–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirsch C, Takamiya-Wik M, Schmelzer E, Hahlbrock K, Somssich IEA (2001) novel regulatory element involved in rapid activation of parsley ELI7 gene family members by fungal elicitor or pathogen infection. Mol Plant Pathol 1(4):243–251

    Google Scholar 

  • Koo S et al (2009) Identification and characterization of alternative promoters of therice MAP kinase gene OsBWMK1. Mol Cells 27:467–473

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk N, Li M, Wittek F, Reid N, Singh R, Shirley N, Ismagul A, Eliby S, Johnson A, Milligan AS, Hrmova M, Langridge P, Lopato S (2010) Defensin promoters as potential tools for engineering dis-ease resistance in cereal grains. Plant Biotechnol J 8:47–64

    Article  CAS  PubMed  Google Scholar 

  • Kuhn K, Baker SC, Chudin E, Lieu MH, Oeser S, Bennett H, Rigault P, Barker D, McDaniel TK, Chee MS (2004) A novel, high-performance random array platform for quantitative gene expression profiling. Genome Res 14:2347–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lackman P, Gonzalez-Guzman M, Tilleman S et al (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. PNAS, USA 108:5891–5896

    Article  CAS  Google Scholar 

  • Lai Z, Vinod KM, Zheng Z, Fan B, Chen Z (2008) Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol 8:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16:223–233

    Article  CAS  PubMed  Google Scholar 

  • Lee TI, Young RA (2000) Transcription of eukaryotic protein-coding genes. Ann Rev Genet 34:77–137

    Article  CAS  PubMed  Google Scholar 

  • Leon-Reyes A, Spoel SH, De Lange ES, Abe H, Kobayashi M, Tsuda S, Millenaar FF, Welschen RAM, Ritsema T, Pieterse CMJ (2009) Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiol 149:1797–1809

    Google Scholar 

  • Lescot M, Déhais P, Gert Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis LA, Polanski K, Torres-Zabala M et al (2015) Transcriptional dynamics driving MAMP-triggered immunity and pathogen effector-mediated immunosuppression in Arabidopsis leaves following infection with Pseudomonas syringae pv tomatoDC3000. Plant Cell 27:3038–3064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  CAS  PubMed  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipsick JS (1996) One billion years of Myb. Oncogene 13:223–235

    CAS  PubMed  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2004) Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J 38(5):800–809

    Article  CAS  PubMed  Google Scholar 

  • Liu XQ, Bai XQ, Qian Q, Wang XJ, Chen MS, Chu CC (2005) OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Res 15:593–603

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Lü B, Wang X, Zhang C, Zhang S, Qian J, Chen L, Shi H, Dong H (2010) Thirty-seven transcription factor genes differentially respond to a hairpin protein and affect resistance to the green peach aphid in Arabidopsis. J Biosci 35:435–450

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Yang L, Zhou X, Zhou M, Lu Y, Ma L, Ma H, Zhang Z (2013) Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. J Exp Bot 64(8):2243–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WD, Liu JL, Triplett L, Leach JE, Wang GL (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213–241

    Article  CAS  PubMed  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Venisse JS, Reynoird JP, Chevreau E (2003) Activation of three pathogen-inducible promoters of tobacco in transgenic pear (Pyrus communis L.) after abiotic and biotic elicitation. Planta 216(5):802–814

    CAS  PubMed  Google Scholar 

  • Marshall E (2004) Getting the noise out of gene arrays. Science 306:630–631

    Article  CAS  PubMed  Google Scholar 

  • Martini N, Egen M, Rüntz I, Strittmatter G (1993) Promoter sequences of a potato pathogenesis-related gene mediate transcriptional activation selectively upon fungal infection. Mol GenGenet 236(2):179–186

    Article  CAS  Google Scholar 

  • Mathers JC (2004) What can we expect to learn from genomics? Proc Nutr Soc 63:1–4

    Article  PubMed  Google Scholar 

  • McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengiste T et al (2003) The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15:2551–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, KhN I, Latif MA (2013) A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int J Mol Sci 14:22499–22528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Molina C, Grotewold E (2005) Genome wide analysis of Arabidopsis core promoters. BMC Genomics 6:25. https://doi.org/10.1186/1471-2164-1186-1125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthamilarasan M, Khandelwal R, Yadav CB, Bonthala VS, Khan Y, Prasad M (2014) Identification and molecular characterization of MYB transcription factor superfamily in C4 model plant foxtail millet (Setaria italica L.) PLoS One 9(10):e109920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narusaka Y et al (2003) The cDNA microarray analysis using an Arabidopsis pad3 mutant reveals the expression profiles and classification of genes induced by Alternaria brassicicola attack. Plant Cell Physiol 44:377–387

    Article  CAS  PubMed  Google Scholar 

  • Obayashi T, Kinoshita K, Nakai K, Shibaoka M, Hayashi S, Saeki M, Shibata D, Saito K, Ohta H (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res 35:D863–D869

    Article  CAS  PubMed  Google Scholar 

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activ-ity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  CAS  PubMed  Google Scholar 

  • Ouyang S, Buell CR (2004) The TIGR plant repeat databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:D360–D363

    Google Scholar 

  • Olivas NHD, Coolen S, Huang P et al (2016) Effect of prior drought and pathogen stress on Arabidopsis transcriptome changes to caterpillar herbivory. New Phytol 210(4):1344–1356

    Article  CAS  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 50(4):1648–1655

    Article  CAS  Google Scholar 

  • Peng J, Bao Z, Li P, Chen G, Wang J, Dong H (2004) HarpinXoo and its functional domains activate pathogen-inducible plant promoters in Arabidopsis. Acta Bot Sin 46:1083–1090

    CAS  Google Scholar 

  • Périer RC, Junier T, Bucher P (1998) The eukaryotic promoter database EPD. Nucleic Acids Res 26:353–357

    Article  Google Scholar 

  • Pontier D, Godiard L, Marco Y, Roby D (1994) hsr203J, a tobacco gene whose activation is rapid, highly localized and specific for incompatible plant/pathogen interactions. Plant J 5(4):507–521

    Article  CAS  PubMed  Google Scholar 

  • Pontius JU, Wagner L, Schuler GD (2003) UniGene: a unified view of the transcriptome. In: The NCBI handbook. Bethesda. http://www.ncbi.nlm.nih.gov/

  • Puhringer H, Dieter Moll D, Hoffmann-Sommergruber K, Watillon B, Katinger H, Machado MLC (2000) The promoter of an apple Ypr10 gene, encoding the major allergen Mal d 1, is stress-and pathogen-inducible. Plant Sci 152:35–50

    Article  CAS  Google Scholar 

  • Qiu D, Xiao J, Xie W, Liu H, Li X, Xiong L, Wang S (2008) Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol Plant 1:538–551

    CAS  PubMed  Google Scholar 

  • Qu LJ, Zhu YX (2006) Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. Curr Opin Plant Biol 9(5):544–549

    Article  CAS  PubMed  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5(2):94–100

    Article  CAS  PubMed  Google Scholar 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    Article  CAS  PubMed  Google Scholar 

  • Ranjan A, Ichihashi Y, Farhi M, Zumstein K, Townsley B, David-Schwartz R, Sinha NR (2014) De novo assembly and characterization of the transcriptome of the parasitic weed dodder identifies genes associated with plant parasitism. Plant Physiol 166:1186–1199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reymond P, Bodenhausen N, Van Poecke RMP, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudd S (2003) Expressed sequence tags: alternative or complement to whole genome sequences? Trends Plant Sci 8(7):321–329

    Article  CAS  PubMed  Google Scholar 

  • Rudd S, Mewes HW, Mayer KF (2003) Sputnik: a database platform for comparative plant genomics. Nucleic Acids Res 31:128–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15(20):5690–5700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samson D, Legeai F, Karsenty E, Reboux S, Veyrieras JB, Just J, Barillot E (2003) GénoPlante-info (GPI): a collection of databases and bioinformatics resources for plant genomics. Nucleic Acids Res 31(1):179–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardesai N, Laluk K, Mengiste T, Gelvin S (2014) The Arabidopsis Myb transcription factor MTF1 is a unidirectional regulator of susceptibility to Agrobacterium. Plant Signal Behav 30:9

    Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene-expression patterns with a complementary- DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  • Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant-microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30(3):177–184

    Article  CAS  PubMed  Google Scholar 

  • Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11:90–96

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Park CM (2010) MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol 186:471–483

    Article  CAS  PubMed  Google Scholar 

  • Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) PlantProm: a database of plant promoter sequences. Nucleic Acids Res 31(1):114–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Thangasamy S, Chen PW, Lai MH, Chen J, Jauh GY (2012) Rice LGD1 contain-ing RNA binding activity affects growth and development through alternative promoters. Plant J 71:288–302

    Article  CAS  PubMed  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665

    Article  CAS  PubMed  Google Scholar 

  • Toufighi K, Brady SM, Austin R, Ly E, Provart NJ (2005) The botany array resource: e-Northerns, expression angling, and promoter analyses. Plant J 43:153–163

    Article  CAS  PubMed  Google Scholar 

  • Tsuda K, Katagiri F (2010) Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr Opin Plant Biol 13:459–465

    Article  CAS  PubMed  Google Scholar 

  • Tsuda K, Somssich IE (2015) Transcriptional networks in plant immunity. New Phytol 206(3):932–947

    Article  CAS  PubMed  Google Scholar 

  • Turck F, Zhou A, Somssich IE (2004) Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to its native promoter and the defense related gene PcPR1-1 in parsley. Plant Cell 16:2573–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Löcht U, Meier I, Hahlbrock K, Somssich IE (1990) A 125 bp promoter fragment is sufficient for strong elicitor-mediated gene activation in parsley. EMBO J 9(9):2945–2950

    PubMed  PubMed Central  Google Scholar 

  • van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • van Verk MC, Bol JF, Linthorst HJM (2011) Prospecting for genes involved in transcriptional regulation of plant defenses, a bioinformatics approach. BMC Plant Biol 11:88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Verk MC, Hickman R, Pieterse CMJ, Van Wees SCM (2013) RNA-seq: revelation of the messengers. Trends Plant Sci 18:175–179

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55

    Article  CAS  PubMed  Google Scholar 

  • Vincentz M, Cara FAA, Okura VK et al (2004) Evaluation of monocot and eudicot divergence using the sugarcane transcriptome. Plant Physiol 134:951–959. https://doi.org/10.1104/pp.103.033878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Yang P, Fan B, Chen Z (1998) An oligo selection procedure for identification of sequence-specific DNA-binding activities associated with plant defense. Plant J 16:515–552

    Article  CAS  PubMed  Google Scholar 

  • Wellmer F, Alves-Ferreira M, Dubois A, Riechmann JL, Meyerowitz EM (2006) Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet 2(7):e117. https://doi.org/10.1371/journal.pgen.0020117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wen N, Chu Z, Wang S (2003) Three types of defense-responsive genes are involved in resistance to bacterial blight and fungal blast diseases in rice. Mol Genet Genomics 269:331–339

    Article  CAS  PubMed  Google Scholar 

  • Westermann AJ, Förstner KU, Amman F, Barquist L, Chao Y, Schulte LN, Müller L, Reinhardt R, Stadler PF, Vogel J (2016) Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 529(7587):496–501

    Article  CAS  PubMed  Google Scholar 

  • Wingender E, Dietze P, Karas H, Knüppel R (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 24(1):238–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Yu Y, Ding J, Hua Z, Wang Y (2010) Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta 231:475–487

    Article  CAS  PubMed  Google Scholar 

  • Yang HJ, Yang SH, Li YQ, Hua J (2007) The Arabidopsis BAP1 and BAP2 genes are general inhibitors of programmed cell death. Plant Physiol 145:135–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Peng Y, Guo Z (2008) Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res 18:508

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Liu X, Wang X, Zhou M, Zhou X, Ye X, Wei X (2012) An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. New Phytol 196(4):1155–1170

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Senalik D, McCown BH, Zeldin EL, Speers J, Hyman J, Bassil N, Hummer K, Simon PW, Zalapa JE (2012) Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry (Vaccinium macrocarpon Ait.) Theor Appl Genet 124(1):87–96

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts agrobacterium-mediated transformation. Cell 125:749–760

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasheeman Ashraf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, Z.A., Ashraf, N. (2018). Transcriptomic Studies Revealing Enigma of Plant-Pathogen Interaction. In: Singh, A., Singh, I. (eds) Molecular Aspects of Plant-Pathogen Interaction. Springer, Singapore. https://doi.org/10.1007/978-981-10-7371-7_10

Download citation

Publish with us

Policies and ethics