Skip to main content
Log in

Laser-based standoff detection of explosives: a critical review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A review of standoff detection technologies for explosives has been made. The review is focused on trace detection methods (methods aiming to detect traces from handling explosives or the vapours surrounding an explosive charge due to the vapour pressure of the explosive) rather than bulk detection methods (methods aiming to detect the bulk explosive charge). The requirements for standoff detection technologies are discussed. The technologies discussed are mostly laser-based trace detection technologies, such as laser-induced-breakdown spectroscopy, Raman spectroscopy, laser-induced-fluorescence spectroscopy and IR spectroscopy but the bulk detection technologies millimetre wave imaging and terahertz spectroscopy are also discussed as a complement to the laser-based methods. The review includes novel techniques, not yet tested in realistic environments, more mature technologies which have been tested outdoors in realistic environments as well as the most mature millimetre wave imaging technique.

Standoff detection and identification is one of the most wanted capabilities

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weibring P, Edner H, Svanberg S (2003) Appl Opt 42:3583–3594

    CAS  Google Scholar 

  2. The Conference Board of Canada (2009) Environment—urban nitrogen dioxide concentration. http://www.conferenceboard.ca/HCP/Details/Environment/urban-nitrogen-dioxide-concentration.aspx

  3. Engman LK, Lindblad A, Tunemalm A-K, Claesson O, Lilliehöök B (2002) FOI briefing book on chemical weapons—threat, effects and protection. FOI, Swedish Defence Research Agency, Stockholm

    Google Scholar 

  4. Oxley JC, Smith JL, Shinde K, Moran J (2005) Pyrothechnics 30:127–130

    CAS  Google Scholar 

  5. Pettersson A, Wallin S, Brandner B, Eldsäter C, Holmgren E (2006) Explosives detection—a technology inventory. FOI-R–2030–SE, FOI, Swedish Defence Research Agency, Stockholm

    Google Scholar 

  6. Committee on the Review of Existing and Potential Standoff Explosives Detection Techniques (2004) Existing and potential standoff explosives detection techniques. 0-309-09130-6. Committee on the Review of Existing and Potential Standoff Explosives Detection Techniques, Washington

    Google Scholar 

  7. Cundall RB, Palmer TF, Wood CEC (1978) J Chem Soc Faraday Trans 74:1339–1345

    CAS  Google Scholar 

  8. Gresham GL, Davies JP, Goodrich LD et al (1994) Proc SPIE 2276:34–44

    CAS  Google Scholar 

  9. De Lucia FC, Harmon RS, Mcnesby KL, Winkel RJ, Miziolek AW (2003) Appl Opt 42:6148–6152

    Google Scholar 

  10. Yong LD, Nguyen T, Waschl J (1995) Laser ignition of explosives, pyrotechnics and propellants: a review. DSTO-TR-0068. DSTO Aeronautical and Maritime Research Laboratory, Melbourne

    Google Scholar 

  11. Östmark H, Roman N (1993) J Appl Phys 73:1993–2003

    Google Scholar 

  12. Östmark H, Gräns R (1990) J Energ Mater 8:308–322

    Google Scholar 

  13. Roman N, Pettersson A, Pettersson J, Bergman H (2002) Diode laser ignition of RDX 98/11. Paper presented at the 33 rd international annual conference of ICT, Karlsruhe

  14. Noll R, Fricke-Begemann C (2006) In: Schubert H, Rimski-Korsakov A (eds) Stand-off detection of suicide bombers and mobile subjects. Springer, Dordrecht

    Google Scholar 

  15. National Institute of Standards and Technology (2008) NIST chemistry WebBook. http://webbook.nist.gov/chemistry/. Accessed 15 Feb 2009

  16. Babushok VI, Delucia FC, Gottfried JL, Munson CA, Miziolek AW (2006) Spectrochim Acta Part B At Spectros 61:999–1014

    Google Scholar 

  17. De Lucia FC, Gottfried JL, Munson CA, Miziolek AW (2007) Spectrochim Acta Part B 62:1399–1404

    Google Scholar 

  18. Gottfried JL, De Lucia FC, Munson CA, Miziolek AW (2007) Spectrochim Acta Part B 62:1405–1411

    Google Scholar 

  19. López-Moreno C, Palanco S, Laserna JJ et al (2006) J Anal At Spectrom 21:55–60

    Google Scholar 

  20. Babushok VI, Delucia FC, Dagdigian PJ et al (2007) Spectrochim Acta Part B 62:1321–1328

    Google Scholar 

  21. De Lucia FC, Gottfried JL, Munson CA, Miziolek AW (2008) Appl Opt 47:G112–G121

    Google Scholar 

  22. Gottfried JL, De Lucia FC, Munson CA, Miziolek AW (2008) J Anal At Spectrom 23:205–216

    CAS  Google Scholar 

  23. Waterbury RD, Pal A, Killinger DK et al (2008) Proc SPIE 6954:695409

    Google Scholar 

  24. Bauer C, Burgmeier J, Bohling C, Schade W, Holl G (2006) Mid-infrared lidar for remote detection of explosives stand-off detection of suicide bombers and mobile subjects. Springer, Berlin

    Google Scholar 

  25. Baudelet M, Boueri M, Yu J et al (2007) Spectrochim Acta Part B 62:1329–1334

    Google Scholar 

  26. Hirschfeld T, Schildkraut ER, Tannenbaum H, Tannenbaum D (1972) Appl Phys Lett 22:38–40

    Google Scholar 

  27. Sharma SK, Lucey PG, Ghosh M, Hubble HW, Horton KA (2003) Spectrochim Acta Part A 59:2391–2407

    Google Scholar 

  28. Carter JC, Angel SM, Lawrence-Snyder M et al (2005) Appl Spectrosc 59:769–775

    CAS  Google Scholar 

  29. Angel SM, Kulp TJ, Vess TM (1992) Appl Spectrosc 46:1085–1091

    CAS  Google Scholar 

  30. Vandenabeele P, Castro K, Hargreaves M et al (2007) Anal Chim Acta 588:108–116

    CAS  Google Scholar 

  31. Carter JC, Scaffidi J, Burnett S et al (2005) Spectrochim Acta Part A 61:2288–2298

    Google Scholar 

  32. Lucey PG, Cooney TF, Sharma SK (1998) Lunar Planet Sci 29:1354

    Google Scholar 

  33. Sharma SK, Beall GH, Hubble HW et al (2003) Lunar Planet Sci 34:1915

    Google Scholar 

  34. Sharma SK, Wang A, Haskin LA (2005) Lunar Planet Sci 36:1524

    Google Scholar 

  35. Sharma SK, Misra AK, Sharma B (2005) Spectrochim Acta Part A 61:2404–2412

    Google Scholar 

  36. Sharma SK, Misra AK, Lucey PG, Lentz RCF, Chio CH (2007) Proc SPIE 6554:655405

    Google Scholar 

  37. Misra AK, Sharma SK, Lucey PG (2005) Lunar Planet Sci 36:1546

    Google Scholar 

  38. Pettersson A, Johansson I, Wallin S, Nordberg M, Östmark H (2009) Propellants Explos Pyrotech (in press)

  39. Wiens RC, Sharma SK, Thompson J, Misra A, Lucey PG (2005) Spectrochim Acta Part A 61:2324–2334

    Google Scholar 

  40. Courrèges-Lacoste GB, Ahlers B, Pérez FR (2007) Spectrochim Acta Part A 68:1023–1028

    Google Scholar 

  41. Gaft M, Nagi L (2008) Opt Mater 30:1739–1746

    CAS  Google Scholar 

  42. International Electrotechnical Commission (2001) International standard IEC 60825-1 Ed. 1.2 2001-8. International Electrotechnical Commission, Geneva

    Google Scholar 

  43. Szymanski NA (1967) Raman spectroscopy, theory and practice. Plenum, New York

    Google Scholar 

  44. Eckbreth AC (1988) Laser diagnostics for combustion temperature and species. Abacus, Cambridge

    Google Scholar 

  45. Wu M, Ray M, Fung KH et al (2000) Appl Spectrosc 54:800–806

    CAS  Google Scholar 

  46. Sedlacek AJ III, Christesen S, Chyba T, Ponsardin P (2004) Proc SPIE 5269:23–33

    CAS  Google Scholar 

  47. Chyba TH, Al E (2002) Laser interrogation of surface agents (LISA) for standoff sensing of chemical agents. Paper presented at the 21st international radar conference (ILRC), Quebec

  48. Lacey RJ, Hayward IP, Sands HS, Batchelder DN (1997) Proc SPIE 2937:100–105

    CAS  Google Scholar 

  49. Sands HS, Hayward IP, Kirkbride TE et al (1998) J Forensic Sci 43:509–513

    CAS  Google Scholar 

  50. Nagli L, Gaft M (2007) Proc SPIE 6552:65520Z

    Google Scholar 

  51. Christesen SD, Lochner JM, Hyre AM, Emge DK (2006) Proc SPIE 6218:621809

    Google Scholar 

  52. Hochenbleicher JG, Kiefer W, Brandmüller J (1976) Appl Spectrosc 30:528–531

    CAS  Google Scholar 

  53. Phillips DL, Myers AB (1991) J Phys Chem 95:7164–7171

    CAS  Google Scholar 

  54. Tarcea N, Al E (2007) Spectrochim Acta Part A 68:1029–1035

    Google Scholar 

  55. Nagli L, Gaft M, Fleger Y, Rosenbluh M (2008) Opt Mater 30:1747–1754

    CAS  Google Scholar 

  56. Crosley DR, Smith GP (1983) Opt Eng 22:545–553

    CAS  Google Scholar 

  57. Östmark H, Carlson M, Ekvall K (1996) Combust Flame 105:381–390

    Google Scholar 

  58. Milton MJT, Woods PT, Jolliffe BW, Swann NRW, Mcilveen TJ (1992) Appl Phys B 55:41–45

    Google Scholar 

  59. Phifer CC, Schmitt RL, Thorne LR, Hargis P Jr, Parmeter JE (2006) Studies of the laser-induced fluorescence of explosives and explosive compositions. SAND2006-6697. Sandia National Laboratories, Albuquerque

    Google Scholar 

  60. Simeonsson JB, Sausa RC (1998) Trends Anal Chem 17:542–550

    CAS  Google Scholar 

  61. Lemire GW, Simeonsson JB, Sausa RC (1993) Anal Chem 65:529–533

    CAS  Google Scholar 

  62. Swayambunathan V, Singh G, Sausa RC (1999) Appl Opt 38:6447–6454

    CAS  Google Scholar 

  63. Wu DD, Singh JP, Yueh FY, Monts DL (1996) Appl Opt 35:3998–4003

    CAS  Google Scholar 

  64. Arusi-Parpar T, Heflinger D, Lavi R (2001) Appl Opt 40:6677–6681

    CAS  Google Scholar 

  65. Cabalo JB, Sausa RC (2005) Explosive residue detection by laser surface photo-fragmentation-fragment detection spectroscopy: II. In situ and real-time monitoring of RDX, HMX, CL20, and TNT, by an improved oon probe. ARL-TR-3478. Army Research Laboratory, Aberdeen Proving Ground

    Google Scholar 

  66. Heflinger D, Arusi-Parpar T, Ron Y, Lavi R (2002) Opt Commun 204:327–331

    CAS  Google Scholar 

  67. Arusi-Parpar T, Levy I (2006) Remote detection of explosives by enhanced pulsed laser photodissociation/laser-induced fluorescence method. Paper presented at the NATO advanced research workshop on stand-off detection of suicide bombers and mobile subjects, Pfinztal, 13–14 December

  68. Bauer C, Geiser P, Burgmeier J, Holl G, Schade W (2006) Appl Phys B Lasers Opt 85:251–256

    CAS  Google Scholar 

  69. Bauer C, Sharma AK, Willer U et al (2008) Appl Phys B Lasers Opt 92:327–333

    CAS  Google Scholar 

  70. Willer U, Saraji M, Khorsandi A, Geiser P, Schade W (2006) Opt Lasers Eng 44:699–710

    Google Scholar 

  71. Rothman LS, Jacquemart D, Barbe A et al (2005) J Quant Spectrosc Radiat Transfer 96:139–204

    CAS  Google Scholar 

  72. Sigrist MW (1994) Air monitoring by spectroscopic techniques. Wiley-IEEE, New York

    Google Scholar 

  73. Amoruso S, Amodeo A, Armenante M et al (2002) Opt Lasers Eng 37:521–532

    Google Scholar 

  74. Jeffers JD, Roller CB, Namjou K et al (2004) Anal Chem 76:424–432

    CAS  Google Scholar 

  75. Chen PC, Joyner CC, Patrick ST, Benton KF (2002) Anal Chem 74:1618–1623

    CAS  Google Scholar 

  76. Portnov A, Rosenwaks S, Bar I (2008) Appl Phys Lett 93:3

    Google Scholar 

  77. Katz O, Natan A, Silberberg Y, Rosenwaks S (2008) Appl Phys Lett 92:171116

    Google Scholar 

  78. Li HW, Harris DA, Xu B et al (2008) Opt Express 16:5499–5504

    Google Scholar 

  79. Li HW, Harris DA, Xu B et al (2009) Appl Opt 48:B17–B22

    CAS  Google Scholar 

  80. Davies AG, Burnett AD, Fan W, Linfield EH, Cunningham JE (2008) Mater Today 11:18–26

    Google Scholar 

  81. Kemp MC (2006) Proc SPIE 6402:64020D

    Google Scholar 

  82. Appleby R, Wallace HB (2007) IEEE Trans Antennas Propag 55:2944–2956

    Google Scholar 

  83. Appleby R (2004) Passive millimeter wave imaging and security. Paper presented at the European radar conference, Amsterdam

    Google Scholar 

  84. Tribe WR, Newnham DA, Taday PF, Kemp MC (2004) Proc SPIE 5354:168–176

    Google Scholar 

  85. Leahy-Hoppa MR, Fitch MJ, Zheng X, Hayden LM, Osiander R (2007) Chem Phys Lett 434:227–230

    CAS  Google Scholar 

  86. Burnett A, Fan W, Upadhya P et al (2006) Proc SPIE 6402:64020B

    Google Scholar 

  87. Yuan T, Liu HB, Xu JZ et al (2003) Proc SPIE 5070:28–37

    Google Scholar 

  88. Allis DG, Prokhorova DA, Korter TM (2006) J Phys Chem 110:1951–1959

    CAS  Google Scholar 

  89. Barber J, Hooks DE, Funk DJ et al (2005) J Phys Chem 109:3501–3505

    CAS  Google Scholar 

  90. Allis DG, Zeitler JA, Taday P, Korter TM (2008) Chem Phys Lett 463:84–89

    CAS  Google Scholar 

  91. Allis DG, Prokhorova DA, Fedor AM, Korter TM (2006) Proc SPIE 6212:62120F

    Google Scholar 

  92. Allis DG, Korter TM (2007) Int J High Speed Electron Syst 17:193–212

    CAS  Google Scholar 

  93. Liu H-B, Chen Y, Sebastiaans GJ, Zhang X-C (2006) Opt Express 14:415–423

    CAS  Google Scholar 

  94. Hu Y, Huang P, Guo L, Wang X, Zhang C (2006) Phys Lett A 359:728–732

    CAS  Google Scholar 

  95. Kemp MC, Taday PF, Cole BE et al (2003) Proc SPIE 5070:44–52

    Google Scholar 

  96. Chen Y, Liu H, Deng Y et al (2004) Chem Phys Lett 400:357–361

    CAS  Google Scholar 

  97. Chen Y, Liu H, Deng Y et al (2004) Proc SPIE 5411:1–8

    Google Scholar 

  98. Chen J, Chen Y, Zhao H, Sebastiaans GJ, Zhang X-C (2007) Opt Express 15:12060–12067

    CAS  Google Scholar 

  99. Chen Y, Liu H, Fitch MJ et al (2005) Proc SPIE 5790:19–24

    CAS  Google Scholar 

  100. Zhong H, Redo-Sanchez A, Zhang X-C (2006) Opt Express 14:9130–9141

    CAS  Google Scholar 

  101. Zhang Z, Zhang Y, Zhao G, Zhang C (2007) Optik 118:325–329

    CAS  Google Scholar 

  102. Shen YC, Lo T, Taday PF et al (2005) Appl Phys Lett 86:241116

    Google Scholar 

  103. Zhong H, Redo-Sanhez A, Zhang X-C (2007) Int J High Speed Electron Syst 17:239–249

    CAS  Google Scholar 

  104. Watanabe Y, Kawase K, Ikari T (2003) Appl Phys Lett 83:800–802

    CAS  Google Scholar 

  105. Watanabe Y, Kawase K, Ikari T et al (2004) Opt Commun 234:125–129

    CAS  Google Scholar 

  106. Baker C, Tribe WR, Lo T et al (2005) Proc SPIE 5790:1–10

    Google Scholar 

  107. Zimdars D, White J, Stuk G et al (2007) Int J High Speed Electron Syst 17:271–281

    CAS  Google Scholar 

  108. Zhong H, Redo A, Chen Y, Zhang X-C (2006) Proc SPIE 6212:62120L

    Google Scholar 

  109. Lo T, Gregory IS, Baker C et al (2006) Vibr Spectrosc 42:243–248

    CAS  Google Scholar 

  110. Fitch MJ, Leahy-Hoppa MR, Ott EW, Osiander R (2007) Chem Phys Lett 443:284–288

    CAS  Google Scholar 

  111. Ariunbold GO, Kash MM, Li H et al (2008) A model experiment for stand-off sensing, Paper presented at the 38th winter colloquium on the physics of quantum electronics, Snowbird, 6 January–10 February

  112. Kocharovsky V, Cameron S, Lehmann K et al (2005) Proc Natl Acad Sci USA 102:7806–7811

    CAS  Google Scholar 

  113. Van Neste CW, Senesac LR, Thundat T (2008) Appl Phys Lett 92:234102

    Google Scholar 

  114. Fuller AM, Hummel RE, Schollhorn C, Holloway PH (2006) Stand off detection of explosive materials by differential reflection spectroscopy. Paper presented at the conference on chemical and biological sensors for industrial and environmental monitoring II, Boston, 3–4 October

  115. Schollhorn C, Fuller AM, Gratier J, Hummel RE (2007) New developments on standoff detection of explosive materials by differential reflectometry - art. no. 65540C, Paper presented at the conference on chemical and biological sensing VIII, Orlando, 11–12 April

  116. Schollhorn C, Fuller AM, Gratier J, Hummel RE (2007) Appl Opt 46:6232–6236

    Google Scholar 

  117. Furstenberg R, Kendziora CA, Stepnowski J et al (2008) Appl Phys Lett 93:224103

    Google Scholar 

  118. Neste CWV, Senesac LR, Thundat T (2009) Anal Chem 81:1952–1956

    Google Scholar 

  119. Berk A, Bernstein LS, Robertson DC (1987) MODTRAN: a moderate resolution model for LOWTRAN. A483581. Spectral Sciences, Burlington

    Google Scholar 

  120. Vikman K, Iitti H, Matousek P et al (2005) Vibr Spectrosc 37:123–131

    CAS  Google Scholar 

  121. Barsberg S, Matousek P, Towrie M, Jørgensen H, Felby C (2006) Biophys J 90:2978–2986

    CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 218037, DARPA (Defence Advanced Research Projects Agency) grant no. HR0011-08-2-0031 and the Swedish Armed Forces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Wallin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallin, S., Pettersson, A., Östmark, H. et al. Laser-based standoff detection of explosives: a critical review. Anal Bioanal Chem 395, 259–274 (2009). https://doi.org/10.1007/s00216-009-2844-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2844-3

Keywords

Navigation