Skip to main content

Beyond the Channel: Role of Connexins in Regulating Normal and Cancerous Processes in the Mammary Gland

  • Chapter
Intercellular Communication in Cancer

Abstract

The mammary epithelium possesses a well-defined architecture mediated by cell-extracellular matrix and cell-cell junctions that is essential for the coordinated continuous development of the mammary gland. The dynamic remodeling of the mammary gland is orchestrated by cellular responses to environmental cues that are relayed through the interplay between cell-cell junctions themselves including tight junctions, adherens junctions, desmosomes and gap junctions, and their interacting partners, notably polarity proteins. In this chapter, we address the molecular dynamics of gap junctions and the roles that these junctions have been ascribed in modulating normal and mammary cancer behaviors. We aim to highlight how connexins, the building blocks of gap junctions, have transcended their gap junction-dependent functions as structural cellular components and are now perceived as signaling hubs. These structural entities are able to integrate messages from the cell’s surrounding and modulate cytoplasmic downstream signaling pathways that regulate cell function and often gene expression during the normal differentiation of the mammary epithelium. We also elaborate on the changes in the expression, function and localization of gap junctions and connexins and their consequences for mammary cancer progression. Finally, we present recent breast cancer therapies that target gap junction proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maller O, Martinson H, Schedin P (2010) Extracellular matrix composition reveals complex and dynamic stromal-epithelial interactions in the mammary gland. J Mammary Gland Biol Neoplasia 15:301–318

    Article  PubMed  Google Scholar 

  2. Lelièvre SA (2009) Contributions of extracellular matrix signaling and tissue architecture to nuclear mechanisms and spatial organization of gene expression control. (BBA)-Gen Subj 9:925–935

    Article  CAS  Google Scholar 

  3. Talhouk R (2012) On cell–matrix interactions in mammary gland development and breast cancer. Cold Spring Harb Perspect Biol 4:8

    Article  CAS  Google Scholar 

  4. Tiede B, Kang Y (2011) From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Res 21:245–257

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hens JR, Wysolmersk JJ (2005) Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res 7:220–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Breen N, Gentleman JF, Schiller JS (2011) Update on mammography trends: comparisons of rates in 2000, 2005, and 2008. Cancer 117:2209–2218

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bazzoun D, Lelievre SA, Talhouk RS (2013) Polarity proteins as regulators of cell junction complexes: implications for breast cancer. Pharmacol Ther 138:418–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brennan K, Offiah G, Mcsherry E, Hopkins A (2010) Tight junctions: a barrier to the initiation and progression of breast cancer? J Biomed Biotechnol 2010:460607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE (2008) Structure and function of claudins. Biochim Biophys Acta 1778:631–645

    Article  CAS  PubMed  Google Scholar 

  10. Martin TA, Jiang WG (2009) Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta 1788:872–891

    Article  CAS  PubMed  Google Scholar 

  11. Nusrat A, Brown GT, Tom J, Drake A, Bui TT, Quan C et al (2005) Multiple protein interactions involving proposed extracellular loop domains of the tight junction protein occludin. Mol Biol Cell 16:1725–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Giepmans BN (2004) Gap junctions and connexin-interacting proteins. Cardiovasc Res 62:233–245

    Article  CAS  PubMed  Google Scholar 

  13. Utepbergenov DI, Fanning AS, Anderson JM (2006) Dimerization of the scaffolding protein ZO-1 through the second PDZ domain. J Biol Chem 281:24671–24677

    Article  CAS  PubMed  Google Scholar 

  14. Mandell KJ, Babbin BA, Nusrat A, Parkos CA (2005) Junctional adhesion molecule 1 regulates epithelial cell morphology through effects on β1 integrins and Rap1 activity. J Biol Chem 280:11665–11674

    Article  CAS  PubMed  Google Scholar 

  15. Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS et al (2005) High throughput mapping of a dynamic signaling network in mammalian cells. Science 307:1621–1625

    Article  CAS  PubMed  Google Scholar 

  16. Hoevel T, Macek R, Swisshelm K, Kubbies M (2004) Reexpression of the TJ protein CLDN1 induces apoptosis in breast tumor spheroids. Int J Cancer 108:374–383

    Article  CAS  PubMed  Google Scholar 

  17. Osanai M, Murata M, Nishikiori N, Chiba H, Sawada N (2007) Epigenetic silencing of claudine-6 promotes anchorage independent growth of breast carcinoma cells. Cancer Res 98:1557–1562

    CAS  Google Scholar 

  18. Ehrlich JS, Hansen MD, Nelson WJ (2002) Spatio-temporal regulation of rac1 localization and lamellipodia dynamics during epithelial cell–cell adhesion. Dev Cell 3:259–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lanigan F, McKiernan E, Brennan DJ, Hegarty S, Millikan RC, McBryan J et al (2009) Increased claudin-4 expression is associated with poor prognosis and high tumour grade in breast cancer. Int J Cancer 124:2088–2097

    Article  CAS  PubMed  Google Scholar 

  20. Wijnhoven BPL, Dinjens WNM, Pignatelli M (2000) E-cadherin-βcatenin cell–cell adhesion complex and human cancer. Br J Surg 87:992–1005

    Article  CAS  PubMed  Google Scholar 

  21. Getsios S, Amargo EV, Dusek RL, Ishii K, Sheu L, Godsel LM, Green KJ (2004) Coordinated expression of desmoglein 1 and desmocollin 1 regulates intercellular adhesion. Differentiation 72:419–433

    Article  CAS  PubMed  Google Scholar 

  22. Holthofer B, Windoffer R, Troyanovsky S, Leube RE (2007) Structure and function of desmosomes. Int Rev Cytol 264:65–163

    Article  PubMed  CAS  Google Scholar 

  23. Runswick SK, O’Hare MJ, Jones L, Streuli CH, Garrod DR (2001) Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nat Cell Biol 3:823–830

    Article  CAS  PubMed  Google Scholar 

  24. Nollet F, Kools P, van Roy F (2000) Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 299:551–572

    Article  CAS  PubMed  Google Scholar 

  25. Merritt AJ, Berika MY, Zhai W, Kirk SE, Ji B, Hardman MJ, Garrod DR (2002) Suprabasal desmoglein 3 expression in the epidermis of transgenic mice results in hyperproliferation and abnormal differentiation. Mol Cell Biol 22:5846–5858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Elias PM, Matsuyoshi N, Wu H, Lin C, Wang ZH, Brown BE, Stanley JR (2001) Desmoglein isoform distribution affects stratum corneum structure and function. J Cell Biol 153:243–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davies EL, Gee JMW, Cochrane RA, Jiang WG, Sharma AK, Nicholson RI et al (1999) The immunohistochemical expression of desmoplakin and its role in vivo in the progression and metastasis of breast cancer. Eur J Cancer 35:902–907

    Article  CAS  PubMed  Google Scholar 

  28. Knudsen KA, Wheelock MJ (2005) Cadherins and the mammary gland. J Cell Biochem 95:488–496

    Article  CAS  PubMed  Google Scholar 

  29. Maynadier M, Chambon M, Basile I, Gleizes M, Nirde P, Gary-Bobo M et al (2012) Estrogens promote cell-cell adhesion of normal and malignant mammary cells through increased desmosome formation. Mol Cell Endocrinol 25:126–133

    Article  CAS  Google Scholar 

  30. Cowing P, Rowland’s TM, Hat sell SJ (2005) Catherin’s and catena’s in breast cancer. Curr Opin Cell Biol 17:499–508

    Article  CAS  Google Scholar 

  31. Charafe-Jauffret E, Tarpin C, Bardou VJ, Bertucci F, Ginestier C, Braud AC et al (2004) Immunophenotypic analysis of inflammatory breast cancers: identification of an ‘inflammatory signature’. J Pathol 202:265–273

    Article  PubMed  Google Scholar 

  32. Kowalski PJ, Rubin MA, Kleer CG (2003) E-cadherin expression in primary carcinomas of the breast in its distant metastases. Breast Cancer Res 5:R217–R222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hatsell S, Rowlands T, Hiremath M, Cowin P (2003) β-catenin and Tcfs in mammary development and cancer. J Mammary Gland Biol Neoplasia 8:145–158

    Article  PubMed  Google Scholar 

  34. Talhouk RS, Fares MB, Rahme GJ, Hariri HH, Rayess T, Dbouk HA et al (2013) Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association. Exp Cell Res 319:3065–3080

    Article  CAS  PubMed  Google Scholar 

  35. Guttman JA, Finlay BB (2009) Tight junctions as targets of infectious agents. Biochim Biophys Acta Biomembr 1788:832–841

    Article  CAS  Google Scholar 

  36. Laird DW (2009) The gap junction proteome and its relationship to disease. Cell Press 20:92–101

    Google Scholar 

  37. Vinken M, Vanhaecke T, Papeleu P, Snykers S, Henkens T et al (2006) Connexins and their channels in cell growth and cell death. Cell Signal 18:592–600

    Article  CAS  PubMed  Google Scholar 

  38. Domhan S, Ma L, Tai A, Anaya Z, Beheshti A, Zeier M et al (2011) Intercellular communication by exchange of cytoplasmic material via tunneling nano-tube like structures in primary human renal epithelial cells. PLoS One 6:e21283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wustner D (2007) Plasma membrane sterol distribution resembles the surface topography of living cells. Mol Biol Cell 18:211–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pietilä M, Lehenkari P, Kuvaja P, Kaakinen M, Kaul SC, Wadhwa R (2013) Mortalin antibody-conjugated quantum dot transfer from human mesenchymal stromal cells to breast cancer cells requires cell–cell interaction. Exp Cell Res 319:2770–2780

    Article  PubMed  CAS  Google Scholar 

  41. Nagasawa K, Chiba H, Fujita H, Kojima T, Saito T, Endo T et al (2006) Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells. J Cell Physiol 208:123–132

    Article  CAS  PubMed  Google Scholar 

  42. Ai Z, Fischer A, Spray DC, Brown AM, Fishman GI (2000) Wnt-1 regulation of connexin43 in cardiac myocytes. J Clin Invest 105:161–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu X, Li WE, Huang GY, Meyer R, Chen T, Luo Y et al (2001) N-cadherin and Cx43alpha1 gap junctions modulates mouse neural crest cell motility via distinct pathways. Cell Commun Adhes 8:321–324

    Article  CAS  PubMed  Google Scholar 

  44. Nelson WJ (2003) Adaptation of core mechanisms to generate cell polarity. Nature 422:766–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dow LE, Elsum IA, King CL, Kinross KM, Richardson HE, Humbert PO (2008) Loss of human scribble cooperates with H-Ras to promote cell invasion through deregulation of MAPK signaling. Oncogene 27:5988–6001

    Article  CAS  PubMed  Google Scholar 

  46. Ebnet K (2008) Organization of multiprotein complexes at cell–cell junctions. Histochem Cell Biol 130:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nakagawa M, Fukata M, Yamaga M, Itoh N, Kaibuchi K (2001) Recruitment and activation of Rac1 by the formation of E-cadherin-mediated cell–cell adhesion sites. J Cell Sci 114:1829–1838

    CAS  PubMed  Google Scholar 

  48. Bradfield PF, Nourshargh S, Aurrand-Lions M, Imhof BA (2007) JAM family and related proteins in leukocyte migration (Vestweber series). Arterioscler Thromb Vasc Biol 27:2104–2112

    Article  CAS  PubMed  Google Scholar 

  49. Ebnet K, Suzuki A, Ohno S, Vestweber D (2004) Junctional adhesion molecules (JAMs): more molecules with dual functions? J Cell Sci 117:19–29

    Article  CAS  PubMed  Google Scholar 

  50. Weber C, Fraemohs L, Dejana E (2007) The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol 7:467–477

    Article  CAS  PubMed  Google Scholar 

  51. Betschinger J, Mechtler K, Knoblich JA (2003) The par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422:326–330

    Article  CAS  PubMed  Google Scholar 

  52. Qin Y, Capaldo C, Gumbiner BM, Macara IG (2005) The mammalian scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J Cell Biol 171:1061–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Butkevich E, Hülsmann S, Wenzel D, Shirao T, Duden R, Majoul I (2004) Drebrin is a novel connexin-43 binding partner that links gap junctions to the submembrane cytoskeleton. Curr Biol 14:650–658

    Article  CAS  PubMed  Google Scholar 

  54. Pfenniger A, Wohlwend A, Kwak BR (2011) Mutations in connexin genes and disease. Eur J Clin Invest 41:103–116

    Article  CAS  PubMed  Google Scholar 

  55. Evans WH, Martin PE (2002) Gap junctions: structure and function. Molec Membr Biol 19:121–136

    Article  CAS  Google Scholar 

  56. Rhett JM, Gourdie RG (2012) The perinexus: a new feature of Cx43 gap junction organization. Heart Rhythm 9:619–623

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dbouk HA, Mroue RM, El-Sabban ME, Talhouk RS (2009) Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal 7:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Herve JC, Bourmeyster N, Sarrouilhe D, Duffy HS (2007) Gap junctional complexes: from partners to functions. Prog Biophys Mol Biol 94:29–65

    Article  CAS  PubMed  Google Scholar 

  59. Rackauskas M, Neverauskas V, Skeberdis VA (2010) Diversity and properties of connexin gap junction channels. Medicina 46:1

    PubMed  Google Scholar 

  60. Eiberger J, Degen J, Romualdi A, Deutsch U, Willecke K, Söhl G (2001) Connexin genes in the mouse and human genome. Cell Adhes Commun 8:163–165

    Article  CAS  Google Scholar 

  61. Segretain D, Falk MM (2004) Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. BBA-Biomembr 1662:3–21

    Article  CAS  Google Scholar 

  62. Koval M (2006) Pathways and control of connexin oligomerization. Trends Cell Biol 16:159–166

    Article  CAS  PubMed  Google Scholar 

  63. Johnson RG, Meyer RA, Li XR, Preus DM, Tan L, Grunenwald H et al (2002) Gap junctions assemble in the presence of cytoskeletal inhibitors, but enhanced assembly requires microtubules. Exp Cell Res 275:67–80

    Article  CAS  PubMed  Google Scholar 

  64. Lauf U, Giepmans BN, Lopez P, Braconnot S, Chen SC, Falk MM (2002) Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells. Proc Natl Acad Sci U S A 99:10446–10451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Martin PE, Blundell G, Ahmad S, Errington RJ, Evans WH (2001) Multiple pathways in the trafficking and assembly of connexin 26, 32 and 43 into gap junction intercellular communication channels. J Cell Sci 114:3845–3855

    CAS  PubMed  Google Scholar 

  66. Duffy HS, Delmar M, Spray DC (2002) Formation of the gap junction nexus: binding partners for connexins. J Physiol Paris 96:243–249

    Article  CAS  PubMed  Google Scholar 

  67. Evans WH, De Vuyst E, Leybaert L (2006) The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rackauskas M, Verselis VK, Bukauskas FF (2007) Permeability of homotypic and heterotypic gap junction channels formed of cardiac connexins mCx30. 2, Cx40, Cx43, and Cx45. Am J Physiol Heart C 293:H1729–H1736

    Article  CAS  Google Scholar 

  69. Houghton FD (2005) Role of gap junctions during early embryo development. Reproduction 129:129–135

    Article  CAS  PubMed  Google Scholar 

  70. Yang SR, Cho SD, Ahn NS, Jung JW, Park JS, Jo EH et al (2005) Role of gap junctional intercellular communication (GJIC) through p38 and ERK1/2 pathway in the differentiation of rat neuronal stem cells. J Vet Med Sci 67:291–294

    Article  CAS  PubMed  Google Scholar 

  71. Yeager M, Harris AL (2007) Gap junction channel structure in the early 21st century: facts and fantasies. Curr Opin Cell Biol 19:521–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Katakowski M, Buller B, Wang X, Rogers T, Chopp M (2010) Functional microRNA is transferred between glioma cells. Cancer Res 70:8259–8263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Alev C, Urschel S, Sonntag S, Zoidl G, Fort AG, Höher T et al (2008) The neuronal connexin36 interacts with and is phosphorylated by CaMKII in a way similar to CaMKII interaction with glutamate receptors. Proc Natl Acad Sci U S A 105:20964–20969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Peracchia C (2004) Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim Biophys Acta 1662:61–80

    Article  CAS  PubMed  Google Scholar 

  75. González-Nieto D, Gómez-Hernández JM, Larrosa B, Gutiérrez C, Muñoz MD, Fasciani I et al (2008) Regulation of neuronal connexin-36 channels by pH. Proc Natl Acad Sci U S A 105:17169–17174

    Article  PubMed  PubMed Central  Google Scholar 

  76. Palacios-Prado N, Briggs SW, Skeberdis VA, Pranevicius M, Bennett MV, Bukauskas FF (2010) pH-dependent modulation of voltage gating in connexin45 homotypic and connexin45/connexin43 heterotypic gap junctions. Proc Natl Acad Sci U S A 107:9897–9902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Paulauskas N, Pranevicius H, Mockus J, Bukauskas FF (2012) Stochastic 16-state model of voltage gating of gap-junction channels enclosing fast and slow gates. Biophys J 102:2471–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Srinivas M, Kronengold J, Bukauskas FF, Bargiello TA, Verselis VK (2005) Correlative studies of gating in Cx46 and Cx50 hemichannels and gap junction channels. Biophys J 88:1725–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moreno AP, Lau AF (2007) Gap junction channel gating modulated through protein phosphorylation. Prog Biophys Mol Biol 94:107–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL (2011) Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev 40:387–426

    Article  CAS  PubMed  Google Scholar 

  81. Li MW, Mruk DD, Lee WM, Cheng CY (2010) Connexin 43 is critical to maintain the homeostasis of the blood–testis barrier via its effects on tight junction reassembly. Proc Natl Acad Sci U S A 107:17998–18003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jordan K, Chodock R, Hand AR, Laird DW (2001) The origin of annular junctions: a mechanism of gap junction internalization. J Cell Sci 114:763–773

    CAS  PubMed  Google Scholar 

  83. Leithe E, Brech A, Rivedal E (2006) Endocytic processing of connexin43 gap junctions: a morphological study. Biochem J 393:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Girao H, Pereira P (2003) Phosphorylation of connexin 43 acts as a stimuli for proteasome-dependent degradation of the protein in lens epithelial cells. Mol Vis 9:24–30

    CAS  PubMed  Google Scholar 

  85. Thomas MA, Zosso N, Scerri I, Demaurex N, Chanson M, Staub O (2003) A tyrosine-based sorting signal is involved in connexin43 stability and gap junction turnover. J Cell Sci 116:2213–2222

    Article  CAS  PubMed  Google Scholar 

  86. Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394:527–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Naus CC, Matsuuchi L (2013) Gap junction proteins on the move: connexins, the cytoskeleton and migration. BBA-Biomembr 1828:94–108

    Article  CAS  Google Scholar 

  88. Weber PA, Chang HC, Spaeth KE, Nitsche JM, Nicholson BJ (2004) The permeability of gap junction channels to probes of different size is dependent on connexin composition and permeant-pore affinities. Biophys J 87:958–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Goldberg GS, Moreno AP, Lampe PD (2002) Gap junctions between cells expressing connexin 43 or 32 show inverse permselectivity to adenosine and ATP. J Biol Chem 27:36725–36730

    Article  CAS  Google Scholar 

  90. Harris AL (2007) Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol 94(1):120–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kalra J, Shao Q, Qin H, Thomas T, Alaoui-Jamali MA, Laird DW (2006) Cx26 inhibits breast MDA-MB-435 cell tumorigenic properties by a gap junctional intercellular communication-independent mechanism. Carcinogenesis 27:2528–2537

    Article  CAS  PubMed  Google Scholar 

  92. Lee SW, Tomasetto C, Sager R (1991) Positive selection of candidate tumor-suppressor genes by subtractive hybridization. Proc Natl Acad Sci U S A 88:2825–2829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sato H, Hagiwara H, Ohde Y, Senba H, Virgona N, Yano T (2007) Regulation of renal cell carcinoma cell proliferation, invasion and metastasis by connexin 32 gene. J Membr Biol 216:17–21

    Article  CAS  PubMed  Google Scholar 

  94. Banks EA, Yu XS, Shi Q, Jiang JX (2007) Promotion of lens epithelial-fiber differentiation by the C-terminus of connexin 45.6 a role independent of gap junction communication. J Cell Sci 120:3602–3612

    Article  CAS  PubMed  Google Scholar 

  95. Cina C, Maass K, Theis M, Willecke K, Bechberger JF, Naus CC (2009) Involvement of the cytoplasmic C-terminal domain of connexin43 in neuronal migration. J Neurosci 29:2009–2021

    Article  CAS  PubMed  Google Scholar 

  96. Giese S, Hossain H, Markmann M, Chakraborty T, Tchatalbachev S, Guillou F et al (2012) Sertoli-cell-specific knockout of connexin 43 leads to multiple alterations in testicular gene expression in prepubertal mice. Dis Model Mech 5:895–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schajnovitz A, Itkin T, D’Uva G, Kalinkovich A, Golan K, Ludin A et al (2011) CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin43 and connexin45 gap junctions. Nat Immunol 12:391–398

    Article  CAS  PubMed  Google Scholar 

  98. Xu X, Francis R, Wei CJ, Linask KL, Lo CW (2006) Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells. Development 133:3629–3639

    Article  CAS  PubMed  Google Scholar 

  99. Dang X, Doble BW, Kardami E (2003) The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Mol Cell Biochem 242:35–38

    Article  CAS  PubMed  Google Scholar 

  100. Wei CJ, Xu X, Lo CW (2004) Connexins and cell signaling in development and disease. Annu Rev Cell Dev Biol 20:811–838

    Article  CAS  PubMed  Google Scholar 

  101. Chung SS, Lee WM, Cheng CY (1999) Study on the formation of specialized inter-Sertoli cell junctions in vitro. J Cell Physiol 181:258–272

    Article  CAS  PubMed  Google Scholar 

  102. Kojima T, Kokai Y, Chiba H, Yamamoto M, Mochizuki Y, Sawada N (2001) Cx32 but not Cx26 is associated with tight junctions in primary cultures of rat hepatocytes. Exp Cell Res 263:193–201

    Article  CAS  PubMed  Google Scholar 

  103. Kojima T, Spray DC, Kokai Y, Chiba H, Mochizuki Y, Sawada N (2002) Cx32 formation and/or Cx32-mediated intercellular communication induces expression and function of tight junctions in hepatocytic cell line. Exp Cell Res 276:40–51

    Article  CAS  PubMed  Google Scholar 

  104. Lee SW, Tomasetto C, Paul D, Keyomarsi K, Sager R (1992) Transcriptional downregulation of gap-junction proteins blocks junctional communication in human mammary tumor cell lines. J Cell Biol 118:1213–1222

    Article  CAS  PubMed  Google Scholar 

  105. Tomasetto C, Neveu MJ, Daley J, Horan PK, Sager R (1993) Specificity of gap junction communication among human mammary cells and connexin transfectants in culture. J Cell Biol 122:157–167

    Article  CAS  PubMed  Google Scholar 

  106. Laird DW, Fistouris P, Batist G, Alpert L, Huynh HT, Carystinos GD, Alaoui-Jamali MA (1999) Deficiency of connexin43 gap junctions is an independent marker for breast tumors. Cancer Res 59:4104–4110

    CAS  PubMed  Google Scholar 

  107. Park CC, Henshall-Powell RL, Erickson AC, Talhouk R, Parvin B, Bissell MJ (2003) Ionizing radiation induces heritable disruption of epithelial cell interactions. Proc Natl Acad Sci U S A 100:10728–10733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rakib MA, Kim YS, Jang WJ, Choi BD, Kim JO, Kong IK et al (2010) Attenuation of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced gap junctional intercellular communication (GJIC) inhibition in MCF-10A cells by c9, t11-conjugated linoleic acid. J Agric Food Chem 58:12022–12030

    Article  PubMed  CAS  Google Scholar 

  109. El-Sabban ME, Abi-Mosleh LF, Talhouk RS (2003) Developmental regulation of gap junctions and their role in mammary epithelial cell differentiation. J Mammary Gland Biol Neoplasia 8:463–473

    Article  PubMed  Google Scholar 

  110. McLachlan E, Shao Q, Laird DW (2007) Connexins and gap junctions in mammary gland development and breast cancer progression. J Membr Biol 218:107–121

    Article  CAS  PubMed  Google Scholar 

  111. Sohl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62:228–232

    Article  PubMed  CAS  Google Scholar 

  112. Talhouk RS, Elble RC, Bassam R, Daher M, Sfeir A, Mosleh LA et al (2005) Developmental expression patterns and regulation of connexins in the mouse mammary gland: Expression of connexin30 in lactogenesis. Cell Tissue Res 319:49–59

    Article  CAS  PubMed  Google Scholar 

  113. Locke D, Jamieson S, Stein T, Liu J, Hodgins M, Harris A et al (2007) Nature of Cx30-containing channels in the adult mouse mammary gland. Cell Tissue Res 328:97–107

    Article  CAS  PubMed  Google Scholar 

  114. Talhouk RS, Mroue R, Mokalled M, Abi-Mosleh L, Nehme R, Ismail A et al (2008) Heterocellular interaction enhances recruitment of α and β-catenins and ZO-2 into functional gap-junction complexes and induces gap junction-dependant differentiation of mammary epithelial cells. Exp Cell Res 314:3275–3291

    Article  CAS  PubMed  Google Scholar 

  115. Talhouk RS, Zeinieh MP, Mikati MA, El-Sabban ME (2008) Gap junctional intercellular communication in hypoxia-ischemia-induced neuronal injury. Prog Neurobiol 84:57–76

    Article  CAS  PubMed  Google Scholar 

  116. Bry C, Maass K, Miyoshi K, Willecke K, Ott T, Robinson G et al (2004) Loss of connexin 26 in mammary epithelium during early but not during late pregnancy results in unscheduled apoptosis and impaired development. Dev Biol 267:418–429

    Article  CAS  PubMed  Google Scholar 

  117. Plante I, Laird DW (2008) Decreased levels of connexin43 result in impaired development of the mammary gland in a mouse model of oculodentodigital dysplasia. Dev Biol 318:312–322

    Article  CAS  PubMed  Google Scholar 

  118. Locke D, Perusinghe N, Newman T, Jayatilake H, Evans WH, Monaghan P (2000) Developmental expression and assembly of connexins into homomeric and heteromeric gap junction hemichannels in the mouse mammary gland. J Cell Physiol 183:228–237

    Article  CAS  PubMed  Google Scholar 

  119. Locke D, Stein T, Davies C, Morris J, Harris A, Evans W et al (2004) Altered permeability and modulatory character of connexin channels during mammary gland development. Exp Cell Res 298:643–660

    Article  CAS  PubMed  Google Scholar 

  120. Dong B, Zhao F (2007) Involvement of the ubiquitous Oct-1 transcription factor in hormonal induction of β-casein gene expression. Biochem J 401:57–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Streuli CH, Bailey N, Bissell MJ (1991) Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. J Cell Biol 115:1383–1395

    Article  CAS  PubMed  Google Scholar 

  122. El-Saghir JA, El-Habre ET, El-Sabban ME, Talhouk RS (2011) Connexins: a junctional crossroad to breast cancer. Int J Dev Biol 55:773–780

    Article  PubMed  Google Scholar 

  123. Czyz J (2008) The stage-specific function of gap junctions during tumourigenesis. Cell Mol Biol Lett 13:92–102

    Article  CAS  PubMed  Google Scholar 

  124. Carystinos GD, Bier A, Batist G (2001) The role of connexin-mediated cell-cell communication in breast cancer metastasis. J Mammary Gland Biol Neoplasia 6:431–440

    Article  CAS  PubMed  Google Scholar 

  125. Elzarrad M, Haroon A, Willecke K, Dobrowolski R, Gillespie M, Al-mehdi A (2008) Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium. BMC Med 6:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Stoletov K, Strnadel J, Zardouzian E, Momiyama M, Park FD, Kelber JA et al (2013) Role of connexins in metastatic breast cancer and melanoma brain colonization. J Cell Sci 126:904–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kanczuga-Koda L, Sulkowski S, Lenczewski A, Koda M, Wincewicz A, Baltaziak M (2006) Increased expression of connexins 26 and 43 in lymph node metastases of breast cancer. J Clin Pathol 59:429–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kapoor P, Saunders MM, Li Z, Zhou Z, Sheaffer N, Kunze EL et al (2004) Breast cancer metastatic potential: correlation with increased heterotypic gap junctional intercellular communication between breast cancer cells and osteoblastic cells. Int J Cancer 111:693–697

    Article  CAS  PubMed  Google Scholar 

  129. Saunders MM, Seraj MJ, Li Z, Zhou Z, Winter CR, Welch DR et al (2001) Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res 61:1765–1767

    CAS  PubMed  Google Scholar 

  130. Pollmann MA, Shao Q, Laird DW, Sandig M (2005) Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture. Breast Cancer Res 7:R522–R534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Carmona-Fontaine C, Matthews CK, Kuriyama S, Moreno M, Dunn GA, Parsons M et al (2008) Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456:957–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Friedl P (2004) Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 16:14–23

    Article  CAS  PubMed  Google Scholar 

  133. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457

    Article  CAS  PubMed  Google Scholar 

  134. Momiyama M, Omori Y, Ishizaki Y, Nishikawa Y, Tokairin T, Ogawa J et al (2003) Connexin26-mediated gap junctional communication reverses the malignant phenotype of MCF-7 breast cancer cells. Cancer Sci 94:501–507

    Article  CAS  PubMed  Google Scholar 

  135. Qin H, Shao Q, Curtis H, Galipeau J, Belliveau DJ, Wang T et al (2002) Retroviral delivery of connexin genes to human breast tumor cells inhibits in vivo tumor growth by a mechanism that is independent of significant gap junctional intercellular communication. J Biol Chem 277:29132–29138

    Article  CAS  PubMed  Google Scholar 

  136. Qin H, Shao Q, Igdoura SA, Alaoui-Jamali MA, Laird DW (2003) Lysosomal and proteasomal degradation play distinct roles in the life cycle of Cx43 in gap junctional intercellular communication deficient and -competent breast tumor cells. J Biol Chem 278:30005–30014

    Article  CAS  PubMed  Google Scholar 

  137. Shao Q, Wang H, McLachlan E, Veitch GI, Laird DW (2005) Down-regulation of Cx43 by retroviral delivery of small interfering RNA promotes an aggressive breast cancer cell phenotype. Cancer Res 65:2705–2711

    Article  CAS  PubMed  Google Scholar 

  138. Plante I, Stewart MKG, Barr K, Allan AL, Laird DW (2010) Cx43 suppresses mammary tumor metastasis to the lung in a Cx43 mutant mouse model of human disease. Oncogene 30:1681–1692

    Article  PubMed  CAS  Google Scholar 

  139. Mroue R, El-Sabban M, Talhouk R (2011) Connexins and the gap in context. Integr Biol (Camb) 3:255–266

    Article  CAS  Google Scholar 

  140. Jiang W, Bryce R, Mansel R (1997) Gamma linolenic acid regulates gap junction communication in endothelial cells and their interaction with tumour cells. Prostaglandins Leukot Essent Fatty Acids 56:307–316

    Article  CAS  PubMed  Google Scholar 

  141. Saez CG, Velasquez L, Montoya M, Eugenin E, Alvarez MG (2003) Increased gap junctional intercellular communication is directly related to the anti-tumor effect of all-trans-retinoic acid plus tamoxifen in a human mammary cancer cell line. J Cell Biochem 89:450–461

    Article  CAS  PubMed  Google Scholar 

  142. Gakhar G, Hua DH, Nguyen TA (2010) Combinational treatment of gap junctional activator and tamoxifen in breast cancer cells. Anticancer Drugs 21:77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Heiniger B, Gakhar G, Prasain K, Hua D, Nguyen T (2010) Second-generation substituted quinolines as anticancer drugs for breast cancer. Anticancer Res 30:3927–3932

    CAS  PubMed  Google Scholar 

  144. Vidi PA, Bissell MJ, Lelièvre SA (2013) Three-dimensional culture of human breast epithelial cells: The how and the why. In: Epithelial cell culture protocols (2nd edn). Springer Publisher, Humana Press, pp 193–219.

    Google Scholar 

  145. Grafton MM, Wang L, Vidi PA, Leary J, Lelievre SA (2011) Breast on-a-chip: mimicry of the channeling system of the breast for development of theranostics. Integr Biol 3:451–459

    Article  CAS  Google Scholar 

  146. Mironov V, Vladimir K, Markwald R (2011) Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotech 22(5):667–673

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Sabreen Fostok for critical reading of the manuscript and to Diala El-Zein for working on the schematic diagrams. We wish to acknowledge the support of the American University of Beirut Research Board, the Lebanese National Council for Scientific Research (to RT and DB); and the UNESCO-L’ORÉAL International Fellowship for Women in Science-2012 (to DB). SL and RT are members of International Breast Cancer & Nutrition (IBCN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabih Talhouk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bazzoun, D., Lelièvre, S., Talhouk, R. (2015). Beyond the Channel: Role of Connexins in Regulating Normal and Cancerous Processes in the Mammary Gland. In: Kandouz, M. (eds) Intercellular Communication in Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7380-5_1

Download citation

Publish with us

Policies and ethics