Skip to main content
Log in

Plant Defense Responses in Medicago truncatula Unveiled by Microarray Analysis

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Plant defense responses are made up of broad plant defense mechanisms that involve an integrated signaling pathway. Powdery mildew caused by Erysiphe pisi is one of the most important diseases of pea. However, the mechanisms and pathways involved in the resistance against E. pisi are yet undiscovered. We studied the transcriptome of two Medicago truncatula genotypes, the powdery mildew susceptible commercial variety Parabinga and the resistant accession SA1306, at 4 and 12 h after E. pisi infection, using Mt16kOLI1 microarrays. Four hundred and forty six probes were differentially expressed between the two M. truncatula genotypes along the time points studied. RNA accumulation patterns suggest that the most prominent responses to pathogen infection occur at early infection stages. Most of the regulated genes are related to cell wall reinforcement, flavonoid, and phenylpropanoid biosynthesis. In addition, pathogenesis-related proteins and signaling pathways controlled by jasmonic acid and salicylic acid were found to be regulated during pathogen infection. This study provides the first comprehensive view of the genes and pathways activated in the E. pisi/M. truncatula pathosystem, allowing the identification of targets against this important disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ameline-Torregrosa C, Dumas B, Krajinski F, Esquerre-Tugaye M-T, Jacquet C (2006) Transcriptomic approaches to unravel plant–pathogen interactions in legumes. Euphytica 147:25–36

    Article  CAS  Google Scholar 

  • Ameline-Torregrosa C, Cazaux M, Danesh D, Chardon F, Cannon SB, Esquerré-Tugayé M-T, Dumas B, Young ND, Samac DA, Huguet T, Jacquet C (2008) Genetic dissection of resistance to anthracnose and powdery mildew in Medicago truncatula. Mol Plant-Microbe Interact 21:61–69

    Article  CAS  PubMed  Google Scholar 

  • Barilli E, Rubiales D, Gjetting T, Lyngkjaer MF (2014) Differential gene transcript accumulation in peas in response to powdery mildew (Erysiphe pisi) attack. Euphytica 195:1–16

    Article  Google Scholar 

  • Bélanger RR, Bushnell WR, Aleid JD, Carver TLW (2002) The powdery mildews: a comprehensive treatise. APS Press, St Paul

    Google Scholar 

  • Brady JD, Fry SC (1997) Formation of di-isodityrosine and loss of isodityrosine in the cell walls of tomato cell-suspension cultures treated with fungal elicitors or H2O2. Plant Physiol 115:87–92

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bravo JM, Campo S, Murillo I, Coca M, San Segundo B (2003) Fungus- and wound-induced accumulation of mRNA containing a class II chitinase of the pathogenesis-related protein 4 (PR-4) family of maize. Plant Mol Biol 52:745–759

    Article  CAS  PubMed  Google Scholar 

  • Brisson LF, Tenhaken R, Lamb C (1994) Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6:1703–1712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Wu H-M (2011) THESEUS 1, FERONIA and relatives: a family of cell wall-sensing receptor kinases? Curr Opin Plant Biol 14:632–641

    Article  CAS  PubMed  Google Scholar 

  • Cook DR (1999) Medicago truncatula—a model in the making! Curr Opin Plant Biol 2:301–304

    Article  CAS  PubMed  Google Scholar 

  • De Hoff P, Brill L, Hirsch A (2009) Plant lectins: the ties that bind in root symbiosis and plant defense. Mol Genet Genomics 282:1–15

    Article  PubMed Central  PubMed  Google Scholar 

  • Demidenko NV, Logacheva MD, Penin AA (2011) Selection and validation of reference genes for quantitative real-time PCR in buckwheat (Fagopyrum esculentum) based on transcriptome sequence data. PLoS One 6:e19434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dita MA, Die JV, Román B, Krajinski F, Küster H, Moreno MT, Cubero JI, Rubiales D (2009) Gene expression profiling of Medicago truncatula roots in response to the parasitic plant Orobanche crenata. Weed Res 49:66–80

    Article  CAS  Google Scholar 

  • Dixon D, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3:3004.1–3004.10

    Article  Google Scholar 

  • Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F (2003) EMMA: a platform for consistent storage and efficient analysis of microarray data. J Biotechnol 106:135–146

    Article  CAS  PubMed  Google Scholar 

  • Eichmann R, Hückelhoven R (2008) Accommodation of powdery mildew fungi in intact plant cells. J Plant Physiol 165:5–18

    Article  CAS  PubMed  Google Scholar 

  • Epple P, Mack AA, Morris VRF, Dangl JL (2003) Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins. Proc Natl Acad Sci U S A 100:6831–6836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Etzler ME (1998) Oligosaccharide signaling of plant cells. J Cell Biochem Suppl 72:123–128

    Article  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  CAS  PubMed  Google Scholar 

  • Falloon RE, Viljanen-Rollinson SLH (2001) Powdery mildew. Compendium of pea diseases and pests. APS Press, St. Paul

    Google Scholar 

  • Fernández-Aparicio M, Pérez-de-Luque A, Prats E, Rubiales D (2008) Variability of interactions between barrel medic (Medicago truncatula) genotypes and Orobanche species. Ann Appl Biol 153:117–126

    Article  Google Scholar 

  • Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen Z, Batista LM, Duarte J, Borges A, Teixeira AR (2007) The role of plant defence proteins in fungal pathogenesis. Mol Plant Pathol 8:677–700

    Article  CAS  PubMed  Google Scholar 

  • Fondevilla S, Rubiales D (2012) Powdery mildew control in pea. A review. Agron Sustain Dev 32:401–409

    Article  CAS  Google Scholar 

  • Fondevilla S, Torres AM, Moreno MT, Rubiales D (2007) Identification of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breed Sci 57:181–184

    Article  Google Scholar 

  • Fondevilla S, Rubiales D, Moreno M, Torres A (2008) Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea. Mol Breed 22:193–200

    Article  CAS  Google Scholar 

  • Fondevilla S, Küster H, Krajinski F, Cubero J, Rubiales D (2011) Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology. BMC Genomics 12:28

    PubMed Central  CAS  PubMed  Google Scholar 

  • Foster-Hartnett D, Danesh D, Peñuela S, Sharopova N, Endre G, Vandenbosch KA, Young ND, Samac DA (2007) Molecular and cytological responses of Medicago truncatula to Erysiphe pisi. Mol Plant Pathol 8:307–319

    Article  CAS  PubMed  Google Scholar 

  • Franken P, Gnädinger F (1994) Analysis of parsley arbuscular endomycorrhiza: infection development and mRNA levels of defense related genes. Mol Plant-Microbe Interact 7:612–620

    Article  CAS  Google Scholar 

  • Govers F, Harmsen H, Heidstra R, Michielsen P, Prins M, Kammen A, Bisseling T (1991) Characterization of the pea ENOD12B gene and expression analyses of the two ENOD12 genes in nodule, stem and flower tissue. Mol Gen Genet 228:160–166

    Article  CAS  PubMed  Google Scholar 

  • Grant M, Mansfield J (1999) Early events in host-pathogen interactions. Curr Opin Plant Biol 2:312–319

    Article  CAS  PubMed  Google Scholar 

  • He Z, Wang Z-Y, Li J, Zhu Q, Lamb C, Ronald P, Chory J (2000) Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288:2360–2363

    Article  CAS  PubMed  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  PubMed Central  PubMed  Google Scholar 

  • Hématy K, Cherk C, Somerville S (2009) Host–pathogen warfare at the plant cell wall. Curr Opin Plant Biol 12:406–413

    Article  PubMed  Google Scholar 

  • Hennig J, Malamy J, Grynkiewicz G, Indulski J, Klessig DF (1993) Interconversion of the salicylic acid signal and its glucoside in tobacco. Plant J 4:593–600

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method of growing plants without soil. Calif Agric Exp Station Circ 347:1–32

    Google Scholar 

  • Hohnjec N, Vieweg MF, Puhler A, Becker A, Küster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hougaard BK, Madsen LH, Sandal N, de Carvalho Moretzsohn M, Fredslund J, Schauser L, Nielsen AM, Rohde T, Sato S, Tabata S, Bertioli DJ, Stougaard J (2008) Legume anchor markers link syntenic regions between Phaseolus vulgaris, Lotus japonicus, Medicago truncatula and Arachis. Genetics 179:2299–2312

    Article  PubMed Central  PubMed  Google Scholar 

  • Hückelhoven R (2005) Powdery mildew susceptibility and biotrophic infection strategies. FEMS Microbiol Lett 245:9–17

    Article  PubMed  Google Scholar 

  • Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585

    Article  CAS  PubMed  Google Scholar 

  • Joung J-Y, Mangai Kasthuri G, Park J-Y, Kang W-J, Kim H-S, Yoon B-S, Joung H, Jeon J-H (2003) An overexpression of chalcone reductase of Pueraria montana var. lobata alters biosynthesis of anthocyanin and 5′-deoxyflavonoids in transgenic tobacco. Biochem Biophys Res Commun 303:326–331

    Article  CAS  PubMed  Google Scholar 

  • Journet EP, van Tuinen D, Gouzy J, Crespeau H, Carreau V, Farmer MJ, Niebel A, Schiex T, Jaillon O, Chatagnier O, Godiard L, Micheli F, Kahn D, Gianinazzi-Pearson V, Gamas P (2002) Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Res 30:5579–5592

    Article  PubMed Central  PubMed  Google Scholar 

  • Kader J-C (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  CAS  PubMed  Google Scholar 

  • Kakar K, Wandrey M, Czechowski T, Gaertner T, Scheible WR, Stitt M, Torres-Jerez I, Xiao YL, Redman JC, Wu HC, Cheung F, Town CD, Udvardi MK (2008) A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Methods 4:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G, Panstruga R, Grossniklaus U (2010) Conserved molecular components for pollen tube reception and fungal invasion. Science 330:968–971

    Article  CAS  PubMed  Google Scholar 

  • Kessmann H, Choudhary AD, Dixon RA (1990) Stress responses in alfalfa (Medicago sativa L.) III. Induction of medicarpin and cytochrome P450 enzyme activities in elicitor-treated cell suspension cultures and protoplasts. Plant Cell Rep 9:38–41

    Article  CAS  PubMed  Google Scholar 

  • Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146:839–844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Küster H, Hohnjec N, Krajinski F, El Yahyaoui F, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Pühler A, Gamas P, Becker A (2004) Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. J Biotechnol 108:95–113

    Article  PubMed  Google Scholar 

  • Küster H, Becker A, Firnhaber C, Hohnjec N, Manthey K, Perlick AM, Bekel T, Dondrup M, Henckel K, Goesmann A, Meyer F, Wipf D, Requena N, Hildebrandt U, Hampp R, Nehls U, Krajinski F, Franken P, Pühler A (2007) Development of bioinformatic tools to support EST-sequencing, in silico- and microarray-based transcriptome profiling in mycorrhizal symbioses. Phytochemistry 68:19–32

    Article  PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Libault M, Joshi T, Benedito VA, Xu D, Udvardi MK, Stacey G (2009) Legume transcription factor genes: what makes legumes so special? Plant Physiol 151:991–1001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Morey J, Ryan J, Van Dolah F (2006) Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online 8:175–193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nyamsuren O, Firnhaber C, Hohnjec N, Becker A, Küster H, Krajinski F (2007) Suppression of the pathogen-inducible Medicago truncatula putative protease-inhibitor MtTi2 does not influence root infection by Aphanomyces euteiches but results in transcriptional changes from wildtype roots. Plant Sci 173:84–95

    Article  CAS  Google Scholar 

  • Odjakova M, Hadjiivanova C (2001) The complexity of pathogen defense in plants. Bulg J Plant Physiol 27:101–109

    CAS  Google Scholar 

  • Panstruga R, Spanu PD (2014) Powdery mildew genomes reloaded. New Phytol 202:13–14

    Article  PubMed  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  PubMed  Google Scholar 

  • Prats E, Llamas MJ, Rubiales D (2007) Characterization of resistance mechanisms to Erysiphe pisi in Medicago truncatula. Phytopathology 97:1049–1053

    Article  PubMed  Google Scholar 

  • Purrington CB (2000) Costs of resistance. Curr Opin Plant Biol 3:305–308

    Article  CAS  PubMed  Google Scholar 

  • Ringli C (2010) Monitoring the outside: cell wall-sensing mechanisms. Plant Physiol 153:1445–1452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rispail N, Kaló P, Kiss GB, Ellis THN, Gallardo K, Thompson RD, Prats E, Larrainzar E, Ladrera R, González EM, Arrese-Igor C, Ferguson BJ, Gresshoff PM, Rubiales D (2010) Model legumes contribute to faba bean breeding. Field Crops Res 115:253–269

    Article  Google Scholar 

  • Rose RJ (2008) Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future. Funct Plant Biol 35:253–264

    Article  Google Scholar 

  • Rubiales D, Carver TL (2000) Defence reactions of Hordeum chilense accessions to three formae speciales of cereal powdery mildew fungi. Can J Bot 78:1561–1570

    Google Scholar 

  • Rubiales D, Castillejo MA, Madrid E, Barilli E, Rispail N (2011) Legume breeding for rust resistance: lessons to learn from the model Medicago truncatula. Euphytica 180:89–98

    Article  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Samac DA, Peñuela S, Schnurr JA, Hunt EN, Foster-Hartnett D, Vandenbosch KA, Gantt JS (2011) Expression of coordinately regulated defence response genes and analysis of their role in disease resistance in Medicago truncatula. Mol Plant Pathol 12:786–798

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Lefert P, Panstruga R (2003) Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu Rev Phytopathol 41:641–667

    Article  CAS  PubMed  Google Scholar 

  • Schweizer P, Vallélian-Bindschedler L, Mösinger E (1995) Heat-induced resistance in barley to the powdery mildew fungus Erysiphe graminis f.sp. hordei. Physiol Mol Plant Pathol 47:51–66

    Article  CAS  Google Scholar 

  • Sillero JC, Fondevilla S, Davidson J, Patto MCV, Warkentin TD, Thomas J, Rubiales D (2006) Screening techniques and sources of resistance to rusts and mildews in grain legumes. Euphytica 147:255–272

    Article  Google Scholar 

  • Singh RJ, Chung GH, Nelson RL (2007) Landmark research in legumes. Genome 50:525–537

    Article  CAS  PubMed  Google Scholar 

  • Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:1

    Google Scholar 

  • Song W-Y, Wang G-L, Chen L-L, Kim H-S, Pi L-Y, Holsten T, Gardner J, Wang B, Zhai W-X, Zhu L-H, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Spanu PD, Panstruga R (2012) Powdery mildew genomes in the crosshairs. New Phytol 195:20–22

    Article  PubMed  Google Scholar 

  • Stacey G, Koh S, Granger C, Becker JM (2002) Peptide transport in plants. Trends Plant Sci 7:257–263

    Article  CAS  PubMed  Google Scholar 

  • Takatsuji H (1998) Zinc-finger transcription factors in plants. Cell Mol Life Sci 54:582–596

    Article  CAS  PubMed  Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteome 71:391–411

    Article  CAS  Google Scholar 

  • Tivoli B, Baranger A, Sivasithamparam K, Barbetti MJ (2006) Annual Medicago: from a model crop challenged by a spectrum of necrotrophic pathogens to a model plant to explore the nature of disease resistance. Ann Bot 98:1117–1128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2005) Pathogen-induced, NADPH oxidase_derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37:1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Tsay Y-F, Chiu C-C, Tsai C-B, Ho C-H, Hsu P-K (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300

    Article  CAS  PubMed  Google Scholar 

  • Uttamchandani M, Neo JL, Ong BNZ, Moochhala S (2009) Applications of microarrays in pathogen detection and biodefence. Trends Biotechnol 27:53–61

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–research0034.11

  • Wan J, Dunning M, Bent A (2002) Probing plant-pathogen interactions and downstream defense signaling using DNA microarrays. Funct Integr Genom 2:259–273

    Article  CAS  Google Scholar 

  • Wang Z-Y, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2:505–513

    Article  CAS  PubMed  Google Scholar 

  • Yaege JR, Stuteville DL (2002) Reactions of accessions in the annual Medicago core germ plasm collection to Erysiphe pisi. Plant Dis 86:312–315

    Article  Google Scholar 

  • Yang S, Tang F, Caixetab ET, Zhu H (2013) Epigenetic regulation of a powdery mildew resistance gene in Medicago truncatula. Mol Plant 6:2000–2003

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Wu D, Chory J (2002) Plant receptor kinases: systemin receptor identified. Proc Natl Acad Sci U S A 99:9090–9092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young ND, Udvardi M (2009) Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol 12:193–201

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Blaylock LA, Harrison MJ (2010) Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22:1483–1497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grain Legumes Integrated Project (FP6-2002-FOOD-1-506223) and Spanish project AGL2011-22524. M. Curto was funded by Spanish Research Training programme (FPI). Drs. E. Prats and S. Fondevilla are thanked for providing help with microscopy assessments. We are grateful to Carolina Johnstone for grammatical review. Special thanks to Bielefeld University Center for Biotechnology for providing microarray platform, hybridization facilities, and bioinformatics support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Curto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(GIF 189 kb)

High Resolution Image (EPS 26671 kb)

ESM 1

(DOCX 31 kb)

ESM 2

(XLSX 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curto, M., Krajinski, F., Küster, H. et al. Plant Defense Responses in Medicago truncatula Unveiled by Microarray Analysis. Plant Mol Biol Rep 33, 569–583 (2015). https://doi.org/10.1007/s11105-014-0770-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0770-9

Keywords

Navigation