Skip to main content

Utilization of Green Chemical Techniques in Enzymolysis of Cellulose

  • Chapter
  • First Online:
Sustainable Production of Bulk Chemicals
  • 839 Accesses

Abstract

The effective utilization of cellulose is topic concept. Among various methods, the interest in enzymolysis of cellulose is doubtless. Cellulase provides the highest selectivity for the hydrolysis of the β-glycosidic bonds of the cellulose backbone, with respect to any other chemical catalyst (i.e., acids, alkali, etc.). However, enzymolysis of cellulose suffers from slow reaction rates due in large part to the highly crystalline structure of cellulose and inaccessibility of enzyme adsorption sites. Ionic liquids (ILs) are recently being used as solvents or pretreatment for cellulose to improve the enzymolysis rates, which may well prove to be a potential route for utilizing cellulose as feedstock in biofuel and chemical production. Other methods such as chemical modification can further enhance the performance of cellulase in these ILs systems. This chapter reviews the recent research on cellulose-dissolving ILs, different chemical methods which are utilized to enhance the performance of cellulase in the IL systems and the design of compatible cellulase-IL systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wool R, Sun XS (2005) Bio-based polymers and composites. Elsevier, Amsterdam

    Google Scholar 

  2. Hermann WA (2006) Energy 31:1685

    Article  CAS  Google Scholar 

  3. Wise WH (2000) Energy resources: occurrence, production, conversion and use. Springer, New York

    Book  Google Scholar 

  4. Ragauskas AJ, Williams CK, Davison BH et al (2006) Science 311:484

    Article  CAS  PubMed  Google Scholar 

  5. Shuai L, Pan X (2012) Energy Environ Sci 5:6889

    Article  CAS  Google Scholar 

  6. Kishor PR, Chakraborty S (2013) Bioresour Technol 148:611

    Article  Google Scholar 

  7. Wada M, Ike M, Tokuyasu K (2010) Polym Degrad Stab 95:543

    Article  CAS  Google Scholar 

  8. Hamelinck CN, Amelinck G, Ijdonk H et al (2005) Biomass Bioenergy 28:384

    Article  CAS  Google Scholar 

  9. Johnson DL (1967) Brit. 1144048.

    Google Scholar 

  10. Fink HP, Weigel P, Purz HJ et al (2001) Prog Polym Sci 26:1473

    Article  CAS  Google Scholar 

  11. Zhang H, Wu J, Zhang J et al (2005) Marcromolecules 38:8272

    Article  CAS  Google Scholar 

  12. Swatloski RP, Spear SK, Holbrey JD et al (2002) J Am Chem Soc 124:4974

    Article  CAS  PubMed  Google Scholar 

  13. Zhu S, Wu Y, Chen Q et al (2006) Green Chem 8:325

    Article  CAS  Google Scholar 

  14. (a) Kline L, Hayes D, Womac AR et al (2010) Bioresource 5:1366; (b) Samayam IP, Schall CA (2010) Bioresour Technol 101:3561

    Google Scholar 

  15. Li B, Asikkala J, Filpponen I et al (2010) Ind Eng Chem Res 49:2477

    Article  CAS  Google Scholar 

  16. Li CL, Knierim B, Manisseri C et al (2010) Bioresour Technol 101:4900

    Article  CAS  PubMed  Google Scholar 

  17. Liu LY, Chen HZ (2006) Chin Sci Bull 51:2432

    Article  CAS  Google Scholar 

  18. Rinaldi R, Palkovits R, Schuth F et al (2008) Angew Chem Int Ed 47:8047

    Article  CAS  Google Scholar 

  19. Sayantan B, Charles AB, Petrich WJ et al (2012) Biotech Bioeng 109:434

    Article  Google Scholar 

  20. Wahlstrom RM, Suurnakki A (2015) Green Chem 17:694

    Article  CAS  Google Scholar 

  21. Zhang YP, Lynd LR (2004) Biotechnol Bioeng 88:797

    Article  CAS  PubMed  Google Scholar 

  22. Rantwijk FV, Sheldon RA (2007) Chem Rev 107:2757

    Article  PubMed  Google Scholar 

  23. Yang Z, Pan W (2005) Enzyme Microb Technol 37:19

    Article  CAS  Google Scholar 

  24. (a) Roosen C, Muller P, Greiner L (2008) Appl Microbiol Biotechnol 81:607; (b) Sureshkumar M, Lee CK (2009) J Mol Catal B Enzym 60:1; (c) Lozano P (2010) Green Chem 12:555

    Google Scholar 

  25. Alonso DM, Bond JQ, Dumesic JA (2010) Green Chem 12:1493

    Article  CAS  Google Scholar 

  26. Li Q, Jiang XL, He YC et al (2010) Appl Microb Biotechnol 87:117

    Article  CAS  Google Scholar 

  27. Ohira K, Abe Y, Kawatsura M et al (2012) Chemsuschem 5:388

    Article  CAS  PubMed  Google Scholar 

  28. Turner MB, Spear SK, Huddleston JG et al (2003) Green Chem 5:443

    Article  CAS  Google Scholar 

  29. Woodward J, Lee NE, Carmichael JS et al (1990) Biochim Biophys Acta 1037:81

    Article  CAS  PubMed  Google Scholar 

  30. Paljevac M, Habulin M, Knez Z (2006) CI CEQ 12:1816

    Article  Google Scholar 

  31. Salvador AC, Santos MDC, Saraiva JA (2010) Green Chem 12:632

    Article  CAS  Google Scholar 

  32. Wang Y, Radosevich M, Hayes D et al (2011) Biotechnol Bioeng 108:1042

    Article  CAS  PubMed  Google Scholar 

  33. Li WF, Wang LS, Zhou RH et al (2015) Green Chem. doi:10.1039/C4GC02136C

    Google Scholar 

  34. Ronny W, Alistair K, Arno P et al (2013) RSC Adv 3:20001

    Article  Google Scholar 

  35. Ahmad ANG, Dachyar A, Rizo E et al (2014) Bioresour Technol 155:177

    Article  Google Scholar 

  36. Xu JX, He BF, Wu B et al (2014) Bioresour Technol 157:166

    Article  CAS  PubMed  Google Scholar 

  37. Xu JX, Wang XF, Hu L et al (2015) Bioresour Technol 181:18

    Article  CAS  PubMed  Google Scholar 

  38. Jaeger V, Burney P, Pfaendtner J (2015) Biophys J 108:880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bose S, Armstrong DW, Petrich JW (2010) J Phys Chem B 114:8221

    Article  CAS  PubMed  Google Scholar 

  40. Wolski PW, Clark DS, Blanch HW (2011) Green Chem 13:3107

    Article  CAS  Google Scholar 

  41. Wahlström R, Rovio S, Suurnäkki A (2012) RSC Adv 2:4472

    Article  Google Scholar 

  42. Engel P, Mladenov R, Wulfhorst H et al (2010) Green Chem 12:1959

    Article  CAS  Google Scholar 

  43. Ebner G, Vejdovszky P, Wahlström R et al (2013) J Mol Cat B 99:121

    Article  Google Scholar 

  44. Engel P, Krull S, Seiferheld B et al (2012) Bioresour Technol 115:27

    Article  CAS  PubMed  Google Scholar 

  45. D’Arrigo P, Allegretti C, Tamborini S et al (2014) J Mol Cat B 106:76

    Article  Google Scholar 

  46. Wahlström R, Rahikainen J, Kruus K et al (2014) Biotechnol Bioeng 111:726

    Article  PubMed  Google Scholar 

  47. Zhao H (2010) J Chem Technol Biotechnol 85:891

    Article  CAS  Google Scholar 

  48. Moniruzzaman M, Kamiya N, Goto M (2010) Org Biomol Chem 8:2887

    Article  CAS  PubMed  Google Scholar 

  49. Xu JX, Liu XY, He JL et al (2015) J Chem Tech Biotech 90:57

    Article  CAS  Google Scholar 

  50. Nordwald EM, Brunecky R, Himmel ME (2014) Biotechnol Bioeng 111:1541

    Article  CAS  PubMed  Google Scholar 

  51. Jones PO, Vasudevan PT (2010) Biotechnol Lett 32:103

    Article  CAS  PubMed  Google Scholar 

  52. Fei JJ, Li Q, Feng YY et al (2013) Appl Mech Mater 361–363:339

    Article  Google Scholar 

  53. Lozano P, Bernal B, Bernal JM et al (2011) Green Chem 13:1406

    Article  CAS  Google Scholar 

  54. Su ZL, Yang XY, Li L et al (2012) Afr J Microb Res 6:64

    CAS  Google Scholar 

  55. Yoshimoto M, Tanimura K, Tokunaga K et al (2013) Biotechnol Prog 29:1190

    Article  CAS  PubMed  Google Scholar 

  56. (a) Inada Y, Takahashi K, Yoshimoto T et al (1996) Trends Biotechnol 4:190; (b) Kaar JL, Jesionowski AM, Berberich JA (2003) J Am Chem Soc 125:4125.

    Google Scholar 

  57. Park KN, Park JW (2000) J Appl Poly Sci 77:368

    Article  CAS  Google Scholar 

  58. Kinstler OB, Brems DN, Lauren SL (1996) Pharm Res 13:9962

    Article  Google Scholar 

  59. Wong SS (1991) Chemistry of protein conjugation and cross-linking. CRC Press, Boca Raton, Florida

    Google Scholar 

  60. Li L, Xie J, Yu S et al (2013) Green Chem 15:1624

    Article  CAS  Google Scholar 

  61. Adsul MG, Terwadkar AP, Varma AJ et al (2009) Bioresources 4:1670

    CAS  Google Scholar 

  62. Pottkämper J, Barthen P, Ilmberger N et al (2009) Green Chem 11:957

    Article  Google Scholar 

  63. Ilmberger N, Meske D, Juergensen J et al (2012) Appl Microbiol Biotechnol 95:135

    Article  CAS  PubMed  Google Scholar 

  64. Datta S, Holmes B, Park JI et al (2010) Green Chem 12:338

    Article  CAS  Google Scholar 

  65. Klose H, Roder J, Girfoglio M et al (2012) Biotechnol Biofuels 5:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liang C, Xue Y, Fioroni M et al (2011) Appl Microbiol Biotechnol 89:315

    Article  CAS  PubMed  Google Scholar 

  67. Gladden JM, Allgaier M, Miller CS et al (2011) Appl Environ Microbiol 77:5804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Trivedi N, Gupta V, Reddy CRK et al (2013) Bioresour Technol 132:313

    Article  CAS  PubMed  Google Scholar 

  69. Raddadi N, Cherif A, Daffonchio D et al (2013) Bioresour Technol 150:121

    Article  CAS  PubMed  Google Scholar 

  70. Ferdjani S, Ionita M, Roy B et al (2011) Biotechnol Lett 33:1215

    Article  CAS  PubMed  Google Scholar 

  71. Zhang T, Datta S, Eichler J et al (2011) Green Chem 13:2083

    Article  CAS  Google Scholar 

  72. Gladden J, Park J, Bergmann J et al (2014) Biotechnol Biofuels 7:15

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lehmann C, Bocola M, Streit WR et al (2014) Appl Microbiol Biotechnol 98:5775

    Article  CAS  PubMed  Google Scholar 

  74. Lang M, Kamrat T, Nidetzky B (2006) Biotechnol Bioeng 95:1093

    Article  CAS  PubMed  Google Scholar 

  75. Kudou M, Kubota Y, Nakashima N et al (2014) J Mol Cat B 104:17

    Article  CAS  Google Scholar 

  76. Xu JX, Wu B, Hu L et al (2015) Chem Eng J 267:163

    Article  CAS  Google Scholar 

  77. Zhao H, Baker GA, Song Z et al (2008) Green Chem 10:696

    Article  CAS  Google Scholar 

  78. Zhao H, Jones CL, Cowins JV et al (2009) Green Chem 11:1128

    Article  CAS  Google Scholar 

  79. Tang S, Baker GA, Ravula S et al (2012) Green Chem 14:2922

    Article  CAS  Google Scholar 

  80. Li L, Xie J, Yu S et al (2012) RSC Adv 2:11712

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Li or Shitao Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, L., Yu, S., Liu, S., Liu, F., Xie, C. (2016). Utilization of Green Chemical Techniques in Enzymolysis of Cellulose. In: Xian, M. (eds) Sustainable Production of Bulk Chemicals. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7475-8_6

Download citation

Publish with us

Policies and ethics