Skip to main content
Log in

Potential interference mechanism for the detection of explosives via laser-based standoff techniques

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A variety of laser-based standoff techniques are currently being developed for the detection of explosives. Many approaches focus on the detection of NO as an indicator for the presence of nitro-based explosives. One of these approaches uses lasers to vaporize the explosive molecules residing at or near a surface, photo-dissociate the molecules resulting in vibrationally hot NO, and then perform laser-induced fluorescence on the vibrationally hot NO. Most related reports have focused on using 236 nm or 247–248 nm for the laser excitation of vibrationally hot NO. In addition, a recent report suggests the use of 532 nm to desorb, vaporize, and photo-fragment explosive samples. We report here on energy transfer from laser-excited N2 to NO and its consequences for the detection of nitro-based explosives. A potential interference mechanism was found for using 532 nm and 236 nm. The interference mechanism is based upon multi-photon excitation (532 nm) or two-photon excitation (236 nm) into excited states of molecular nitrogen and subsequent energy transfer from nitrogen to NO, followed by NO luminescence. Such interference mechanisms highlight the complexity of the explosive detection problem and the need for complementary approaches to improve the detection capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.S. Moore, Rev. Sci. Instrum. 75, 2499 (2004)

    Article  ADS  Google Scholar 

  2. S. Singh, J. Hazard. Mater. 144, 15 (2007)

    Article  Google Scholar 

  3. J.I. Steinfeld, J. Wormhoudt, Annu. Rev. Phys. Chem. 49, 203 (1998)

    Article  ADS  Google Scholar 

  4. D.O. Henderson, R. Mu, Y.S. Tung, G.C. Huston, Appl. Spectrosc. 49, 444 (1995)

    Article  ADS  Google Scholar 

  5. J. Janni, B.D. Gilbert, R.W. Field, J.I. Steinfeld, Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 53, 1375 (1997)

    Article  ADS  Google Scholar 

  6. N.F. Fell, J.M. Widder, S.V. Medlin, J.B. Morris, R.A. PesceRodriguez, K.L. McNesby, J. Raman Spectrosc. 27, 97 (1996)

    Article  ADS  Google Scholar 

  7. K.L. McNesby, C.S. Coffey, J. Phys. Chem. B 101, 3097 (1997)

    Article  Google Scholar 

  8. K.L. Mcnesby, J.E. Wolfe, J.B. Morris, R.A. Pescerodriguez, J. Raman Spectrosc. 25, 75 (1994)

    Article  ADS  Google Scholar 

  9. M. Gaft, L. Nagi, Opt. Mater. 30, 1739 (2008)

    Article  ADS  Google Scholar 

  10. A. Portnov, I. Bar, S. Rosenwaks, Appl. Phys. B, Lasers Opt. 98, 529 (2010)

    Article  ADS  Google Scholar 

  11. D.D. Wu, J.P. Singh, F.Y. Yueh, D.L. Monts, Appl. Opt. 35, 3998 (1996)

    Article  ADS  Google Scholar 

  12. H. Zuckermann, G.D. Greenblatt, Y. Haas, J. Phys. Chem. 91, 5159 (1987)

    Article  Google Scholar 

  13. A. Mukherjee, S. Von der Porten, C.K.N. Patel, Appl. Opt. 49, 2072 (2010)

    Article  Google Scholar 

  14. B. Arnold, L. Kelly, J.B. Oleske, A. Schill, Anal. Bioanal. Chem. 395, 349 (2009)

    Article  Google Scholar 

  15. J.L. Gottfried, F.C. De Lucia, C.A. Munson, C. Ford, A.W. Miziolek, Detection of energetic materials and explosive residues with laser-induced breakdown spectroscopy: II. Stand-off measurements, in Army Research Laboratory (2007)

    Google Scholar 

  16. J.L. Gottfried, F.C. De Lucia, C.A. Munson, A.W. Miziolek, Anal. Bioanal. Chem. 395, 283 (2009)

    Article  Google Scholar 

  17. Y.Q. Guo, A. Bhattacharya, E.R. Bernstein, J. Phys. Chem. A 113, 85 (2009)

    Article  Google Scholar 

  18. C. Mullen, M.J. Coggiola, H. Oser, J. Am. Soc. Mass Spectrom. 20, 419 (2009)

    Article  Google Scholar 

  19. J. Shu, I. Bar, S. Rosenwaks, Appl. Opt. 38, 4705 (1999)

    Article  ADS  Google Scholar 

  20. J. Shu, I. Bar, S. Rosenwaks, Appl. Phys. B, Lasers Opt. 71, 665 (2000)

    Article  ADS  Google Scholar 

  21. J. Shu, I. Bar, S. Rosenwaks, Appl. Phys. B, Lasers Opt. 70, 621 (2000)

    Article  ADS  Google Scholar 

  22. J.D. White, F.A. Akin, H. Oser, D.R. Crosley, Appl. Opt. 50, 74 (2011)

    Article  Google Scholar 

  23. C.M. Wynn, S. Palmacci, R.R. Kunz, K. Clow, M. Rothschild, Appl. Opt. 47, 5767 (2008)

    Article  ADS  Google Scholar 

  24. C.M. Wynn, S. Palmacci, R.R. Kunz, M. Rothschild, Opt. Express 18, 5399 (2010)

    Article  ADS  Google Scholar 

  25. T. Arusi-Parpar, D. Heflinger, R. Lavi, Appl. Opt. 40, 6677 (2001)

    Article  ADS  Google Scholar 

  26. G. Laufer, R.H. Krauss, J.H. Grinstead, Opt. Lett. 16, 1037 (1991)

    Article  ADS  Google Scholar 

  27. W.B. Lewis, W.R. Wadt, Chem. Phys. Lett. 78, 266 (1981)

    Article  ADS  Google Scholar 

  28. W.G. Clark, D.W. Setser, J. Phys. Chem. 84, 2225 (1980)

    Article  Google Scholar 

  29. C.H. Dugan, J. Chem. Phys. 45, 87 (1966)

    Article  ADS  Google Scholar 

  30. T. Hikida, Y. Mori, J. Chem. Phys. 69, 346 (1978)

    Article  ADS  Google Scholar 

  31. L.G. Piper, L.M. Cowles, W.T. Rawlins, J. Chem. Phys. 85, 3369 (1986)

    Article  ADS  Google Scholar 

  32. J.M. Thomas, D.H. Katayama, Chem. Phys. Lett. 214, 250 (1993)

    Article  ADS  Google Scholar 

  33. A. Lofthus, P.H. Krupenie, J. Phys. Chem. Ref. Data 6, 113 (1977)

    Article  ADS  Google Scholar 

  34. J.B. Nee, C.Y. Yuan, J. Hsu, W.J. Chen, J.C. Yang, Chem. Phys. 315, 81 (2005)

    Article  ADS  Google Scholar 

  35. D.E. Shemansky, J. Chem. Phys. 51, 689 (1969)

    Article  ADS  Google Scholar 

  36. P.G. Wilkinson, J. Chem. Phys. 30, 773 (1959)

    Article  ADS  Google Scholar 

  37. G. Dilecce, P.F. Ambrico, S. De Benedictis, Plasma Sources Sci. Technol. 14, 561 (2005)

    Article  ADS  Google Scholar 

  38. S.V. Pancheshnyi, S.M. Starikovskaia, A.Y. Starikovskii, Chem. Phys. Lett. 294, 523 (1998)

    Article  ADS  Google Scholar 

  39. T.B. Settersten, B.D. Patterson, W.H. Humphries, J. Chem. Phys. 131, (2009)

  40. R.A. Young, G.A.St. John, J. Chem. Phys. 48, 898 (1968)

    Article  ADS  Google Scholar 

  41. J. Luque, D.R. Crosley, J. Phys. Chem. A 104, 2567 (2000)

    Article  Google Scholar 

  42. J. Le Calve, J. Chem. Phys. 58, 1446 (1973)

    Article  ADS  Google Scholar 

  43. F. Hellberg, S. Rosen, R. Thomas, A. Neau, M. Larsson, A. Petrignani, W.J. van der Zande, J. Chem. Phys. 118, 6250 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Eilers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, B., Eilers, H. Potential interference mechanism for the detection of explosives via laser-based standoff techniques. Appl. Phys. B 106, 473–482 (2012). https://doi.org/10.1007/s00340-011-4713-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4713-y

Keywords

Navigation