Skip to main content

The Actions of PGPR on Micronutrient Availability in Soil and Plant Under Calcareous Soil Conditions: An Evaluation over Fe Nutrition

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

The autotrophic plants need minerals for life cycle. An adequate supply of mineral nutrients is necessary for optimum plant growth. However, when adequate amounts of essential nutrients are present in soil, plants may still show deficiencies due to the non-availability of these mineral nutrients. Availability of plant nutrients such as Fe, Mn, Cu, B, and Zn are generally low in calcareous soils. Fe deficiency-induced chlorosis is the main limiting factor restricting plants growing worldwide. Microorganisms play an important role in enhancing nutrient availability to plant roots. Some PGPR increase the Fe availability in soil by decreasing pH by releasing organic acids or synthesizing low-molecular-weight iron-chelating agents (siderophores). In addition, some PGPR may increase Fe translocation and availability in plants via enhancing organic acid contents and FC-R activity in the root and leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abadía J (1993) Iron nutrition in soils and plants: proceedings of the seventh international symposium on iron nutrition and interactions in plants, June 27–July 2, Zaragoza, Spain, 1993, vol 59. Springer Science & Business Media, Dordrecht

    Google Scholar 

  • Abadía J, López-Millán A-F, Rombolà A, Abadía A (2002) Organic acids and Fe deficiency: a review. Plant Soil 241(1):75–86

    Article  Google Scholar 

  • Antoun H, Prévost D (2005) Ecology of plant growth promoting rhizobacteria. In: PGPR: Biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Aras S, Arikan Ş, Ipek M, Eşitken A, Pirlak L, Donmez F, Turan M (2016) Plant growth promoting rhizobacteria increased Fe nutrition and FC-R activity of apple under calcareous soil conditions. Pedosphere (in process)

    Google Scholar 

  • Arikan Ş, Pirlak L (2016) Effects of plant growth promoting rhizobacteria (PGPR) on growth, yield and fruit quality of sour cherry (Prunus cerasus L.) Erwerbs-obstbau 58(4):221–226

    Article  Google Scholar 

  • Arnon DI (1950) Criteria of essentiality of inorganic micronutrients for plants, with special reference to molybdenum. Lotsya 3:31–38

    Google Scholar 

  • Arnon D, Stout P (1939) The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol 14(2):371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. Wiley, New York

    Google Scholar 

  • Bertoni GM, Pissaloux A, Morard P, Sayag DR (1992) Bicarbonate pH relationship with iron chlorosis in white lupine. J Plant Nutr 15(10):1509–1518

    Article  CAS  Google Scholar 

  • Bienfait H (1988) Mechanisms in Fe efficiency reactions of higher plants. J Plant Nutr 11(6–11):605–629

    Article  CAS  Google Scholar 

  • Bienfait H, Bino R, Avd B, Duivenvoorden J, Fontaine J (1983) Characterization of ferric reducing activity in roots of Fe deficient Phaseolus vulgaris. Physiol Plant 59:196–202

    Article  CAS  Google Scholar 

  • Black CA (1993) Soil fertility evaluation and control. CRC Press, Boca Raton

    Google Scholar 

  • Blindauer CA (2015) Advances in the molecular understanding of biological zinc transport. Chem Commun 51(22):4544–4563

    Article  CAS  Google Scholar 

  • Bohórquez J, Romera F, Alcántara E (2001) Effect of Fe3+, Zn2+ and Mn2+ on ferric reducing capacity and regreening process of the peach rootstock Nemaguard (Prunus persica (L.) Batsch). Plant Soil 237(1):157–163

    Article  Google Scholar 

  • Brady N, Weil R (1999) The nature and properties of soil 12th ed. Prentice-Hall Inc, Upper Saddle River

    Google Scholar 

  • Brittenham G (1994) New advances in iron metabolism, iron deficiency, and iron overload. Curr Opin Hematol 1(2):101–106

    CAS  PubMed  Google Scholar 

  • Brown JC, Jolley VD (1989) Plant metabolic responses to iron-deficiency stress. Bioscience 39(8):546–551

    Article  Google Scholar 

  • Brüggemann W, Maas-Kantel K, Moog PR (1993) Iron uptake by leaf mesophyll cells: the role of the plasma membrane-bound ferric-chelate reductase. Planta 190(2):151–155

    Article  Google Scholar 

  • Cakmakci R, Dönmez MF, Erdoğan Ü (2007) The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk J Agric For 31(3):189–199

    CAS  Google Scholar 

  • Carter M (1980) Association of cation and organic anion accumulation with iron chlorosis of Scots pine on prairie soils. Plant Soil 56(2):293–300

    Article  CAS  Google Scholar 

  • Cobessi D, Celia H, Folschweiller N, Schalk IJ, Abdallah MA, Pattus F (2005) The crystal structure of the pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6 Å resolution. J Mol Biol 347(1):121–134

    Article  CAS  PubMed  Google Scholar 

  • Crowley D, Wang Y, Reid C, Szaniszlo P (1991) Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130(1–2):179–198

    Article  CAS  Google Scholar 

  • Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206. https://doi.org/10.1146/annurev.arplant. 54.031902.135018

    Article  CAS  PubMed  Google Scholar 

  • Dordas C, Brown P (2000) Permeability of boric acid across lipid bilayers and factors affecting it. J Membr Biol 175(2):95–105

    Article  CAS  PubMed  Google Scholar 

  • Ekinci M, Turan M, Yildirim E, Güneş A, Kotan R, Dursun A (2014) Effect of plant growth promoting rhizobacteria on growth, nutrient, organic acid, amino acid and hormone content of cauliflower (Brassica oleracea L. var. botrytis) transplants. Acta Sci Pol Hortorum Cultus 13(6):71–85

    Google Scholar 

  • Erdogan Ü, ÇakmakÇi R, Varmazyari A, Turan M, Erdogan Y, Kitir N (2016) Role of inoculation with multi-trait rhizobacteria on strawberries under water deficit stress. Žemdirbystė (Agriculture) 103(1):67–76

    Article  Google Scholar 

  • Erturk Y, Cakmakci R, Duyar O, Turan M (2011) The effects of plant growth promotion rhizobacteria on vegetative growth and leaf nutrient contents of hazelnut seedlings (Turkish hazelnut cv, Tombul and Sivri). Int J Soil Sci 6:188–198

    Article  CAS  Google Scholar 

  • Esitken A (2011) Use of plant growth promoting rhizobacteria in horticultural crops. In: Bacteria in agrobiology: crop ecosystems. Springer, Berlin, pp 189–235

    Chapter  Google Scholar 

  • Esitken A, Ipek M, Arikan Ş, Aras S, Sahin M, Pirlak L, Donmez F, Turan M (2016) Effects of plant growth promoting rhizobacteria on Fe nutrition and FC-R activity of peach under calcareous soil conditions. J Plant Nutr Soil Sci (in process)

    Google Scholar 

  • Faust M (1989) Physiology of temperate zone fruit trees. Wiley, New York

    Google Scholar 

  • Fournier J, Alcantara E, De la Guardia M (1992) Organic acid accumulation in roots of two sunflower lines with a different response to iron deficiency. J Plant Nutr 15(10):1747–1755

    Article  CAS  Google Scholar 

  • Fox TC, Guerinot ML (1998) Molecular biology of cation transport in plants. Annu Rev Plant Biol 49(1):669–696

    Article  CAS  Google Scholar 

  • Fox TC, Shaff JE, Grusak MA, Norvell WA, Chen Y, Chaney RL, Kochian LV (1996) Direct measurement of 59Fe-labeled Fe2+ influx in roots of pea using a chelator buffer system to control free Fe2+ in solution. Plant Physiol 111(1):93–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamit D, Tank S (2011) Effect of siderophore producing microorganism on plant growth of Cajanus cajan (pigeon pea). Int J Res Pure Appl Microbiol. http://www.urpjournals.com

  • Gärtel W (1974) The micronutrients—their importance for the nutrition of grapes with particular regard to deficiency and toxicity symptoms. Weinberg & Keller 21:435–507

    Google Scholar 

  • Georgatsou E, Mavrogiannis LA, Fragiadakis GS, Alexandraki D (1997) The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J Biol Chem 272(21):13786–13792

    Article  CAS  PubMed  Google Scholar 

  • Gerke J (1992) Phosphate, aluminium and iron in the soil solution of three different soils in relation to varying concentrations of citric acid. Z Pflanzenernähr Bodenkd 155(4):339–343

    Article  CAS  Google Scholar 

  • Ghavami N, Alikhani HA, Pourbabaee AA, Besharati H (2016) Study the effects of siderophore-producing bacteria on zinc and phosphorous nutrition of Canola and Maize plants. Commun Soil Sci Plant Anal 47(12):1517–1527

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117

    Article  CAS  Google Scholar 

  • Gogorcena Y, Abadía J, Abadía A (2000) Induction of in vivo root ferric chelate reductase activity in fruit tree rootstock. J Plant Nutr 23(1):9–21

    Article  CAS  Google Scholar 

  • González-Vallejo EB, Morales F, Cistué L, Abadıa A, Abadıa J (2000) Iron deficiency decreases the Fe (III)-chelate reducing activity of leaf protoplasts. Plant Physiol 122(2):337–344

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham RD, Hannam RJ, Uren NC (1988) Manganese in soils and plants: In: Proceedings of the international symposium on ‘Manganese in soils and plants’ held at the Waite Agricultural Research Institute, The University of Adelaide, Glen Osmond, South Australia, August 22–26, 1988, vol 33. Springer Science & Business Media

    Google Scholar 

  • Greenway H (1965) Plant responses to saline substrates IV. Chloride uptake by Hordeum vulgare as affected by inhibitors, transpiration, and nutrients in the medium. Aust J Biol Sci 18(2):249–268

    Article  CAS  Google Scholar 

  • Güneş A, Ataoğlu N, Turan M, Eşitken A, Ketterings QM (2009) Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. J Plant Nutr Soil Sci 172(3):385–392

    Article  CAS  Google Scholar 

  • Gupta UC (1993) Boron and its role in crop production. CRC Press, Boca Raton

    Google Scholar 

  • Gupta UC (1997) Soil and plant factors affecting molybdenum uptake by plants. In: Gupta UC (ed) Molybdenum in agriculture. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • Hassett R, Kosman DJ (1995) Evidence for Cu (II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J Biol Chem 270(1):128–134

    Article  CAS  PubMed  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657

    Article  CAS  PubMed  Google Scholar 

  • Hocking P (1980) The composition of phloem exudate and xylem sap from tree tobacco (Nicotiana glauca Grah.) Ann Bot 45(6):633–643

    Article  CAS  Google Scholar 

  • Hu H, Brown PH (1997) Absorption of boron by plant roots. Plant Soil 193(1–2):49–58

    Article  CAS  Google Scholar 

  • Ipek M, Pirlak L, Esitken A, Figen Dönmez M, Turan M, Sahin F (2014) Plant growth-promoting rhizobacteria (PGPR) increase yield, growth and nutrition of strawberry under high-calcareous soil conditions. J Plant Nutr 37(7):990–1001

    Article  CAS  Google Scholar 

  • Ipek M, Aras S, Arikan Ş, Eşitken A, Pirlak L, Donmez F, Turan M (2016) Root plant growth promoting rhizobacteria inoculations increases ferric chelate reductase (FC-R) activity and Fe nutrition in pear under calcareous soil conditions. Sci Hortic 219:144–151

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere–a critical review. Plant Soil 205(1):25–44

    Article  CAS  Google Scholar 

  • Jones DL, Darah PR, Kochian LV (1996) Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil 180(1):57–66

    Article  CAS  Google Scholar 

  • Karakurt H, Aslantas R (2010) Effects of some plant growth promoting rhizobacteria [PGPR] strains on plant growth and leaf nutrient content of apple. J Fruit Ornam Plant Res 1(18):101–110

    Google Scholar 

  • Karlidag H, Esitken A, Turan M, Sahin F (2007) Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hortic 114(1):16–20

    Article  CAS  Google Scholar 

  • Karlidag H, Yildirim E, Turan M, Pehluvan M, Donmez F (2013) Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria× ananassa). Hortscience 48(5):563–567

    CAS  Google Scholar 

  • Katyal J, Randhawa N (1983) Micronutrients, FAO fertilizer and plant nutrition bulletin 7. FAO, Rome

    Google Scholar 

  • Kloepper J, Schroth M (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, pp 879–882

    Google Scholar 

  • Kloepper J, Schroth M, Miller T (1980) Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70(11):1078–1082

    Article  Google Scholar 

  • Kosegarten H, Koyro HW (2001) Apoplastic accumulation of iron in the epidermis of maize (Zea mays) roots grown in calcareous soil. Physiol Plant 113(4):515–522

    Article  CAS  Google Scholar 

  • Kosegarten H, Wilson G, Esch A (1998) The effect of nitrate nutrition on iron chlorosis and leaf growth in sunflower (Helianthus annuus L.) Eur J Agron 8(3):283–292

    Article  CAS  Google Scholar 

  • Kosegarten HU, Hoffmann B, Mengel K (1999) Apoplastic pH and Fe3+ reduction in intact sunflower leaves. Plant Physiol 121(4):1069–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24(1):187–209

    Article  CAS  Google Scholar 

  • Liao M, Hedley M, Woolley D, Brooks R, Nichols M (2000) Copper uptake and translocation in chicory (Cichorium intybus L. cv Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv Rondy) plants grown in NFT system. II. The role of nicotianamine and histidine in xylem sap copper transport. Plant Soil 223(1–2):245–254

    Article  Google Scholar 

  • Loneragan J (1981) In: Loneragan JF, Robson AD, Graham RD (eds) Copper in soils and plants. Academic, New York

    Google Scholar 

  • Longnecker N, Welch RM (1990) Accumulation of apoplastic iron in plant roots a factor in the resistance of soybeans to iron-deficiency induced chlorosis. Plant Physiol 92(1):17–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loomis WE, Shull CA (1937) Methods in plant physiology. McGraw-Hill Book Co, New York

    Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86(1):1–25

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic, San Diego, CA, USA

    Google Scholar 

  • Marschner H, Römheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165(2):261–274

    Article  CAS  Google Scholar 

  • Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9(3–7):695–713

    Article  CAS  Google Scholar 

  • Mengel K (1994) Iron availability in plant tissues-iron chlorosis on calcareous soils. Plant Soil 165(2):275–283

    Article  CAS  Google Scholar 

  • Mengel K, Geurtzen G (1988) Relationship between iron chlorosis and alkalinity in Zea mays. Physiol Plant 72(3):460–465

    Article  CAS  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition. Springer Netherlands/Kluwer Academic Publishers, Dordrecht. https://doi.org/10.1007/978-94-010-1009-2

    Book  Google Scholar 

  • Miller G, Huang IJ, Welkie G, Pushnik J (1995) Function of iron in plants with special emphasis on chloroplasts and photosynthetic activity. In: Iron nutrition in soils and plants. Springer, Dordrecht, pp 19–28

    Chapter  Google Scholar 

  • Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr 13(3):638–649

    Google Scholar 

  • Molassiotis AN, Diamantidis GC, Therios IN, Tsirakoglou V, Dimassi KN (2005) Oxidative stress, antioxidant activity and Fe (III)-chelate reductase activity of five Prunus rootstocks explants in response to Fe deficiency. Plant Growth Regul 46(1):69–78

    Article  CAS  Google Scholar 

  • Molz E (1907) Untersuchungen über die Chlorose der Reden. Fischer, Jena

    Google Scholar 

  • Morales F, Belkhodja R, Abadía A, Abadía J (2000) Photosystem II efficiency and mechanisms of energy dissipation in iron-deficient, field-grown pear trees (Pyrus communis L.) Photosynth Res 63(1):9–21

    Article  CAS  PubMed  Google Scholar 

  • Mortvedt JJ, Shuman F, LM Welch R (1991) Micronutrients in agriculture, vol 631.81 M626 1991. Soil Science Society of America, Madison, Wis. (EUA)

    Google Scholar 

  • Moya J, Primo-Millo E, Talon M (1999) Morphological factors determining salt tolerance in citrus seedlings: the shoot to root ratio modulates passive root uptake of chloride ions and their accumulation in leaves. Plant Cell Environ 22(11):1425–1433

    Article  CAS  Google Scholar 

  • Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat induced photooxidative stress and to nitric oxide induced cell death. Plant J 38(6):940–953

    Article  CAS  PubMed  Google Scholar 

  • Nagoba B, Vedpathak DV (2011) Medical applications of siderophores–a review. Eur J Gen Med 8(3):229–235

    Google Scholar 

  • Neilands J (1986) A saga of siderophores. In: Iron, siderophores, and plant diseases. Springer, Boston, pp 289–297

    Chapter  Google Scholar 

  • Neilands J (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Nikolic M, Römheld V (1999) Mechanism of Fe uptake by the leaf symplast: is Fe inactivation in leaf a cause of Fe deficiency chlorosis? Plant Soil 215(2):229–237

    Article  CAS  Google Scholar 

  • Oertli J (1993) The mobility of boron in plants. Plant Soil 155(1):301–304

    Article  Google Scholar 

  • Oertli J, Richardson W (1970) The mechanism of boron immobility in plants. Physiol Plant 23(1):108–116

    Article  CAS  Google Scholar 

  • Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic 111(1):38–43

    Article  CAS  Google Scholar 

  • Pitman M (1982) Transport across plant roots. Q Rev Biophys 15(03):481–554

    Article  CAS  PubMed  Google Scholar 

  • Plänker R (1991) Die Bedeutung des Apoplasten-pH-Wertes fuer die Eisenchlorose. Untersuchungen an Helianthus annuus L. Ph.D. thesis, Fac. Biol., Justus Liebig University, Giessen

    Google Scholar 

  • Power PP, Woods WG (1997) The chemistry of boron and its speciation in plants. Plant Soil 193(1–2):1–13

    Article  CAS  Google Scholar 

  • Pratiwi H, Aini N, Soelistyono R (2016) Effects of Pseudomonas fluorescens and sulfur on nutrients uptake, growth and yield of groundnut in an alkaline soil. J Degrad Min Lands Manag 3(2):507–516

    Google Scholar 

  • Raaijmakers JM, Lvd S, Bakker PA, Schippers B, Koster M, Weisbeek PJ (1995) Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can J Microbiol 41(2):126–135

    Article  CAS  Google Scholar 

  • Radzki W, Manero FG, Algar E, García JL, García-Villaraco A, Solano BR (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104(3):321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid A, Couvillon G, Jones JB (1990) Assessment of Fe status of peach rootstocks by techniques used to distinguish chlorotic and non chlorotic leaves 1. J Plant Nutr 13(2):285–307

    Article  CAS  Google Scholar 

  • Raven J (1980) Short and long distance transport of boric acid in plants. New Phytol 84(2):231–249

    Article  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2000) Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int J Syst Evol Microbiol 50(2):649–659

    Article  CAS  PubMed  Google Scholar 

  • Rengel Z (1999) Mineral nutrition of crops: fundamental mechanisms and implications. CRC Press, Boca Raton

    Google Scholar 

  • Robson AD (1993) Zinc in soils and plants: proceedings of the international symposium on ‘Zinc in Soils and Plants’ held at the University of Western Australia, 27–28 September, 1993, vol 55. Springer Science & Business Media, Dordrecht

    Book  Google Scholar 

  • Römheld V, Marschner H (1981) Iron deficiency stress induced morphological and physiological changes in root tips of sunflower. Physiol Plant 53(3):354–360

    Article  Google Scholar 

  • Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80(1):175–180

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabir A, Yazici MA, Kara Z, Sahin F (2012) Growth and mineral acquisition response of grapevine rootstocks (Vitis spp.) to inoculation with different strains of plant growth-promoting rhizobacteria (PGPR). J Sci Food Agric 92(10):2148–2153

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28(4):1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Saharan B (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 2011:1–30

    Google Scholar 

  • Schmidt W (2003) Iron solutions: acquisition strategies and signaling pathways in plants. Trends Plant Sci 8(4):188–193

    Article  CAS  PubMed  Google Scholar 

  • Seymen M, Türkmen Ö, Dursun A, Paksoy M (2014) Effects of bacteria inoculation on yield, yield components and mineral contents of tomato. Selcuk J Agric Food Sci 28(2):52–57

    Google Scholar 

  • Seymen M, Türkmen Ö, Paksoy M (2015) Bacteria inoculation effects on yield, yield components and mineral contents of (Capsicum annum L.) bell pepper. Int J Agric Econ Dev 3(1):29

    Google Scholar 

  • Shaheen SA, El Taweel AA, Omar MNA (2014) Effect of inoculation by some plant growth promoting rhizobacteria (PGPR) on production of 'manzanillo' olive trees. Acta Hortic 1018:245–254

    Article  Google Scholar 

  • Sharma A, Johri B, Sharma A, Glick B (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP 3 influences iron acquisition in mung bean (Vigna radiata L. Wilczek). Soil Biol Biochem 35(7):887–894

    Article  CAS  Google Scholar 

  • Sharma M, Mishra V, Rau N, Sharma RS (2015) Increased iron-stress resilience of maize through inoculation of siderophore producing Arthrobacter globiformis from mine. J Basic Microbiol 56(7):719–735

    Article  PubMed  CAS  Google Scholar 

  • Shu ZH, WY W, Oberly G (1991) Boron uptake by peach leaf slices. J Plant Nutr 14(8):867–881

    Article  CAS  Google Scholar 

  • Storey R (1995) Salt tolerance, ion relations and the effect of root medium on the response of citrus to salinity. Funct Plant Biol 22(1):101–114

    CAS  Google Scholar 

  • Tagliavini M, Rombolà AD (2001) Iron deficiency and chlorosis in orchard and vineyard ecosystems. Eur J Agron 15(2):71–92

    Article  CAS  Google Scholar 

  • Tagliavini M, Scudellari D, Marangoni B, Toselli M (1995) Acid-spray regreening of kiwifruit leaves affected by lime-induced iron chlorosis. In: Iron nutrition in soils and plants. Springer, Dordrecht, pp 191–195

    Chapter  Google Scholar 

  • Takagi S-i (1976) Naturally occurring iron-chelating compounds in oat-and rice-root washings: I. Activity measurement and preliminary characterization. Soil Sci Plant Nutr 22(4):423–433

    Article  CAS  Google Scholar 

  • Tian F, Ding Y, Zhu H, Yao L, Du B (2009) Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. Braz J Microbiol 40(2):276–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiffin L (1972) Translocation of micronutrients in plants. In: Mortvedt JJ, Giordano PM, Lindsey WL (eds) Micronutrients in agriculture. Soil Science Society of America, Madison, pp 199–229

    Google Scholar 

  • Toselli M, Marangoni B, Tagliavini M (2000) Iron content in vegetative and reproductive organs of nectarine trees in calcareous soils during the development of chlorosis. Eur J Agron 13(4):279–286

    Article  CAS  Google Scholar 

  • Toulon V, Sentenac H, Thibaud J-B, Davidian J-C, Moulineau C, Grignon C (1992) Role of apoplast acidification by the H+ pump. Planta 186(2):212–218

    Article  CAS  PubMed  Google Scholar 

  • Treeby M, Marschner H, Römheld V (1989) Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial, and synthetic metal chelators. Plant Soil 114(2):217–226

    Article  CAS  Google Scholar 

  • Turan M, Ekinci M, Yildirim E, Güneş A, Karagöz K, Kotan R, Dursun A (2014) Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk J Agric For 38(3):327–333

    Article  CAS  Google Scholar 

  • Tyler G, Ström L (1995) Differing organic acid exudation pattern explains calcifuge and acidifuge behaviour of plants. Ann Bot 75(1):75–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vert GA, Briat J-F, Curie C (2003) Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiol 132(2):796–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vose P (1983) Rationale of selection for specific nutritional characters in crop improvement with Phaseolus vulgaris L. as a case study. In: Genetic aspects of plant nutrition. Springer, Dordrecht, pp 395–408

    Chapter  Google Scholar 

  • Wallace A, Abou Zamzam A (1986) Uptake of labeled 14C bicarbonate by some monocot and dicot plants from nutrient solution. J Plant Nutr 9(3–7):887–892

    Article  CAS  Google Scholar 

  • Welch RM, Allaway WH, House WA, Kubota J, Luxmoore R (1991) Geographic distribution of trace element problems. Micronutrients in agriculture, 2nd edn, pp 31–57

    Google Scholar 

  • Welch RM, Norvell WA, Schaefer SC, Shaff JE, Kochian LV (1993) Induction of iron (III) and copper (II) reduction in pea (Pisum sativum L.) roots by Fe and Cu status: Does the root-cell plasmalemma Fe (III)-chelate reductase perform a general role in regulating cation uptake? Planta 190(4):555–561

    Article  CAS  Google Scholar 

  • White MC, Decker AM, Chaney RL (1981) Metal complexation in xylem fluid I. Chemical composition of tomato and soybean stem exudate. Plant Physiol 67(2):292–300

    Google Scholar 

  • White JG, Zasoski RJ (1999) Mapping soil micronutrients. Field Crop Res 60(1):11–26

    Article  Google Scholar 

  • Xu G, Magen H, Tarchitzky J, Kafkafi U (1999) Advances in chloride nutrition of plants. Adv Agron 68:97–150

    Article  Google Scholar 

  • Yildirim E, Turan M, Ekinci M, Dursun A, Gunes A, Donmez M (2015) Growth and mineral content of cabbage seedlings in response to nitrogen fixing rhizobacteria treatment. Romanian Biotechnological Letters 20(6):10929–10935

    Google Scholar 

  • Yolcu H, Gunes A, Gullap MK, Cakmakci R (2012) Effects of plant growth-promoting rhizobacteria on some morphologic characteristics, yield and quality contents of Hungarian vetch. Turkish Journal of Field. Crops 17(2):208–214

    Google Scholar 

  • Zaharieva T, Römheld V (2000) Specific Fe2+ uptake system in strategy I plants inducible under Fe deficiency. J Plant Nutr 23(11–12):1733–1744

    Article  CAS  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency inducible mechanisms. Plant J 58(4):568–577

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Eşitken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

İpek, M., Eşitken, A. (2017). The Actions of PGPR on Micronutrient Availability in Soil and Plant Under Calcareous Soil Conditions: An Evaluation over Fe Nutrition. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_4

Download citation

Publish with us

Policies and ethics