Skip to main content

Potential of Beneficial Bacteria as Eco-friendly Options for Chemical-Free Alternative Agriculture

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

Plant-microbial interactions are important determinants of crop and soil health. Microbial inoculants, viz. Azotobacter, Azospirillum, Rhizobium, Pseudomonas and Bacillus, have been commonly employed for increasing plant growth and crop yields and improving soil health in rice, wheat, legumes, vegetables and other cropping systems. Around the world, different bacterial isolates have proven their abilities to improve plant growth through colonization of roots, production of plant hormones (such as indole acetic acid, cytokinins), biological nitrogen fixation, organic matter decomposition, solubilization, transformation and mobilization of nutrients and improve fertility of soil, besides controlling plant diseases. This compilation critically analyses the advantages of such biological inputs particularly bacteria, emphasizing their roles and the need to augment the incorporation of such biological inputs by gradually restricting the use of chemical inputs by employing suitable combinations of useful microbes for chemical-free sustainable agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abd-Alla MH (1994) Use of organic phosphorus by Rhizobium leguminosarum biovar viceae phosphatases. Biol Fertil Soils 18:216–218

    Article  CAS  Google Scholar 

  • Afzal AM, Ashraf SA, Asad FM (2005) Effect of phosphate solubilizing microorganism on phosphorus uptake, yield and yield traits of wheat (Triticum aestivum L.) in rainfed area. Int J Agric Biol 7:207–209

    Google Scholar 

  • Ahemad M, Kirbet M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Uni Sci 26:1–20

    Article  Google Scholar 

  • Amara MAT, Dahdoh MSA (1997) Effect of inoculation with plant growth-promoting rhizobacteria (PGPR) on yield and uptake of nutrients by wheat grown on sandy soil. Egypt J Soil Sci 37:467–484

    Google Scholar 

  • Antoun H, Beauchamp J, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.) Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martynenko EV, Melentiev AI, Kodoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209

    Article  CAS  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martynenko EV, Melentiev AI, Kodoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Arshad M, Frankenberger WT Jr (1998) Plant growth-regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62:45–151

    Article  CAS  Google Scholar 

  • Asghar HN, Zahir ZA, Arshad M, Khaliq A (2002) Relationship between in vitro production of auxins by rhizobacteria and their growth promoting activities in Brassica juncea. L. Biol Fertil Soils 35:231–237

    Article  CAS  Google Scholar 

  • Bach E, Seger GDS, Fernandes GDC, Lisboa BB, Passaglia LMP (2016) Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Appl Soil Ecol 99:141–149

    Article  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • Bano N, Musarrat J (2004) Characterization of a novel carbofuran degrading Pseudomonas sp. with collateral biocontrol and plant growth promoting potential. FEMS Microbiol Lett 231:13–17

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Gryndler M, Lemanceau P, Schu¨epp H, Azco’n R (2002) The rhizosphere of mycorrhizal plants. In: Gianinazzi S, Schu¨epp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture: from genes to bioproducts. Birkha¨user, Basel, pp 1–18

    Google Scholar 

  • Barea JM, Azco’n R, Azco’n-Aguilar C (2004) Mycorrhizal fungi and plant growth promoting rhizobacteria. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Heidelberg, pp 351–371

    Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol- PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H (1991) Alterations in membrane potential and in proton efflux in plant roots induced by Azospirillum brasilense. Plant Soil 137:99–103

    Article  Google Scholar 

  • Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32(3):501–510

    Google Scholar 

  • Belimov AA, Ivanchikov YA, Yudkin LV, Khamova OF, Postavskaya SM, Popolzukhina PV, Shmakova AA, Kozlova YG (1999) New strains of associative growth-stimulating bacteria dominating the rhizoplane of barley seedlings: characterization and introduction. Microbiology 68(3):392–397

    Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant Growth-Promoting Rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Google Scholar 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152

    Article  Google Scholar 

  • Bent E, Chanway CP (1998) The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Can J Microbiol 44:980–988

    Article  CAS  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Bishop ML, Chang AC, Lee RWK (1994) Enzymatic mineralization of organic phosphorus in a volcanic soil in Chile. Soil Sci 157:238–243

    Article  CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886

    Article  Google Scholar 

  • Bloemberg VG, Lugtenberg JJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Article  Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol Sci 27:30–37

    Google Scholar 

  • Bruto M, Prigent-Combaret C, Muller D, Moënne-Loccoz Y (2014) Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria. Sci Rep 4:6261

    Google Scholar 

  • Buscot F (2005) What are soils? In: Buscot F, Varma S (eds) Microorganisms in soils: roles in genesis and functions. Springer, Heidelberg, pp 3–18

    Chapter  Google Scholar 

  • Cameron RK, Dixon R, Lamb C (1994) Biologically induced systemic acquired resistance in Arabidopsis thaliana. Plant J 5:715–725

    Article  Google Scholar 

  • Chanway CP (1997) Inoculation of tree roots with plant growth promoting soil bacteria: an emerging technology for reforestation. For Sci 43:99–112

    Google Scholar 

  • Chaturvedi H, Singh V, Gupta G (2016) Potential of bacterial endophytes as plant growth promoting factors. J Plant Pathol Microbiol 7:376. https://doi.org/10.4172/2157-7471.1000376

    Article  Google Scholar 

  • Chen C, Bauske EM, Musson G, Rodriguez-Kabaña R, Kloepper JW (1994) Biological control of Fusarium on cotton by use of endophytic bacteria. Biol Control 5:83–91

    Article  Google Scholar 

  • Chin-A-Woeng TF, de Priester W, Van der Bij AJ, Lugtenberg BJ (1997) Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Mol Plant-Microbe Interact 10:79–86

    Google Scholar 

  • Chin-A-Woeng TFC, Thomas-Oates JE, Ben LJJ, Bloemberg GV (2001) Introduction of the phzH Gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. Strains. Mol Plant-Microbe Interact 14(8):1006–1015

    Article  CAS  PubMed  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Bot 87:455–462

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Barka EA (2005a) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005b) Endophytic colonization of Vitis vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa JM, Loper JE (1994) Characterization of siderophore production by the biological control agent Enterobacter cloacae. Mol Plant Microbe Intract 7:440–448

    Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Accumulation of phytohormones by plant associated bacteria. Crit Rev Microbiol 21:1–18

    Article  PubMed  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum- inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • Datta C, Basu PS (2000) Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol Res 155:123–127

    Article  CAS  PubMed  Google Scholar 

  • de Souza R, Ambrosini A, Luciane M, Passagliac P (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38(4):401–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Demeyer G, Capieau K, Audenaert K, Buchala A, Métraux JP, Höfte M (1999) Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol Plant-Microbe Interact 12:450–458

    Article  CAS  Google Scholar 

  • Donnell PJ, Schmelz E, Block A, Miersch O, Wasternack C, Jones JB et al (2003) Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response. Plant Physiol 133:1181–1189

    Article  CAS  Google Scholar 

  • Enebak SA, Wei G, Kloepper JW (1997) Effects of plant growth promoting rhizobacteria on loblolly and slash pine seedlings. For Sci 44:139–144

    Google Scholar 

  • Esitken A, Ercisli S, Karlidag H, Sahin F (2005) Potential use of plant growth promoting rhizobacteria (PGPR) in organic apricot production. In: Proceedings of the international science conference on environmentally friendly fruit growing, Tartu-Estonia, September 7–9, pp 90–97

    Google Scholar 

  • Falardeau J, Wise C, Novitsky L, Avis TJ (2013) Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J Chem Ecol 39:869–878

    Article  CAS  PubMed  Google Scholar 

  • Fankem H, Ngonkot L, Deubel A, Quinn J, Merbach W, Etoa F, Nwaga D (2008) Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. Afr J Microbiol Res 2:171–178

    Google Scholar 

  • Farrar K, Bryant D, Cope-selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12(9):1193–1206

    Article  PubMed  PubMed Central  Google Scholar 

  • Fatima Z, Saleemi M, Zia M, Sultan T, Aslam M, Riaz-ur-Rehman, Chaudhary MF (2009) Antifungal activity of plant growth-promoting rhizobacteria isolates against Rhizoctonia solani in wheat. Afr J Biotechnol 8:219–225

    Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y (2005) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed) PGPR: Biocontrol and biofertilization. Springer, Dordrecht, pp 67–109

    Google Scholar 

  • Fendrihan S, Constantinescu F, Sicuia OA, Dinu S (2016) Beneficial Bacillus strains improve plant resistance to phytopathogens: a review. Int J Environ Agric Biotechnol (IJEAB) 1(2):137–142

    Article  Google Scholar 

  • Frankenberger WT, Arshad JRM (1995) Phytohormones in soil microbial production and function. Marcel Deker, New York, p 503

    Google Scholar 

  • Gagné-Bourque F, Bertrand A, Claessens A, Aliferis KA, Jabaji S (2016) Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Front Plant Sci 7:584

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Gutierrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Perez-Garcia A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate and salicylic acid-dependent defence responses. Microbial. Biotech 6(3):264–274

    Google Scholar 

  • George EF, Hall MA, De Klerk GJ (eds) (2008) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, pp 104–204

    Google Scholar 

  • Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41:277–281

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–114

    Article  CAS  Google Scholar 

  • Glick BR, Liu C, Ghosh S, Dumbroff EB (1997) The effect of the plant growth promoting rhizobacterium Pseudomonas putida GR 12–2 on the development of canola seedlings subjected to various stresses. Soil Biol Biochem 29:1233–1239

    Article  CAS  Google Scholar 

  • Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Res 65:93–106

    Article  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant Growth Promoting Rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microbial Biochem Technol 7:2

    Google Scholar 

  • Haahtela K, Konkoo R, Laakso T, Williams PH, Korhonem TK (1990) Root associated Enterobacter and Klebsiella in Poa pratensis: Characterization of an iron scavenging system and a substance stimulating root hair production. Mol Plant Microbe Interact 3:358–365

    Article  CAS  Google Scholar 

  • Hammerschmidt R, Kuc J (1995) Induced resistance to disease in plants. Kluwer Academic Publishers, Dordrecht, p 182

    Book  Google Scholar 

  • Hardarson G (1993) Methods for enhancing symbiotic nitrogen fixation. Plant Soil 152:1–17

    Article  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegazi NA, Fayez M, Amin G, Hamza MA, Abbas M, Youssef H, Monib M (1998) Diazotrophs associated with non-legumes grown in sandy soils. In: Malik KA, Mirza MS, Ladha JK (eds) Nitrogen fixation with non-legumes. Kluwer Academic Publishers, Dordrecht, pp 209–222

    Chapter  Google Scholar 

  • Hilali A, Przrost D, Broughton WJ, Antoun A (2001) Effects de I'inoculation avec des souches de Rhizobium leguminosarum bv. trifolii sur la croissance du bl'e dans deux sols du Marco. Can J Microbiol 47:590–593

    Article  CAS  PubMed  Google Scholar 

  • Horrigan L, Lawrence R, Walker P (2002) How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ Health Perspect 110:445–456

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang L, Zhang F, Wang W, Zhou Y, Fu B, Li Z (2014) Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. BMC Genomics 15:1026

    Google Scholar 

  • IARI (2014) Technological options for enhanced productivity and profit. Indian Agricultural Research Institute, New Delhi-110 012, India

    Google Scholar 

  • Jasim B, Jimtha John C, Mathew J, Radhakrishnan EK (2013) Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regul 71(1):1–11

    Article  CAS  Google Scholar 

  • Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32:122–130

    Article  CAS  Google Scholar 

  • Katsy EI (2005) In molecular bases of the relationships between associative microorganisms and Ppants. Nauka, Moscow, pp 17–45

    Google Scholar 

  • Kell C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Hass D, Defago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHAO: Importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13

    Google Scholar 

  • Kennedy AC (1998) The rhizosphere and spermosphere. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River, pp 389–407

    Google Scholar 

  • Kennedy IR, Islam N (2001) The current and potential contribution of asymbiotic nitrogen fixation to nitrogen requirements on farms: a review. Aus J Exp Agric 41:447–457

    Article  CAS  Google Scholar 

  • Kennedy IR, Choudhury ATMA, Kecskes ML (2004) Nonsymbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J App Microbiol 96(3):473–480

    Article  CAS  Google Scholar 

  • Kloepper JW (1993) Plant growth-promoting rhizobacteria as biological control agents. In: Metting FB Jr (ed) Soil microbial ecology-applications in agricultural and environmental management. Marcel Dekker, New York, pp 255–274

    Google Scholar 

  • Kloepper JW, Lifshitz K, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Kloepper JW, Rodriguez-Kabana R, Zehnder GW, Murphy J, Sikora E, Fernandez C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Aus J Plant Pathol 28:27–33

    Article  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang SA (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathol 94(11):1259–1266

    Google Scholar 

  • Kucey RMN, Janzen HH, Leggett MM (1989) Microbially mediated increase in plant-available phosphorus. Adv Agron 42:199–228

    Google Scholar 

  • Kumar M, Prasanna R, Bidyarani N, Babu S, Mishra KBK, Adak A, Jauhari S, Yadav K, Singh R, Saxena AK (2013) Evaluating the plant growth promoting ability of thermotolerant bacteria and cyanobacteria and their interactions with seed spice crops. Scient Hortic. https://doi.org/10.1016/j.scienta.2013.09.014

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450

    Google Scholar 

  • Lal R, Blum WH, Valentine C, Stewart BA (eds) (1997) Methods for assessment of soil degradation. CRC Press, Boca Raton

    Google Scholar 

  • Lalande R, Bissonnette N, Coutlée D, Antoun H (1989) Identification of rhizobacteria from maize and determination of their plant-growth promoting potential. Plant Soil 115:7–11

    Article  Google Scholar 

  • Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signaling molecule in bacteria plant interactions. Trends Microbiol 8:298–300

    Article  CAS  PubMed  Google Scholar 

  • Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SW, Cooksey DA (2000) Genes expressed in Pseudomonas putida during colonization of a plant-pathogenic fungus. Appl Environ Microbiol 66:2764–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome C biogenesis genes. J Bacteriol 186:5384–5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loper JE, Schroth MN (1986) Influence of bacterial source of indole-3-acetic acid of root elongation of sugar beet. Phytopathology 76:386–389

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Google Scholar 

  • Lugtenberg BJJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudates sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1:439–446

    Article  CAS  PubMed  Google Scholar 

  • Manjunath M, Prasanna R, Sharma P, Nain L, Singh R (2011) Developing PGPR consortia using novel genera Providencia and Alcaligenes along with cyanobacteria for wheat. Arch Agron Soil Sci 57(8):873–887

    Article  CAS  Google Scholar 

  • Manjunath M, Saha S, Venkataravanappa V, Rai AB (2015) Role of soil microbes in sustainable soil health and agricultural production. In: Roy AK (ed) Emerging technologies of the 21st century. New India Publishing Agency, New Delhi, pp 213–223

    Google Scholar 

  • Manjunath M, Kanchan A, Ranjan K, Venkatachalam S, Prasanna R, Ramakrishnan B, Hossain F, Nain L, Shivay YS, Rai AB, Singh B (2016) Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra. Heliyon e00066:1–28

    Google Scholar 

  • Manske GGB, Ortiz-Monasterio JI, Van Ginkel M, Gonzalez RM, Fischer RA, Rajaram S, Vlek PLG (2001) Importance of P uptake efficiency versus P utilization for wheat yield in acid and calcareous soils in Mexico. Eur J Agron 14:261–274

    Article  CAS  Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azco’n R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microbial Ecol 54:543–552

    Article  CAS  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHAO : influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Minorsky PV (2008) On the inside. Plant Physiol 146:323–324

    Article  CAS  PubMed Central  Google Scholar 

  • Mitter B, Pfaffenbichler N, Sessitsch A (2016) Plant–microbe partnerships in 2020. Microbial Biotechnol 9(5):635–640

    Article  Google Scholar 

  • Naiman AD, Latronico A, Salamone EG (2009) Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: impact on the production and culturable rhizosphere microflora. Eur J Soil Biol 45:44–51

    Article  Google Scholar 

  • Nain L, Rana A, Joshi M, Shrikrishna JD, Kumar D, Shivay YS, Paul S, Prasanna R (2010) Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant Soil 331:217–230

    Article  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Napier R, Venis MA (1995) Auxin action and auxin-binding proteins. New Phytol 129:167–201

    Article  CAS  Google Scholar 

  • Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55:175–187

    Google Scholar 

  • Ngumbi E, JKloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125

    Article  Google Scholar 

  • Nowak J (1998) Benefits of in vitro ‘biotization’ of plant tissue cultures with microbial inoculants. In Vitro Cell Dev Biol Plant 34:122–130

    Article  Google Scholar 

  • O’Connell PF (1992) Sustainable agriculture—a valid alternative. Outlook Agric 21:5–12

    Article  Google Scholar 

  • Oberson E, Frossard Bühlmann C, Mayer J, Mader P, Luscher A (2013) Nitrogen fixation and transfer in grass-clover leys under organic and conventional cropping systems. Plant Soil 371:237–255

    Article  CAS  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years world-wide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745. https://doi.org/10.3389/fmicb.2015.00745

    Article  PubMed  PubMed Central  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity in the biosphere. Sci 276:734–740

    Article  CAS  Google Scholar 

  • Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T (2005) Potential of bacterial indole acetic acid to induce adventitious shoots in plant tissue culture. Microbiol Res 160(2):127–133

    Article  CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3- acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Pereg L, McMillan M (2015) Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems. Soil Biol Biochem 80:349–358

    Article  CAS  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant–rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Google Scholar 

  • Pirttila A, Joensuu P, Pospiech H, Jalonen J, Hohtola A (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol Plant 121:305–312

    Article  PubMed  Google Scholar 

  • Poi SC, Kabi MC (1979) Effect of Azotobacter inoculation on growth and yield of jute and wheat. Ind J Agric Sci 49:478–480

    Google Scholar 

  • Polyanskaya LM, Vedina OT, Lysak LV, Zvyagintsev DG (2002) The growth promoting effect of Beijerinckia mobilis and Clostridium sp. cultures on some agricultural crops. Microbiol 71(1):109–115

    Article  CAS  Google Scholar 

  • Prasanna R, Babu S, Rana A, Kabi SR, Chaudhary V, Gupta V, Kumar A, Shivay YS, Nain L, Pal RK (2013a) Evaluating the establishment and agronomic proficiency of cyanobacterial consortia as organic options in wheat-rice cropping sequence. Exp Agric 49:416–434

    Article  Google Scholar 

  • Prasanna R, Kumar A, Babu S, Chawla G, Chaudhary V, Singh S, Gupta V, Nain L, Saxena AK (2013b) Deciphering the biochemical spectrum of novel cyanobacterium based biofilms for use as inoculants. Biol Agric Hortic 29(3):145–158

    Article  Google Scholar 

  • Prasanna R, Sharma E, Sharma P, Kumar A, Kumar R, Gupta V, Pal RK, Shivay YS, Nain L (2013c) Soil fertility and establishment potential of inoculated cyanobacteria in rice crop grown under non-flooded conditions. Paddy Water Environ 11:321–329

    Article  Google Scholar 

  • Puente ME, Bashan Y, Li CY, Lebsky VK (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. Root colonization and weathering of igneous rocks. Plant Biol 6:629–642

    Article  CAS  PubMed  Google Scholar 

  • Ramadan EM, Abdel Hafez AA, Hassan EA, Saber FM (2016) Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. Afr J Microbiol Res 10:486–504

    Article  CAS  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchandar J, Prakasham T, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pest and diseases. Crop Prot 20:1–11

    Google Scholar 

  • Reid A, Greene SE (2012) How microbes can help feed the world? Report of American Academy of Microbiology Colloquium, Washington, DC

    Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Salimpour S, Khavazi K, Nadian H, Besharati H, Miransari M (2010) Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Aus J Crop Sci 4(5):330–334

    CAS  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 1–13

    Chapter  Google Scholar 

  • Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3- acetic acid by cyanobacteria. Planta 215:229–238

    Article  CAS  PubMed  Google Scholar 

  • Shahab S, Ahmed N, Khan NS (2009) Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. Afri J Agri Res 4:1312–1316

    Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir A (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.) Appl Microbiol Biotechnol 79:147–155

    Article  CAS  PubMed  Google Scholar 

  • Singh HP, Sharma KL, Venkateswarulu B, Neelavani K (1999) Fertilizer use in rainfed areas: problems and potentials. Fert News 44:27–38

    Google Scholar 

  • Smith K, Handelsman J, Goodman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. Proc Natl Acad Sci USA 96:4786–4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasarao C, Venkateswarlu B, Lal R, Singh AK, Kundu S, Vittal KPR, Balaguruvaiah G, Vijaya Shankar Babu M, Ravindra Chary G, Prasadbabu MBB, Reddy Y (2012a) Soil carbon sequestration and agronomic productivity of an Alfisol for a groundnut based system in a semi arid environment in South India. Eur J Agron 43:40–48

    Article  CAS  Google Scholar 

  • Srinivasarao C, Venkateswarlu B, Lal R, Singh AK, Kundu S, Vittal KPR, Ramachandrappa BK, Gajanan GN (2012b) Long-term effects of crop residues and fertility management on carbon sequestration and agronomic productivity of groundnut–finger millet rotation on an Alfisol in southern India. Int J Agric Sustain. https://doi.org/10.1080/14735903.2012.662392

  • Srinivasarao C, Venkateswarlu B, Lal R, Singh AK, Kundu S, Vittal KPR, Sharma SK, Sharma RA, Jain MP, Ravindra Chary G (2012c) Sustaining agronomic productivity and quality of a Vertisolic Soil (Vertisol) under soybean-safflower cropping system in semi-arid central India. Can J Soil Sci 92(5):771–785

    Article  CAS  Google Scholar 

  • Srinivasarao C, Venkateswarlu B, Lal R, Singh AK, Kundu S (2013a) Sustainable management of soils of dryland ecosystems of India for enhancing agronomic productivity and sequestering carbon. In: Sparks DL (ed) Advances in agronomy, vol 121. Academic, Burlington, pp 253–329

    Google Scholar 

  • Srinivasarao C, Venkateswarlu B, Lal R, Singh AK, Kundu S (2013b) Sustainable management of soils of dryland ecosystems of India for enhancing agronomic productivity and sequestering carbon. Adv Agron 121:254–329

    Google Scholar 

  • Srinivasarao C, Lal R, Prasad JVNS, Gopinath KA, Singh R, Jakkula VS, Sahrawat KL, Venkteswarulu B, Sikka AK, Virmani SM (2015) Potential and challenges in rainfed farming in India. Adv Agron 133:113–181

    Article  Google Scholar 

  • Srinivasrao Ch, Ravindra Chary G, Venkateswarulu B, Vittal KPR, Prasad JVNS, Kundu S, Singh SR, Gajanan GN, Sharma RA, Patel JJ, Deshpande AN, Balaguravaiah G (2009) Carbon sequestration strategies in rainfed production systems of India, Central Research Institute for DRyland Agriculture, ICAR, Hyderabad-500059, India p 102

    Google Scholar 

  • Srivastava S, Yadav A, Seem K, Mishra S, Chaudhary V, Srivastava CS (2008) Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol 56:453–457

    Article  CAS  PubMed  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  • Strzelczyk E, Pokojska-Burdziej A (1984) Production of auxins and gibberellin-like substance by mycorrhizal fungi, bacteria and actinomycetes isolated from soil and the mycorrhizosphere of pine (Pinus silvestris L.) Plant Soil 81:185–194

    Article  CAS  Google Scholar 

  • Tien TM, Gaskins MH, Hubbel DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on growth of pearl millet (Pennisetum americanum L.) Appl Environ Microbiol 37:1016–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timms-Wilson TM, Ellis RJ, Renwick A, Rhodes DJ, Mavrodi DV, Weller DM, Thomashow LS, Bailey MJ (2000) Chromosomal insertion of phenazine-1-carboxylic-acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens. Mol Plant-Microbe Interact 13:1293–1300

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31(13):1847–1852

    Article  CAS  Google Scholar 

  • Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kannaste A, Behers L, Niinemets U (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:e96086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turan MA, Gulluce MB, Cakmakci RC, Oztas TA, Sahin FD (2010) The effect of PGPR strain on wheat yield and quality parameters. 19th World Congress of soil science, soil solutions for a changing world 1–6 August 2010, Brisbane, Australia

    Google Scholar 

  • Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis related proteins. Eur J Plant Pathol 103:753–765

    Article  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Vig AC, Singh NT (1983) Yield and P uptake by wheat as affected by P fertilization and soil moisture regime. Nutr Cycl Agroecosyst 4:21–29

    Google Scholar 

  • Wakelin S, Warren R, Harvey P, Ryder M (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Bio Fertil Soils 40:36–43

    Article  CAS  Google Scholar 

  • Welbaum GE, Sturz AV, Dong ZM, Nowak J (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Wu J, Baldwin I (2009) Herbivory-induced signalling in plants: perception and action. Plant Cell Environ 32:1161–1174

    Google Scholar 

  • Xiong L, Zhu JK (2002) Salt tolerance. In: Somerville C, Meyerowitz E (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, pp 1–22

    Google Scholar 

  • Xinxian L, Xuemei C, Yagang C, Woon-Chung W, Zebin W, Qitang W (2011) Isolation and characterization endophytic bacteria from hyperaccumulator Sedum alfredii Hance and their potential to promote phytoextraction of zinc polluted soil. World J Microbiol Biotechnol 27:1197–1207

    Google Scholar 

  • Yang CJ, Zhang XG, Shi GY, Zhao HY, Chen L, Tao K, Hou TP (2011) Isolation and identification of endophytic bacterium W4 against tomato Botrytis cinerea and antagonistic activity stability. Afr J Microbiol Res 5(2):131–136

    Google Scholar 

  • Zabihi HR, Savaghebi GR, Khavazi K, Ganjali A, Miransari M (2011) Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under greenhouse and field conditions. Acta Physiol Plant 33:145–152

    Article  Google Scholar 

  • Zakharychev VV (1999) Phytohormones, their analogues and antagonists as herbicides and regulators of plant growth, RKhTU im, Moscow

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, India, for providing necessary facilities towards undertaking this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Manjunath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srinivasarao, C., Manjunath, M. (2017). Potential of Beneficial Bacteria as Eco-friendly Options for Chemical-Free Alternative Agriculture. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_19

Download citation

Publish with us

Policies and ethics