Skip to main content

Abstract

Laser-based spectroscopic methods offer the possibility of detecting compounds of interest with high sensitivity, in real time, without or with minimal sample preparation and therefore have a potential to be readily transferred for use in the field. A variety of methods, including laser photolysis/laser-induced fluorescence, laser-induced breakdown spectroscopy, as well as vibrational spectroscopies: Raman and coherent anti-Stokes Raman scattering, have been studied and tested over the years for explosives detection. The fundamentals and preferred applications of these methods for standoff and point detection of traces or bulk compounds in the gas and condensed phases are discussed, pointing to their advantages and drawbacks with the hope that recent progress will bring them closer to find their niche.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caygill JS, Davis F, Higson SPJ (2012) Current trends in explosive detection techniques. Talanta 88:14

    Article  CAS  Google Scholar 

  2. Willer U, Schade W (2009) Photonic sensor devices for explosive detection. Anal Bioanal Chem 395:275

    Article  CAS  Google Scholar 

  3. Wallin S, Pettersson A, Östmark H, Hobro A (2009) Laser-based standoff detection of explosives: a critical review. Anal Bioanal Chem 395:259

    Article  CAS  Google Scholar 

  4. Moore DS (2004) Instrumentation for trace detection of high explosives. Rev Sci Instrum 75:2499

    Article  CAS  Google Scholar 

  5. Moore DS, Scharff RJ (2009) Portable Raman explosives detection. Anal Bioanal Chem 393:1571

    Article  CAS  Google Scholar 

  6. Nambayah M, Quickenden TI (2004) A quantitative assessment of chemical techniques for detecting traces of explosives at counter-terrorist portals. Talanta 63:461

    Article  CAS  Google Scholar 

  7. Steinfeld JI, Wormhoudt J (1998) Explosives detection: a challenge for physical chemistry. Annu Rev Phys Chem 49:203

    Article  CAS  Google Scholar 

  8. Gottfried JL, De Lucia FC, Jr MCA, Miziolek AW (2009) Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects. Anal Bioanal Chem 395:283

    Article  CAS  Google Scholar 

  9. Simeonsson JB, Sausa RC (1998) Laser photofragmentation/fragment detection techniques for chemical analysis of the gas phase trends. Anal Chem 17:542

    CAS  Google Scholar 

  10. Simeonsson JB, Sausa RC (1996) A critical review of laser photofragmentation fragment detection techniques for gas phase chemical analysis. Appl Spectrosc Rev 31:1

    Article  CAS  Google Scholar 

  11. Daugey N, Shu J, Bar I, Rosenwaks S (1999) Nitrobenzene detection by one-color laser-photolysis/laser-induced fluorescence of NO (ν″ = 0–3). Appl Spectrosc 53:57

    Article  CAS  Google Scholar 

  12. Shu J, Bar I, Rosenwaks S (1999) Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO. Appl Opt 38:4705

    Article  CAS  Google Scholar 

  13. Shu J, Bar I, Rosenwaks S (2000) The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators. Appl Phys B 70:621

    Article  CAS  Google Scholar 

  14. Shu J, Bar I, Rosenwaks S (2000) NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates. Appl Phys B 71:665

    Article  CAS  Google Scholar 

  15. Gresham GL, Davies JP, Goodrich LD, Blackwood LG, Liu BYH, Thimsem D, Yoo SH, Hallowell SF (1994) Development of particle standards for testing detection systems – mass of rdx and particle-size distribution of composition-4 residues. Proc SPIE Int Soc Opt Eng 2276:34

    CAS  Google Scholar 

  16. Arusi-Parpar T, Heflinger D, Lavi R (2001) Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 degrees C: a unique scheme for remote detection of explosives. Appl Opt 40:6677

    Article  CAS  Google Scholar 

  17. Heflinger D, Arusi-Parpar T, Ron Y, Lavi R (2002) Application of a unique scheme for remote detection of explosives. Opt Commun 204:327

    Article  CAS  Google Scholar 

  18. Wynn CM, Palmacci S, Kunz RR, Clow K, Rothschild M (2008) Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation. Appl Opt 47:5767

    Article  CAS  Google Scholar 

  19. Smith GP, Krancevic B, Huestis DL, Oser H (2009) Laser desorption studies using laser-induced fluorescence of large aromatic molecules. Appl Phys B 94:127

    Article  CAS  Google Scholar 

  20. Wen B, Eilers H (2012) Potential interference mechanism for the detection of explosives via laser-based standoff techniques. Appl Phys B 106:473

    Article  CAS  Google Scholar 

  21. Gottfried JL, De Lucia FC, Munson CA, Miziolek AW (2008) Strategies for residue explosives detection using laser-induced breakdown spectroscopy. J Anal At Spectrom 23:205

    Article  CAS  Google Scholar 

  22. Portnov A, Rosenwaks S, Bar I (2003) Identification of organic compounds in ambient air via characteristic emission following laser ablation. J Luminesc 102:408

    Article  Google Scholar 

  23. Portnov A, Rosenwaks S, Bar I (2003) Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air. Appl Opt 42:2835

    Article  CAS  Google Scholar 

  24. Lopez-Moreno C, Palanco S, Laserna JJ, DeLucia F, Miziolek AW, Rose J, Walters RA, Whitehouse AI (2006) Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces. J Anal At Spectrom 21:55

    Article  CAS  Google Scholar 

  25. Gottfried JL (2013) Influence of metal substrates on the detection of explosive residues with laser-induced breakdown spectroscopy. Appl Opt 52:B10

    Article  CAS  Google Scholar 

  26. Wang Q, Jander P, Fricke-Begemann C, Noll R (2008) Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive. Spectrochim Acta B 63:1011

    Article  Google Scholar 

  27. Bauer C, Geiser P, Burgmeier J, Holl G, Schade W (2006) Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives. Appl Phys B 85:251

    Article  CAS  Google Scholar 

  28. Wong DM, Dagdigian PJ (2008) Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 μm. Appl Opt 47:G149

    Article  CAS  Google Scholar 

  29. Dikmelik Y, McEnnis C, Spicer JB (2008) Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene. Opt Express 16:5332

    Article  CAS  Google Scholar 

  30. De Lucia FC, Gottfried JL, Miziolek AW (2009) Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection. Opt Express 17:419

    Article  Google Scholar 

  31. Kearton B, Mattley Y (2008) Laser-induced breakdown spectroscopy – sparking new applications. Nat Photon 2:537

    Article  CAS  Google Scholar 

  32. Lui SL, Cheung NH (2005) Minimally destructive analysis of aluminum alloys by resonance-enhanced laser-induced plasma spectroscopy. Anal Chem 77:2617

    Article  CAS  Google Scholar 

  33. Lui SL, Cheung NH (2003) Resonance-enhanced laser-induced plasma spectroscopy: ambient gas effects. Spectrochim Acta B 58:1613

    Article  Google Scholar 

  34. Babushok VI, Delucia FC, Gottfried JL, Munson CA, Miziolek AW (2006) Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement. Spectrochim Acta B 61:999

    Article  Google Scholar 

  35. Gottfried JL, De Lucia FC, Munson CA, Miziolek AW (2007) Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection. Spectrochim Acta B 62:1405

    Article  Google Scholar 

  36. Boyd RW (2008) Nonlinear optics, 3rd edn. Academic, San Diego, p 19

    Google Scholar 

  37. Carter JC, Angel SM, Lawrence-Snyder M, Scaffidi J, Whipple RE, Reynolds JG (2005) Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument. Appl Spectrosc 59:769

    Article  CAS  Google Scholar 

  38. Sharma SK, Misra AK, Sharma B (2005) Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment. Spectrochim Acta A 61:2404

    Article  Google Scholar 

  39. Pettersson A, Johansson I, Wallin S, Nordberg M, Ostmark H (2009) Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance. Propell Explos Pyrotech 34:297

    Article  CAS  Google Scholar 

  40. Zachhuber B, Gasser C, Chrysostom E, Lendl B (2011) Stand-off spatial offset Raman spectroscopy for the detection of concealed content in distant objects. Anal Chem 83:9438

    Article  CAS  Google Scholar 

  41. Izake EL, Cletus B, Olds W, Sundarajoo S, Fredericks PM, Jaatinen E (2012) Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents. Talanta 94:342

    Article  CAS  Google Scholar 

  42. Ray MD, Sedlacek AJ, Wu M (2000) Ultraviolet mini-Raman lidar for stand-off, in situ identification of chemical surface contaminants. Rev Sci Instrum 71:3485

    Article  CAS  Google Scholar 

  43. Gaft M, Nagli L (2008) UV gated Raman spectroscopy for standoff detection of explosives. Opt Mater 30:1739

    Article  CAS  Google Scholar 

  44. Ehlerding A, Johansson I, Wallin S, Östmark H (2012) Resonance-enhanced Raman spectroscopy on explosives vapor at standoff distances. Int J Spectrosc 2012:158715

    Article  Google Scholar 

  45. Sharma SK, Misra AK, Lucey PG, Lentz RCF (2009) A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Spectrochim Acta A 73:468

    Article  Google Scholar 

  46. Moros J, Lorenzo JA, Lucena P, Tobaria LM, Laserna JJ (2010) Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor. Platform Anal Chem 82:1389

    Article  CAS  Google Scholar 

  47. Malka I, Petrushansky A, Rosenwaks S, Bar I (2013) Detection of explosives and latent fingerprint residues utilizing laser pointer–based Raman spectroscopy. Appl Phys B 113:511

    Article  CAS  Google Scholar 

  48. Malka I, Rosenwaks S, Bar I (2014) Photo-guided sampling for rapid detection and imaging of traces of explosives by a compact Raman spectrometer. Appl Phys Lett 104:221103

    Article  Google Scholar 

  49. Mogilevsky G, Borland L, Brickhouse M, Fountain AW III (2012) Raman spectroscopy for homeland security applications. Int J Spectrosc 2012:808079

    Article  Google Scholar 

  50. Nibler JW, Knighten GV (1979) In: Weber A (ed) Raman spectroscopy of gases and liquids. Springer, Berlin, pp 253–99

    Chapter  Google Scholar 

  51. Valentini JJ (1987) In: Radziemski LJ, Solarz RW, Paisner JA (eds) Laser spectroscopy and its applications, vol 11, Optical Science and Engineering Series. Marcel Dekker, New York, pp 507–64

    Google Scholar 

  52. Li H, Harris DA, Xu B, Wrzesinski PJ, Lozovoy VV, Dantus M (2008) Coherent mode-selective Raman excitation towards standoff detection. Opt Express 16:5499

    Article  Google Scholar 

  53. Li H, Harris DA, Xu B, Wrzesinski PJ, Lozovoy VV, Dantus M (2009) Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering. Appl Opt 48:B17

    Article  CAS  Google Scholar 

  54. Bremer MT, Wrzesinski PJ, Butcher N, Lozovoy VV, Dantus M (2011) Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering. Appl Phys Lett 99:101109

    Article  Google Scholar 

  55. Katz O, Natan A, Silberberg Y, Rosenwaks S (2008) Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses. Appl Phys Lett 92:171116

    Article  Google Scholar 

  56. Natan A, Levitt JM, Graham L, Katz O, Silberberg Y (2012) Standoff detection via single-beam spectral notch filtered pulses. Appl Phys Lett 100:051111

    Article  Google Scholar 

  57. Pestov D, Murawski RK, Ariunbold GO, Wang X, Zhi MC, Sokolov AV, Sautenkov VA, Rostovtsev YV, Dogariu A, Huang Y, Scully MO (2007) Optimizing the laser-pulse configuration for coherent Raman spectroscopy. Science 316:265

    Article  CAS  Google Scholar 

  58. Portnov A, Rosenwaks S, Bar I (2008) Detection of particles of explosives via backward coherent anti-Stokes Raman spectroscopy. Appl Phys Lett 93:041115

    Article  Google Scholar 

  59. Portnov A, Rosenwaks S, Bar I (2010) Highly sensitive standoff detection of explosives via backward coherent anti-Stokes Raman scattering. Appl Phys B 98:529

    Article  CAS  Google Scholar 

  60. Malka I, Rosenwaks S, Bar I (unpublished)

    Google Scholar 

Download references

Acknowledgments

Financial support from NATO Science for Peace (SfP) Project 983789, the Technion – The Institute for Future Security Research, the Israel Science Foundation founded by The Israel Academy of Science and Humanities and the James Franck Binational German-Israeli Program in Laser-Matter Interaction is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilana Bar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Malka, I., Rosenwaks, S., Bar, I. (2014). Laser-Based Detection of Explosives and Related Compounds. In: Banoub, J. (eds) Detection of Chemical, Biological, Radiological and Nuclear Agents for the Prevention of Terrorism. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9238-7_12

Download citation

Publish with us

Policies and ethics