Skip to main content

Engineering Phytohormones for Abiotic Stress Tolerance in Crop Plants

  • Chapter
  • First Online:
Plant Hormones under Challenging Environmental Factors

Abstract

Abiotic stresses including salinity, drought, extreme temperatures, and heavy metals are posing serious threats to agricultural yields as well as the quality of produce. This necessitates the production of cultivars capable to withstand the harsh environmental conditions without substantial yield losses. Owing to the complexity underlying stress tolerance traits, conventional breeding techniques have met with limited success and demand effective supplements to feed the growing food demands worldwide. This necessitates the development and deployment of novel and potent approaches, and engineering of phytohormone metabolism could be a method of choice to produce climate resilient crops with higher yields. Phytohormones are considered critical for regulating and coordinating plant growth and development; however, in recent years, they have received great attention for their multifunctional roles in plant responses to environmental stimuli. Creditable research has shown that phytohormones including the classical ones – auxins, cytokinins, ethylene, gibberellins, and newer members including brassinosteroids, jasmonates, and strigolactones – may prove to be potent targets for their metabolic engineering for producing abiotic stress-tolerant crop plants. This chapter presents short description of the roles of phytohormones in abiotic stress responses and tolerance followed by reviewing attempts made by the plant biotechnologists for engineering of phytohormone metabolism, signal, transport, and perception to develop abiotic stress-tolerant crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez S, Marsh EL, Schroeder SG, Schachtman DP. Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ. 2008;31:325–40.

    Article  CAS  PubMed  Google Scholar 

  • Argueso CT, Ferreira JF, Kieber JJ. Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant Cell Environ. 2009;32:1147–60.

    Article  CAS  PubMed  Google Scholar 

  • Aswath CR, Kim SH, Mo SY, Kim DH. Transgenic plants of creeping bentgrass harboring the stress inducible gene, 9-cis-epoxycarotenoid dioxygenase, are highly tolerant to drought and NaCl stress. Plant Growth Regul. 2005;47:129–39.

    Article  CAS  Google Scholar 

  • Bittner F, Oreb M, Mendel RR. ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem. 2001;2001(276):40381–4.

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought: from genes to the whole plant. Funct Plant Biol. 2003;30:239–64.

    Article  CAS  Google Scholar 

  • Chen Y, Etheridge N, Schaller GE. Ethylene signal transduction. Ann Bot. 2005;95:901–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng M-C, Liao P-M, Kuo W-W, Lin T-P. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 2013;162:1566–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claeys H, Inzé D. The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol. 2013;162:1768–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coba de la Peña T, Cárcamo CB, Almonacid L, Zaballos A, Lucas MM, Balomenos D, et al. A salt stress-responsive cytokinin receptor homologue isolated from Medicago sativa nodules. Planta. 2008;227:769–79.

    Article  PubMed  CAS  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P. The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol. 2014;217:67–75.

    Article  CAS  PubMed  Google Scholar 

  • Davies PJ. The plant hormones: their nature, occurrence, and function. In: Davies PJ, editor. Plant hormones: biosynthesis, signal transduction, action! Dordrecht: Springer; 2010. p. 1–15.

    Chapter  Google Scholar 

  • De Smet I, Voss U, Lau S, Wilson M, Shao N, Timme RE, Swarup R, Kerr I, Hodgman C, Bock R, Bennet M, Jurgens G, Beeckman T. Unraveling the evolution of auxin signaling. Plant Physiol. 2010;155:209–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhaubhadel S, Browning KS, Gallie DR, Krishna P. Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J. 2002;29:681–91.

    Article  CAS  PubMed  Google Scholar 

  • Dhaubhadel S, Chaudhary S, Dobinson KF, Krishna P. Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol Biol. 1999;40:333–42.

    Article  CAS  PubMed  Google Scholar 

  • Divi UK, Krishna P. Brassinosteroids confer stress tolerance. In: Hirt H, editor. Plant stress biology. Weinheim: Wiley–VCH Verlag GmbH & Co. KGaA; 2009. p. 119–35.

    Chapter  Google Scholar 

  • Doltchinkova V, Angelova P, Ivanova E, Djillanov D, Moyankova D, Konstantinova T, Atanassov A. Surface electric charge of thylakoid membrane from genetically modified tobacco plants under freezing stress. J Phytochem Photobiol B Biol. 2013;119:22–30.

    Article  CAS  Google Scholar 

  • Du H, Wu N, Cui F, You L, Li X, Xiong L. A homolog of ETHYLENE OVER-PRODUCER, OsETOL1, differentially modulates drought and submergence tolerance in rice. Plant J. 2014;78:834–49.

    Article  CAS  PubMed  Google Scholar 

  • FAO. The Status of research and application of crop biotechnologies in developing countries. Italy: Rome; 2005.

    Google Scholar 

  • Friml J. Auxin transport—shaping the plant. Curr Opin Plant Biol. 2003;6:7–12.

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box mediated gene expression. Plant Cell. 2000;12:393–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukao T, Xiong L. Genetic mechanisms conferring adaptation to submergence and drought in rice: simple or complex? Curr Opin Plant Biol. 2013;16:196–204.

    Article  CAS  PubMed  Google Scholar 

  • Ghanem ME, Albacete A, Smigocki AC, Frébort I, Pospíšilová H, Martínez-Andújar C, et al. Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot. 2011;62:125–40.

    Article  CAS  PubMed  Google Scholar 

  • Goel S, Madan B. Genetic engineering of crop plants for abiotic stress tolerance In: Ahmed P, Rasool S, editors. Emerging Technologies and Managements of crop stress tolerance, vol 1. Amsterdam: Elsevier. 2014.

    Google Scholar 

  • Guo H, Ecker JR. The ethylene signaling pathway: new insights. Curr Opin Plant Biol. 2004;7:40–9.

    Article  CAS  PubMed  Google Scholar 

  • Guo JC, Duan RJ, Hu XW, Li KM, Fu SP. Isopentenyl transferase gene (ipt) downstream transcriptionally fused with gene expression improves the growth of transgenic plants. Transgenic Res. 2010;19:197–209.

    Article  CAS  PubMed  Google Scholar 

  • Ha CV, Le DT, Nishiyama R, Watanabe Y, Sulieman S, Tran UT, Mochida K, Van Dong N, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP. The auxin response factor transcription factor family in soybean: genome-wide identification and expression analyses during development and water stress. DNA Res. 2014;20:511–24.

    Google Scholar 

  • Hare PD, Cress WA, van Staden J. The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul. 1997;23:79–103.

    Article  CAS  Google Scholar 

  • Harrison MA. Cross-talk between phytohormone signaling pathways under both optimal and stressful environmental conditions. In: Khan NA, Nazar R, Iqbal N, Anjum NA, editors. Phytohormones and abiotic stress tolerance in plants. Berlin/Heidelberg: Springer; 2012. p. 49–76.

    Chapter  Google Scholar 

  • Hasanuzzaman M, Gill SS, Fujita M. Physiological role of nitric oxide in plants grown under adverse environmental conditions. In: Gill SS, Tuteja N, editors. Plant acclimation to environmental stress. New York: Springer; 2013. p. 269–322.

    Chapter  Google Scholar 

  • Huang J, Levine A, Wang Z. Plant abiotic stress. Scientific World J. 2013. doi:10.1155/2013/432836.

    Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 2001;27:325–33.

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Khurana J. Transcript profiling reveals diverse roles of auxin‐responsive genes during reproductive development and abiotic stress in rice. FEBS J. 2009;276:3148–62.

    Article  CAS  PubMed  Google Scholar 

  • Jeon J, Kim NY, Kim S, Kang NY, Novák O, Ku S-J, et al. A Subset of cytokinin two component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem. 2010;285:23371–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta. 2007;225:353–64.

    Article  CAS  PubMed  Google Scholar 

  • Kazan K. Auxin and the integration of environmental signals into plant root development. Ann Bot. 2013;112:1655–65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ke Q, Wang Z, Ji CY, Jeong JC, Lee HS, Li H, Xu B, Deng X, Kwak SS. Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxin-overproduction phenotypes and increased tolerance to abiotic stress. Plant Physiol Biochem. 2015;94:19–27.

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Lee K, Hwang H, Bhatnagar N, Kim D-Y, Yoon IS, Buyn M-O, Kim ST, Jung K-H, Kim BG. Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression. J Exp Bot. 2014;65:453–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Baek D, Park HC, Chun HJ, Oh D-H, Lee MK, Cha J-Y, Kim W-Y, Kim MC, Chung WS. Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit. Mol Plant. 2013;6:337–49.

    Article  CAS  PubMed  Google Scholar 

  • Klay I, Pirrello J, Riahi L, Bernadac A, Cherif A, Bouzayen M, Bouzid S. Ethylene response factors Sl-ERFB3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato. Sci World J. 2014;2014:1–12. doi:10.1155/2014/167681.

    Article  CAS  Google Scholar 

  • Koh S, Lee S-C, Kim M-K, Koh JH, Lee S, An G, Choe S, Kim SR. T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol. 2007;65:1158–64.

    Article  CAS  Google Scholar 

  • Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP. The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep. 2013;32:945–57.

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Léon-Kloosterziel KM, Schwartz SH, Zeevaart JAD. The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiol Biochem. 1998;36:83–9.

    Article  CAS  Google Scholar 

  • Krannich CT, Maletzki L, Kurowsky C, Horn R. Network candidate genes in breeding for drought tolerant crops. Int J Mol Sci. 2015;16:16378–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna P. Brassinosteroid-mediated stress responses. J Plant Growth Regul. 2003;22:289–97.

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Shriram V, Kishor PBK, Jawali N, Shitole MG. Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol Rep. 2010;4:37–48.

    Article  Google Scholar 

  • Landberg K, Pederson ER, Viaene T, Bozorg B, Friml J, Jonsson H, Thelander M, Sundberg E. The moss Physcomitrella patens reproductive organ development is highly organized, affected by the two SHI/STY genes and by the level of active auxin in the SHI/STY expression domain. Plant Physiol. 2013;162:1406–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhang J, Zhang J, Hao L, Hua J, Duan L, Zhang M, Li Z. Expression of an Arabidopsis molybdenum factor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions. Plant Biotechnol J. 2013;11:747–58.

    Article  CAS  PubMed  Google Scholar 

  • Li F, Asami T, Wu X, Tsang EW, Cutler AJ. A putative hydroxysteroid dehydrogenase involved in regulating plant growth and development. Plant Physiol. 2007;145:87–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Li Y, Zhang J, Xiao Y, Yue Y, et al. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.). PLoS One. 2013;8(1):e52126. doi:10.1371/journal.pone.0052126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mano Y, Nemoto K. The pathway of auxin biosynthesis in plants. J Exp Bot. 2012;63:2853–72.

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Zhang H, Tian S, Chang X, Jing R. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot. 2010;61:683–96.

    Article  CAS  PubMed  Google Scholar 

  • Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H. The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci U S A. 2011;108:18512–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason MG, Jha D, Salt DE, Tester M, Hill K, Kieber JJ, et al. Type-B response regulators ARR1 and ARR12 regulate expression of AtHKT1;1 and accumulation of sodium in Arabidopsis shoots. Plant J. 2010;64:753–63.

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra R, Bhalothia P, Bansal P, Basantani MK, Bharti V, Mehrotra S. Abscisic acid and abiotic stress tolerance—different tiers of regulation. J Plant Physiol. 2014;171:486–96.

    Article  CAS  PubMed  Google Scholar 

  • Narayana I, Lalonde S, Saini HS. Water-stress-induced ethylene production in wheat: a fact or artifact? Plant Physiol. 1991;96:406–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien JA, Benkova E. Cytokinin cross-talking during biotic and abiotic stress responses. Front Plant Sci. 2013;4:1–11. doi:10.3389/fpls.2013.00451.

    Article  Google Scholar 

  • Ogweno JO, Song XS, Shi K, Hu WH, Mao WH, Zhou YH, Yu JQ, Nogués S. Brassinosteroids Alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul. 2007;27:49–57.

    Article  CAS  Google Scholar 

  • Ozdemir F, Bor M, Demiral T, Türkan I. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul. 2004;42:203–11.

    Article  Google Scholar 

  • Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep. 2012;31:349–60.

    Article  CAS  PubMed  Google Scholar 

  • Park HY, Seok HY, Park BK, Kim SH, Goh CH, et al. Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress. Biochem Bioph Res Comm. 2008;375:80–5.

    Article  CAS  Google Scholar 

  • Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E. Cytokinin-mediated source⁄sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J. 2011;9:747–58.

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Zeevaart JAD. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol. 2002;128:544–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E. ABA perception and signaling. Trends Plant Sci. 2010;15:395–401.

    Article  CAS  PubMed  Google Scholar 

  • Reguera M, Peleg Z, Abdel-Tawab YM, Tumimbang EB, Delatorre CA, Blumwald E. Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiol. 2013;163(4):1609–22. doi:10.1104/pp.113.227702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, et al. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci U S A. 2007;104:19631–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling. The plant journal. 2010;61:1029–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasse J. Physiological actions of brassinosteroids: an update. J Plant Growth Regul. 2002;22:276–88.

    Article  CAS  Google Scholar 

  • Seo M, Aoki H, Koiwai H, Kamiya Y, Nambara E, et al. Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol. 2004;45:1694–703.

    Article  CAS  PubMed  Google Scholar 

  • Seo M, Koshiba T. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 2002;7:41–8.

    Article  CAS  PubMed  Google Scholar 

  • Sharma E, Sharma R, Borah P, Jain M, Khurana JP. Emerging roles of auxin in abiotic stress responses. In: Pandey GK, editor, Elucidation of abiotic stress signaling in plants. New York: Springer, 2015. p. 299–328

    Google Scholar 

  • Shashidhar VR, Prasad TG, Sudharshan L. Hormone signals from roots to shoots of sunflower (Helianthus annuus L.) moderate soil drying increases delivery of abscisic acid and depresses delivery of cytokinins in xylem sap. Ann Bot. 1996;78:151–5.

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol. 2003;6:410–17.

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Kumar R, Pareek A, Sopory SK, Singla-Pareek SL. Overexpression of Rice CBS domain containing protein improves salinity, oxidative and heavy metal tolerance in transgenic tobacco. Mol Biotechnol. 2012;52:205–16.

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Jha SK, Bagri J, Pandey GK. ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis. PLoS One. 2015;10(4):e0125168. doi:10.1371/journal.pone.0125168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skirycz A, De Bodt S, Obata T, De Clercq I, Claeys H, De Rycke R, et al. Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress. Plant Physiol. 2010;152:226–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Wang L, Xiong L. Comprehensive expression proWling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta. 2009;229:577–91.

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A. Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene. 2012;506:265–73.

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Radchuk V, Alawady A, Borisjuk L, Weier D, Staroske N, Fuchs J, Miersch O, Strickert M, Usadel B, Wobus U, Grimm B, Weber H, Weschke W. De‐regulation of abscisic acid contents causes abnormal endosperm development in the barley mutant seg8. Plant J. 2010;64:589–603.

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Radchuk V, Strickert M, Miersch O, Weschke W, Wobus U. Gene expression patterns reveal tissue‐specific signaling networks controlling programmed cell death and ABA‐regulated maturation in developing barley seeds. Plant J. 2006;47:310–27.

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kishor PBK. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene. 2007;388:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Thompson AJ, Andrews J, Mulholland BJ, McKee JMT, Hilton HW, et al. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiol. 2007;143:1905–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, et al. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J. 2000;23:363–74.

    Article  CAS  PubMed  Google Scholar 

  • Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci. 2015;6:1–20.

    Article  Google Scholar 

  • Tran LS, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, et al. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidin kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A. 2007;104:20623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tung SA, Smeeton R, White CA, Black CR, Taylor IB, et al. Overexpression of LeNCED1 in tomato (Solanum lycopersicum L.) with the rbcS-3C promoter allows recovery of lines that accumulate very high levels of abscisic acid and exhibit severe phenotypes. Plant Cell Environ. 2008;31:968–81.

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N. Abscisic acid and abiotic stress signaling. Plant Signal Behav. 2007;2:135–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol. 2006;17:113–22.

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M. Characterization of the ABA‐regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J. 2009;57:1065–78.

    Article  CAS  PubMed  Google Scholar 

  • Vardhini BV, Anjum NA. Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Front Env Sci. 2015;2:1–16.

    Article  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar‐Agarwal S, Zhu J, Zhu JK. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006;45:523–39.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang Z, Xu Y, Joo S-H, Kim S-K, Xue Z, Xu Z, Wang Z, Chong K. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J. 2009;57:498–510.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zhang W, Yin Z, Wen C-K. Rice CONSTITUTIVE TRIPLE-RESPONSE 2 is involved in the ethylene-receptor signaling and regulation of various aspects of rice growth and development. J Exp Bot. 2013;64:4863–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004;9:244–52.

    Article  CAS  PubMed  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, van Onckelen H. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell. 2003;15:1–20.

    Article  CAS  Google Scholar 

  • Werner T, Nehnevajova E, Köllmer I, Novák O, Strnad M, Krämer U, Schmulling T. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell. 2010;22:3905–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkinson S, Davies WJ. ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ. 2002;25:195–210.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ. Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot. 2012;63:3499–509.

    Article  CAS  PubMed  Google Scholar 

  • Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci U S A. 2011;108:18518–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ. Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant. 2009;2:73–83.

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK. Regulation of abscisic acid biosynthesis. Plant Physiol. 2003;133:29–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong LM, Lee H, Ishitani M, Zhu JK. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell. 2001;13:2063–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CY, Fu-Chiun Hsu F-C, Li JP, Wang NN, Shih M-C. The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis thaliana. Plant Physiol. 2011;156:202–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Frébort I, Galuszka P. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotech Adv. 2013;31:97–117.

    Article  CAS  Google Scholar 

  • Zapata PJ, Botella MA, Pretel MT, Serrano M. Responses of ethylene biosynthesis to saline stress in seedlings of eight plant species. Plant Growth Regul. 2007;53:97–106.

    Article  CAS  Google Scholar 

  • Zhang G, Chen M, Chen X, et al. Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot. 2008;59:4095–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Huang Z, Xie B, et al. The ethylene-, jasmonate-abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta. 2004;220:262–70.

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Wang WQ, Zhang GL, Kamínek M, Dobrev P, Xu J, et al. Senescence-inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava. J Integr Plant Biol. 2010a;52:653–9.

    CAS  PubMed  Google Scholar 

  • Zhang Q, Li J, Zhang W, Yan S, Wang R, Zhao J, et al. The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. Plant J. 2012;72:805–16.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Li F, Li D, Zhang H, Huang R. Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta. 2010b;232:765–74.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL. Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev. 2002;16:3100–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research activities in the laboratory of VK are supported by the funds under the Science and Engineering Research Board, Government of India, in the form of a Young Scientist Project [SERB-OYS; grant number SR/FT/LS-93/2011], and University Grants Commission Major Research Project [F. No. 41-521/2012 (SR)]. The use of the facilities created under DST-FIST is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabir Hussain Wani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kumar, V., Sah, S.K., Khare, T., Shriram, V., Wani, S.H. (2016). Engineering Phytohormones for Abiotic Stress Tolerance in Crop Plants. In: Ahammed, G., Yu, JQ. (eds) Plant Hormones under Challenging Environmental Factors. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7758-2_10

Download citation

Publish with us

Policies and ethics