Skip to main content

Qualitative and Quantitative Trait Polymorphisms in Maize

  • Chapter
  • First Online:
Diagnostics in Plant Breeding
  • 2931 Accesses

Abstract

A comprehensive overview is provided on polymorphisms for quantitative and qualitative agronomic traits, which have been identified in maize. Information on the underlying genes and sequence motifs, genetic effects, as well as derived marker assays (if established) will be presented, and thus made readily available to the maize community. With advances in high-throughput genotyping technologies and phenotyping platforms, combined with sophisticated bioinformatic tools, genome-wide trait-marker association analysis and gene/QTL discovery becomes more cost-effective and time-saving, which greatly accelerates systemic dissection of quantitative trait polymorphisms (QTPs) affecting agronomic traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adipala E, Takan JP, Ogengalatigo MW (1995) Effect of planting density of maize on the progress and spread of northern leaf blight from Exserohilum-Turcicum infested residue source. Eur J Plant Pathol 101(1):25–33

    Article  Google Scholar 

  • Alrefai R, Berke TG, Rocheford TR (1995) Quantitative trait locus analysis of fatty acid concentrations in maize. Genome 38(5):894–901

    Article  CAS  PubMed  Google Scholar 

  • Aluru M, Xu Y, Guo R, Wang ZG, Li SS, White W, Wang K, Rodermel S (2008) Generation of transgenic maize with enhanced provitamin A content. J Exp Bot 59(13):3551–3562

    Article  CAS  PubMed  Google Scholar 

  • Andersen JR, Lubberstedt T (2003) Functional markers in plants. Trends Plant Sci 8(11):554–560

    Article  CAS  PubMed  Google Scholar 

  • Andersen JR, Schrag T, Melchinger AE, Zein I, Lubberstedt T (2005) Validation of dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet 111(2):206–217

    Article  CAS  PubMed  Google Scholar 

  • Andersen JR, Zein I, Wenzel G, Krutzfeldt B, Eder J, Ouzunova M, Lubberstedt T (2007) High levels of linkage disequilibrium and associations with forage quality at a Phenylalanine Ammonia-Lyase locus in European maize (Zea mays L.) inbreds. Theor Appl Genet 114(2):307–319

    Article  CAS  PubMed  Google Scholar 

  • Andersen JR, Zein I, Wenzel G, Darnhofer B, Eder J, Ouzunova M, Lubberstedt T (2008) Characterization of phenylpropanoid pathway genes within European maize (Zea mays L.) inbreds. BMC Plant Biol. doi:10.1186/1471-2229-8-2

  • Ayliffe MA, Steinau M, Park RF, Rooke L, Pacheco MG, Hulbert SH, Trick HN, Pryor AJ (2004) Aberrant mRNA processing of the maize Rp1-D rust resistance gene in wheat and barley. Mol Plant Microbe Interact 17(8):853–864

    Article  CAS  PubMed  Google Scholar 

  • Azevedo RA, Lea PJ, Damerval C, Landry J, Bellato CM, Meinhardt LW, Le Guilloux M, Delhaye S, Varisi VA, Gaziola SA, Gratao PL, Toro AA (2004) Regulation of lysine metabolism and endosperm protein synthesis by the opaque-5 and opaque-7 maize mutations. J Agric Food Chem 52(15):4865–4871

    Article  CAS  PubMed  Google Scholar 

  • Babu R, Nair SK, Kumar A, Venkatesh S, Sekhar JC, Singh NN, Srinivasan G, Gupta HS (2005) Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theor Appl Genet 111(5):888–897

    Article  CAS  PubMed  Google Scholar 

  • Bae JM, Giroux M, Hannah L (1990) Cloning and characterization of the brittle-2 gene of maize. Maydica 35(4):317–322

    Google Scholar 

  • Balint-Kurti PJ, Carson ML (2006) Analysis of quantitative trait Loci for resistance to southern leaf blight in juvenile maize. Phytopathology 96(3):221–225

    Article  CAS  PubMed  Google Scholar 

  • Balint-Kurti PJ, Johal GS (2008) Maize disease resistance. In: Bennetzen JL, Hake SC (eds) Handbook of maize: its biology. Springer, New York, pp 229–250

    Google Scholar 

  • Balint-Kurti PJ, Zwonitzer JC, Wisser RJ, Carson ML, Oropeza-Rosas MA, Holland JB, Szalma SJ (2007) Precise mapping of quantitative trait loci for resistance to southern leaf blight, caused by Cochliobolus heterostrophus race O, and flowering time using advanced intercross maize lines. Genetics 176(1):645–657

    Article  CAS  PubMed  Google Scholar 

  • Barriere Y, Argillier O (1993) Brown-midrib genes of maize – a review. Agronomie 13(10):865–876

    Article  Google Scholar 

  • Barriere Y, Guillet C, Goffner D, Pichon M (2003) Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. Anim Res 52(3):193–228

    Article  CAS  Google Scholar 

  • Belcher AR (2009) The physiology and host genetics of quantitative resistance in maize to the fungal pathogen Cochliobolus heterostrophus. Dissertation, North Carolina State University, Raleigh

    Google Scholar 

  • Belo A, Zheng PZ, Luck S, Shen B, Meyer DJ, Li BL, Tingey S, Rafalski A (2008) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Gen Genet 279(1):1–10

    Article  CAS  Google Scholar 

  • Berberich T, Harada M, Sugawara K, Kodama H, Iba K, Kusano T (1998) Two maize genes encoding omega-3 fatty acid desaturase and their differential expression to temperature. Plant Mol Biol 36(2):297–306

    Article  CAS  PubMed  Google Scholar 

  • Bhave MR, Lawrence S, Barton C, Hannah LC (1990) Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell 2(6):581–588

    CAS  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Bolanos J, Edmeades GO (1996) The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crop Res 48(1):65–80

    Article  Google Scholar 

  • Bolanos J, Edmeades GO, Martinez L (1993) Eight cycles of selection for drought tolerance in lowland tropical maize. III. Responses in drought-adaptive physiological and morphological traits. Field Crop Res 31(3–4):269–286

    Article  Google Scholar 

  • Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006) ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18(3):574–585

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (2010) Drought decision-making. J Exp Bot 61(13):3493–3497

    Article  CAS  PubMed  Google Scholar 

  • Brenner EA, Zein I, Chen YS, Andersen JR, Wenzel G, Ouzunova M, Eder J, Darnhofer B, Frei U, Barriere Y, Lubberstedt T (2010) Polymorphisms in O-methyltransferase genes are associated with stover cell wall digestibility in European maize (Zea mays L.). BMC Plant Biol. doi:10.1186/1471-2229-10-27

  • Broglie KE, Butler KH, Butruille MG et al. (2011) Method for identifying maize plants with Rcg1 gene conferring resistance to Colletotrichum infection. International Patent Publication No.: US 8,062,847B2

    Google Scholar 

  • Browse J, Somerville C (1991) Glycerolipid synthesis – biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol 42:467–506

    Article  CAS  Google Scholar 

  • Buckner B, Miguel PS, JanickBuckner D, Bennetzen JL (1996) The Y1 gene of maize codes for phytoene synthase. Genetics 143(1):479–488

    CAS  PubMed  Google Scholar 

  • Butron A, Chen YC, Rottinghaus GE, McMullen MD (2010) Genetic variation at bx1 controls DIMBOA content in maize. Theor Appl Genet 120(4):721–734

    Article  PubMed  Google Scholar 

  • Camus-Kulandaivelu L, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172(4):2449–2463

    Article  CAS  PubMed  Google Scholar 

  • Cao WB, Zheng LL, Zhang ZF, Li XB (2009) Genetic diversity of starch synthesis genes of Chinese maize (Zea mays L.) with SNAPs. Mol Biol 43(6):937–945

    Article  CAS  Google Scholar 

  • Carson ML (1995) A new gene in maize conferring the chlorotic halo reaction to infection by Exserohilum-Turcicum. Plant Dis 79(7):717–720

    Article  Google Scholar 

  • Carson ML, Stuber CW, Senior ML (2004) Identification and mapping of quantitative trait loci conditioning resistance to southern leaf blight of maize caused by Cochliobolus heterostrophus race O. Phytopathology 94(8):862–867

    Article  CAS  PubMed  Google Scholar 

  • Cassani E, Bertolini E, Cerino Badone F, Landoni M, Gavina D, Sirizzotti A, Pilu R (2009) Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene. Mol Breed 24:375–385

    Article  CAS  Google Scholar 

  • Chang RY, Peterson PA (1995) Genetic control of resistance to bipolaris maydis: one gene or two genes. J Hered 86(2):94–97

    CAS  Google Scholar 

  • Chapman SC, Edmeades GO (1999) Selection improves drought tolerance in tropical maize populations: II. Direct and correlated responses among secondary traits. Crop Sci 39(5):1315–1324

    Article  Google Scholar 

  • Chen Y, Lubberstedt T (2010) Molecular basis of trait correlations. Trends Plant Sci 15(8):454–461

    Article  CAS  PubMed  Google Scholar 

  • Chen YS, Chao Q, Tan GQ, Zhao J, Zhang MJ, Ji Q, Xu ML (2008) Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor Appl Genet 117(8):1241–1252

    Article  CAS  PubMed  Google Scholar 

  • Chen YS, Zein I, Brenner EA, Andersen JR, Landbeck M, Ouzunova M, Lubberstedt T (2010) Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.). BMC Plant Biol. doi:10.1186/1471-2229-10-12

  • Chintamanani S, Multani DS, Ruess H, Johal GS (2008) Distinct mechanisms govern the dosage-dependent and developmentally regulated resistance conferred by the maize Hm2 gene. Mol Plant Microbe Interact 21(1):79–86

    Article  CAS  PubMed  Google Scholar 

  • Chourey PS, Nelson OE (1976) The enzymatic deficiency conditioned by the shrunken-1 mutations in maize. Biochem Genet 14(11–12):1041–1055

    Article  CAS  PubMed  Google Scholar 

  • Chung CL, Jamann T, Longfellow J, Nelson R (2010a) Characterization and fine-mapping of a resistance locus for northern leaf blight in maize bin 8.06. Theor Appl Genet 121(2):205–227

    Article  CAS  PubMed  Google Scholar 

  • Chung CL, Longfellow JM, Walsh EK, Kerdieh Z, Van Esbroeck G, Balint-Kurti P, Nelson RJ (2010b) Resistance loci affecting distinct stages of fungal pathogenesis: use of introgression lines for QTL mapping and characterization in the maize – Setosphaeria turcica pathosystem. BMC Plant Biol. doi:10.1186/1471-2229-10-103

  • Chung CL, Poland J, Kump K, Benson J, Longfellow J, Walsh E, Balint-Kurti P, Nelson R (2011) Targeted discovery of quantitative trait loci for resistance to northern leaf blight and other diseases of maize. Theor Appl Genet 123:307–326

    Article  PubMed  Google Scholar 

  • Claassen MM, Shaw RH (1970) Water deficit effects on corn. II. Grain components. Agron J 62(5):652–655

    Article  Google Scholar 

  • Clark RM, Wagler TN, Quijada P, Doebley J (2006) A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet 38(5):594–597

    Article  CAS  PubMed  Google Scholar 

  • Collazo P, Montoliu L, Puigdomenech P, Rigau J (1992) Structure and expression of the lignin O-Methyltransferase gene from Zea-Mays L. Plant Mol Biol 20(5):857–867

    Article  CAS  PubMed  Google Scholar 

  • Collins NC, Webb CA, Seah S, Ellis JG, Hulbert SH, Pryor A (1998) The isolation and mapping of disease resistance gene analogs in maize. Mol Plant Microbe Interact 11(10):968–978

    Article  CAS  PubMed  Google Scholar 

  • Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11(7):1365–1376

    CAS  PubMed  Google Scholar 

  • Couture RM, Routley DG, Dunn GM (1971) Role of cyclic hydroxamic acids in monogenic resistance of maize to Helminthosporium-Turcicum. Physiol Plant Pathol 1(4):515–521

    Article  CAS  Google Scholar 

  • Cunningham FX, Pogson B, Sun ZR, McDonald KA, DellaPenna D, Gantt E (1996) Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8(9):1613–1626

    CAS  PubMed  Google Scholar 

  • Danson JW, Mbogori M, Kimani M, Lagat M, Kuria A, Diallo A (2006) Marker assisted introgression of opaque2 gene into herbicide resistant elite maize inbred lines. Afr J Biotechnol 5(24):2417–2422

    CAS  Google Scholar 

  • deLeon C, Jeffers D (2004) Maize diseases: a guide for field identification, 4th edn. CIMMYT Publications, Mexico City

    Google Scholar 

  • DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    Article  CAS  PubMed  Google Scholar 

  • Dingerdissen AL, Geiger HH, Lee M, Schechert A, Welz HG (1996) Interval mapping of genes for quantitative resistance of maize to Setosphaeria turcica, cause of northern leaf blight, in a tropical environment. Mol Breed 2(2):143–156

    Article  CAS  Google Scholar 

  • Ducrocq S, Madur D, Veyrieras JB, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A (2008) Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178(4):2433–2437

    Article  PubMed  Google Scholar 

  • Duvick DN (1999) Hazard identification of agricultural biotechnology. Science 286(5439):418–419

    Article  CAS  Google Scholar 

  • Eticha D, Stass A, Horst WJ (2005) Cell-wall pectin and its degree of methylation in the maize root-apex: significance for genotypic differences in aluminium resistance. Plant Cell Environ 28(11):1410–1420

    Article  CAS  Google Scholar 

  • Fan LJ, Bao JD, Wang Y, Yao JQ, Gui YJ, Hu WM, Zhu JQ, Zeng MQ, Li Y, Xu YB (2009) Post-domestication selection in the maize starch pathway. PLoS One. doi:10.1371/Journal.Pone.0007612

  • Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44(6):1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Bodnar AL, Scott MP (2009) Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. Theor Appl Genet 119(6):1129–1142

    Article  PubMed  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43(3):228–265

    Article  CAS  PubMed  Google Scholar 

  • Frederiksen RA, Berry RW, Foster JH (1976) Head smut of maize in Texas. Plant Dis Rep 60(7):610–611

    Google Scholar 

  • Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94(13):6809–6814

    Article  CAS  PubMed  Google Scholar 

  • Gevers HO (1975) New major gene for resistance to helminthosporium-turcicum leaf blight of maize. Plant Dis Rep 59(4):296–299

    Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326(5956):1115–1117

    Article  CAS  PubMed  Google Scholar 

  • Guillaumie S, San-Clemente H, Deswarte C, Martinez Y, Lapierre C, Murigneux A, Barriere Y, Pichon M, Goffner D (2007) MAIZEWALL. Database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiol 143(1):339–363

    Article  CAS  PubMed  Google Scholar 

  • Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Fourmann M, Barraud S, Carret V, Martinant JP, Barriere Y (2004a) Genetic diversity associated with variation in silage corn digestibility for three O-methyltransferase genes involved in lignin biosynthesis. Theor Appl Genet 110(1):126–135

    Article  CAS  PubMed  Google Scholar 

  • Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Rogowsky PM, Rigau J, Murigneux A, Martinant JP, Barriere Y (2004b) Nucleotide diversity of the ZmPox3 maize peroxidase gene: relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genet. doi:10.1186/1471-2156-5-19

  • Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101(1):5–18

    Article  CAS  PubMed  Google Scholar 

  • Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Barakate A, Foxon GA (1998) Brown-midrib maize (bm1) – a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14(5):545–553

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Parsons CM, Alexander DE (1987) Nutritive-value of high oil corn for poultry. Poult Sci 66(1):103–111

    Article  CAS  PubMed  Google Scholar 

  • Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan JB, Buckler ES (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319(5861):330–333

    Article  CAS  PubMed  Google Scholar 

  • Henry AM, Manicacci D, Falque M, Damerval C (2005) Molecular evolution of the Opaque-2 gene in Zea mays L. J Mol Evol 61(4):551–558

    Article  CAS  PubMed  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4(3):210–218

    Article  CAS  PubMed  Google Scholar 

  • Hoisington D, Khairallah M, Reeves T, Ribaut JV, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci USA 96(11):5937–5943

    Article  CAS  PubMed  Google Scholar 

  • Hooker AL (1977) 2nd major gene locus in corn for chlorotic-lesion resistance to Helminithosporium-Turcicum. Crop Sci 17:132–135

    Article  Google Scholar 

  • Hooker AL (1981) Citation classic – reaction of corn seedlings with male-sterile cytoplasm to Helminthosporium-Maydis. Curr Content/Agric Biol Environ Sci 52:18–18

    Google Scholar 

  • Hooker AL, Johnson PE, Shurtleff MC (1963) Soil fertility and Northern corn leaf blight infection. Agron J 55:411–412

    Article  CAS  Google Scholar 

  • Ingvardsen CR, Xing YZ, Frei UK, Lubberstedt T (2010) Genetic and physical fine mapping of Scmv2, a potyvirus resistance gene in maize. Theor Appl Genet 120(8):1621–1634

    Article  PubMed  Google Scholar 

  • James MG, Robertson DS, Myers AM (1995) Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7(4):417–429

    CAS  PubMed  Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6(3):215–222

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Ingvardsen CR, Lubberstedt T, Xu ML (2008) The Pic19 NBS-LRR gene family members are closely linked to Scmv1, but not involved in maize resistance to sugarcane mosaic virus. Genome 51(9):673–684

    Article  CAS  PubMed  Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase-activity encoded by the Hm1 disease resistance gene in maize. Science 258(5084):985–987

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Blancaflor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant Cell Environ 29(7):1309–1318

    Article  CAS  PubMed  Google Scholar 

  • Jung C, Muller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14(10):563–573

    Article  CAS  PubMed  Google Scholar 

  • Jung M, Weldekidan T, Schaff D, Paterson A, Tingey S, Hawk J (1994) Generation means analysis and quantitative trait locus mapping of anthracnose stalk rot genes in maize. Theor Appl Genet 89:413–418

    Article  CAS  Google Scholar 

  • Kim KN, Fisher DK, Gao M, Guiltinan MJ (1998) Molecular cloning and characterization of the amylose-extender gene encoding starch branching enzyme IIB in maize. Plant Mol Biol 38(6):945–956

    Article  CAS  PubMed  Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? – Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  PubMed  Google Scholar 

  • Kou YJ, Wang SP (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13(2):181–185

    Article  CAS  PubMed  Google Scholar 

  • Krill AM, Kirst M, Kochian LV, Buckler ES, Hoekenga OA (2010) Association and linkage analysis of aluminum tolerance genes in maize. PLoS One. doi:10.1371/Journal.Pone.0009958

  • Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43(2):163–168

    Article  CAS  PubMed  Google Scholar 

  • Landry J, Damerval C, Azevedo RA, Delhaye S (2005) Effect of the opaque and floury mutations on the accumulation of dry matter and protein fractions in maize endosperm. Plant Physiol Biochem 43(6):549–556

    Article  CAS  PubMed  Google Scholar 

  • Laurie CC, Chasalow SD, LeDeaux JR, McCarroll R, Bush D, Hauge B, Lai CQ, Clark D, Rocheford TR, Dudley JW (2004) The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics 168(4):2141–2155

    Article  PubMed  Google Scholar 

  • Lee KY, Huang AHC (1994) Genes encoding oleosins in maize kernel of inbreds Mo17 and B73. Plant Mol Biol 26(6):1981–1987

    Article  CAS  PubMed  Google Scholar 

  • Li FQ, Murillo C, Wurtzel ET (2007) Maize Y9 encodes a product essential for 15-cis-zeta-carotene isomerization. Plant Physiol 144(2):1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Li XH, Wang ZH, Gao SR, Shi HL, Zhang SH, George MLC, Li MS, Xie CX (2008) Analysis of QTL for resistance to head smut (Sporisorium rediana). Field Crop Res 106(2):148–155

    Article  Google Scholar 

  • Li L, Li H, Li JY, Xu ST, Yang XH, Li JS, Yan JB (2010a) A genome-wide survey of maize lipid-related genes: candidate genes mining, digital gene expression profiling and co-location with QTL for maize kernel oil. Sci China Life Sci 53:690–700

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Li L, Yang X, Warburton ML, Bai G, Dai J, Li J, Yan J (2010b) Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol. doi:10.1186/1471-2229-10-143

  • Li Q, Yang X, Bai G, Warburton ML, Mahuku G, Gore M, Dai J, Li J, Yan J (2010c) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet 120(4):753–763

    Article  CAS  PubMed  Google Scholar 

  • Li QR, Farre G, Naqvi S, Breitenbach J, Sanahuja G, Bai C, Sandmann G, Capell T, Christou P, Zhu CF (2010d) Cloning and functional characterization of the maize carotenoid isomerase and beta-carotene hydroxylase genes and their regulation during endosperm maturation. Transgenic Res 19(6):1053–1068

    Article  CAS  PubMed  Google Scholar 

  • Lindhout P (2002) The perspectives of polygenic resistance in breeding for durable disease resistance. Euphytica 124(2):217–226

    Article  CAS  Google Scholar 

  • Lohmer S, Maddaloni M, Motto M, Difonzo N, Hartings H, Salamini F, Thompson RD (1991) The maize regulatory locus Opaque-2 encodes a DNA-binding protein which activates the transcription of the B-32 gene. EMBO J 10(3):617–624

    CAS  PubMed  Google Scholar 

  • Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut JM, Cao M, Rong T, Xu Y (2010) Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci USA 107(45):19585–19590

    Article  CAS  PubMed  Google Scholar 

  • Lubberstedt T, Xia XC, Tan G, Liu X, Melchinger AE (1999) QTL mapping of resistance to Sporisorium reiliana in maize. Theor Appl Genet 99(3–4):593–598

    Article  CAS  PubMed  Google Scholar 

  • Lubberstedt T, Zein I, Andersen J, Wenzel G, Krutzfeldt B, Eder J, Ouzunova M, Chun S (2005) Development and application of functional markers in maize. Euphytica 146(1–2):101–108

    Article  CAS  Google Scholar 

  • Lubberstedt T, Ingvardsen C, Melchinger AE, Xing Y, Salomon R, Redinbaugh MG (2006) Two chromosome segments confer multiple potyvirus resistance in maize. Plant Breed 125(4):352–356

    Article  Google Scholar 

  • Mackay TFC (2009) A-maize-ing diversity. Science 325(5941):688–689

    Article  CAS  PubMed  Google Scholar 

  • Maddaloni M, Donini G, Balconi C, Rizzi E, Gallusci P, Forlani F, Lohmer S, Thompson R, Salamini F, Motto M (1996) The transcriptional activator Opaque-2 controls the expression of a cytosolic form of pyruvate orthophosphate dikinase-1 in maize endosperms. Mol Gen Genet 250(5):647–654

    CAS  PubMed  Google Scholar 

  • Mangolin CA, de Souza CL, Garcia AAF, Garcia AF, Sibov ST, de Souza AP (2004) Mapping QTLs for kernel oil content in a tropical maize population. Euphytica 137(2):251–259

    Article  CAS  Google Scholar 

  • Manicacci D, Falque M, Le Guillou S, Piegu B, Henry AM, Le Guilloux M, Damerval C, De Vienne D (2007) Maize Sh2 gene is constrained by natural selection but escaped domestication. J Evol Biol 20(2):503–516

    Article  CAS  PubMed  Google Scholar 

  • Manicacci D, Camus-Kulandaivelu L, Fourmann M, Arar C, Barrault S, Rousselet A, Feminias N, Consoli L, Frances L, Mechin V, Murigneux A, Prioul JL, Charcosset A, Damerval C (2009) Epistatic interactions between opaque2 transcriptional activator and its target gene CyPPDK1 control kernel trait variation in maize. Plant Physiol 150(1):506–520

    Article  CAS  PubMed  Google Scholar 

  • Maron LG, Kirst M, Mao C, Milner MJ, Menossi M, Kochian LV (2008) Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytol 179(1):116–128

    Article  CAS  PubMed  Google Scholar 

  • Maron LG, Pineros MA, Guimaraes CT, Magalhaes JV, Pleiman JK, Mao CZ, Shaff J, Belicuas SNJ, Kochian LV (2010) Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J 61(5):728–740

    Article  CAS  PubMed  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li HH, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Rosas MO, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325(5941):737–740

    Article  CAS  PubMed  Google Scholar 

  • Melchinger AE, Kuntze L, Gumber RK, Lubberstedt T, Fuchs E (1998) Genetic basis of resistance to sugarcane mosaic virus in European maize germplasm. Theor Appl Genet 96(8):1151–1161

    Article  Google Scholar 

  • Menkir A, Liu WP, White WS, Mazlya-Dixon B, Rocheford T (2008) Carotenoid diversity in tropical-adapted yellow maize inbred lines. Food Chem 109(3):521–529

    Article  CAS  Google Scholar 

  • Mertz ET, Nelson OE, Bates LS (1964) Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145(362):279–280

    Article  CAS  PubMed  Google Scholar 

  • Moose SP, Dudley JW, Rocheford TR (2004) Maize selection passes the century mark: a unique resource for 21st century genomics. Trends Plant Sci 9(7):358–364

    Article  CAS  PubMed  Google Scholar 

  • Multani DS, Meeley RB, Paterson AH, Gray J, Briggs SP, Johal GS (1998) Plant-pathogen microevolution: molecular basis for the origin of a fungal disease in maize. Proc Natl Acad Sci USA 95(4):1686–1691

    Article  CAS  PubMed  Google Scholar 

  • Nelson OE, Mertz ET, Bates LS (1965) Second mutant gene affecting the amino acid pattern of maize endosperm proteins. Science 150(3702):1469–1470

    Article  CAS  PubMed  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104(42):16450–16455

    Article  CAS  PubMed  Google Scholar 

  • Neto GC, Yunes JA, Dasilva MJ, Vettore AL, Arruda P, Leite A (1995) The involvement of Opaque-2 on beta-prolamin gene-regulation in maize and coix suggests a more general role for this transcriptional activator. Plant Mol Biol 27:1015–1029

    Article  Google Scholar 

  • Ninamango-Cardenas FE, Guimaraes CT, Martins PR, Parentoni SN, Carneiro NP, Lopes MA, Moro JR, Paiva E (2003) Mapping QTLs for aluminum tolerance in maize. Euphytica 130(2):223–232

    Article  CAS  Google Scholar 

  • Ogliari JB, Guimaraes MA, Geraldi IO, Camargo LEA (2005) New resistance genes in the Zea mays – exserohilum turcicum pathosystem. Genet Mol Biol 28(3):435–439

    Article  CAS  Google Scholar 

  • Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15(8):1795–1806

    Article  CAS  PubMed  Google Scholar 

  • Palaisa K, Morgante M, Tingey S, Rafalski A (2004) Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc Natl Acad Sci USA 101(26):9885–9890

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Ceballos H, Magnavaca R, Bahia AFC, Duquevargas J, Vinasco LE (1994) Genetics of tolerance to soil acidity in tropical maize. Crop Sci 34(6):1511–1514

    Article  Google Scholar 

  • Park WJ, Hochholdinger F, Gierl M (2004) Release of the benzoxazinoids defense molecules during lateral-and crown root emergence in Zea mays. J Plant Physiol 161(8):981–985

    Article  CAS  PubMed  Google Scholar 

  • Parlevliet JE (2002) Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica 124(2):147–156

    Article  CAS  Google Scholar 

  • Pataky JK, Campana MA (2007) Reduction in common rust severity conferred by the Rp1D gene in sweet corn hybrids infected by mixtures of Rp1D-virulent and avirulent Puccinia sorghi. Plant Dis 91(11):1484–1488

    Article  Google Scholar 

  • Pataky JK, Tracy WF (1999) Widespread occurrence of common rust, caused by Puccinia sorghi, on Rp-resistant sweet corn in the Midwestern United States. Plant Dis 83(12):1177

    Article  Google Scholar 

  • Pataky JK, Natti TA, Snyder EB, Kurowski CJ (2000) Puccinia sorghi in Sinaloa, Mexico virulent on corn with the Rp1-D gene. Plant Dis 84(7):810

    Article  Google Scholar 

  • Pataky JK, Pate MC, Hulbert SH (2001) Resistance genes in the rp1 region of maize effective against Puccinia sorghi virulent on the Rp1-D gene in North America. Plant Dis 85(2):165–168

    Article  CAS  Google Scholar 

  • Pate MC, Pataky JK, Houghton WC, Teyker RH (2000) First report of Puccinia sorghi virulent on sweet corn with the Rp1-D gene in Florida and Texas. Plant Dis 84(10):1154

    Article  Google Scholar 

  • Pe ME, Gianfranceschi L, Taramino G, Tarchini R, Angelini P, Dani M, Binelli G (1993) Mapping quantitative trait loci (QTLs) for resistance to Gibberella Zeae infection in maize. Mol Gen Genet 241(1–2):11–16

    CAS  PubMed  Google Scholar 

  • Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400(6741):256–261

    Article  CAS  PubMed  Google Scholar 

  • Pogson B, McDonald KA, Truong M, Britton G, DellaPenna D (1996) Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell 8(9):1627–1639

    CAS  PubMed  Google Scholar 

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA 108(17):6893–6898

    Article  CAS  PubMed  Google Scholar 

  • Prasanna BM, Vasal SK, Kassahun B, Singh NN (2001) Quality protein maize. Curr Sci India 81(10):1308–1319

    CAS  Google Scholar 

  • Pressoir G, Brown PJ, Zhu WY, Upadyayula N, Rocheford T, Buckler ES, Kresovich S (2009) Natural variation in maize architecture is mediated by allelic differences at the PINOID co-ortholog barren inflorescence2. Plant J 58(4):618–628

    Article  CAS  PubMed  Google Scholar 

  • Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol 131(2):664–675

    Article  CAS  PubMed  Google Scholar 

  • Rhoades VH (1935) The location of a gene for disease resistance in maize. Proc Natl Acad Sci USA 21:243–246

    Article  CAS  PubMed  Google Scholar 

  • Rogers LA, Dubos C, Surman C, Willment J, Cullis IF, Mansfield SD, Campbell MM (2005) Comparison of lignin deposition in three ectopic lignification mutants. New Phytol 168(1):123–140

    Article  CAS  PubMed  Google Scholar 

  • Roussel V, Gibelin C, Fontaine AS, Barriere Y (2002) Genetic analysis in recombinant inbred lines of early dent forage maize. II – QTL mapping for cell wall constituents and cell wall digestibility from per se value and top cross experiments. Maydica 47(1):9–20

    Google Scholar 

  • Sadok W, Naudin P, Boussuge B, Muller B, Welcker C, Tardieu F (2007) Leaf growth rate per unit thermal time follows QTL-dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions. Plant Cell Environ 30(2):135–146

    Article  PubMed  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104(27):11376–11381

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RJ, Burr FA, Aukerman MJ, Burr B (1990) Maize regulatory gene opaque-2 encodes a protein with a leucine-zipper motif that binds to zein DNA. Proc Natl Acad Sci USA 87(1):46–50

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RJ, Ketudat M, Aukerman MJ, Hoschek G (1992) Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell 4(6):689–700

    CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Service RF (2009) The promise of drought-tolerant corn. Science 326(5952):517

    Article  PubMed  Google Scholar 

  • Setter TL, Yan JB, Warburton M, Ribaut JM, Xu YB, Sawkins M, Buckler ES, Zhang ZW, Gore MA (2011) Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. J Exp Bot 62(2):701–716

    Article  CAS  PubMed  Google Scholar 

  • Shen B, Allen WB, Zheng PZ, Li CJ, Glassman K, Ranch J, Nubel D, Tarczynski MC (2010) Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol 153(3):980–987

    Article  CAS  PubMed  Google Scholar 

  • Shin JH, Kwon SJ, Lee JK, Min HK, Kim NS (2006) Genetic diversity of maize kernel starch-synthesis genes with SNAPs. Genome 49(10):1287–1296

    Article  CAS  PubMed  Google Scholar 

  • Shure M, Wessler S, Fedoroff N (1983) Molecular identification and isolation of the waxy locus in maize. Cell 35(1):225–233

    Article  CAS  PubMed  Google Scholar 

  • Sibov ST, Gaspar M, Silva MJ, Ottoboni LMM, Arruda P, Souza AP (1999) Two genes control aluminum tolerance in maize: genetic and molecular mapping analyses. Genome 42(3):475–482

    Article  CAS  Google Scholar 

  • Sigmon B, Vollbrecht E (2010) Evidence of selection at the ramosa1 locus during maize domestication. Mol Ecol 19(7):1296–1311

    Article  CAS  PubMed  Google Scholar 

  • Smith SM, Hulbert SH (2005) Recombination events generating a novel Rp1 race specificity. Mol Plant Microbe Interact 18(3):220–228

    Article  CAS  PubMed  Google Scholar 

  • Smith SM, Pryor AJ, Hulbert SH (2004) Allelic and haplotypic diversity at the Rp1 rust resistance locus of maize. Genetics 167(4):1939–1947

    Article  CAS  PubMed  Google Scholar 

  • Springer NM, Ying K, Fu Y, Ji TM, Yeh CT, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum H, Iniguez AL, Barbazuk WB, Jeddeloh JA, Nettleton D, Schnable PS (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet. doi:10.1371/journal.pgen.1000734

  • Stromberg EL (1981) Head smut of maize, a new disease in Minnesota. Phytopathology 71(8):906

    Google Scholar 

  • Sun Q, Collins NC, Ayliffe M, Smith SM, Drake J, Pryor T, Hulbert SH (2001) Recombination between paralogues at the rp1 rust resistance locus in maize. Genetics 158(1):423–438

    CAS  PubMed  Google Scholar 

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9(6):444–457

    Article  CAS  PubMed  Google Scholar 

  • Tester RF, Morrison WR (1990) Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem 67(6):551–557

    CAS  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28(3):286–289

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43(2):159–162

    Article  CAS  PubMed  Google Scholar 

  • Tracy WF, Whitt SR, Buckler ES (2006) Recurrent mutation and genome evolution: example of sugary 1 and the origin of sweet maize. Crop Sci 46:S49–S54

    Article  Google Scholar 

  • Troyer AF (2006) Adaptedness and heterosis in corn and mule hybrids. Crop Sci 46(2):528–543

    Article  Google Scholar 

  • Ullstrup AJ, Brunson AM (1947) Linkage relationships of a gene in corn determining susceptibility to a Helminthosporium leaf spot. J Am Soc Agron 39(7):606–609

    Article  Google Scholar 

  • Vallabhaneni R, Gallagher CE, Licciardello N, Cuttriss AJ, Quinlan RF, Wurtzel ET (2009) Metabolite sorting of a germplasm collection reveals the hydroxylase3 locus as a new target for maize provitamin A biofortification. Plant Physiol 151(3):1635–1645

    Article  CAS  PubMed  Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P (1995) The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7(4):407–416

    CAS  PubMed  Google Scholar 

  • Vollbrecht E, Springer PS, Goh L, Buckler ES, Martienssen R (2005) Architecture of floral branch systems in maize and related grasses. Nature 436(7054):1119–1126

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Dooner HK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci USA 103(47):17644–17649

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li BL, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436(7051):714–719

    Article  CAS  PubMed  Google Scholar 

  • Weber A, Clark RM, Vaughn L, Sanchez-Gonzalez JD, Yu JM, Yandell BS, Bradbury P, Doebley J (2007) Major regulatory genes in maize contribute to standing variation in teosinte (Zea mays ssp parviglumis). Genetics 177(4):2349–2359

    Article  CAS  PubMed  Google Scholar 

  • Weber AL, Briggs WH, Rucker J, Baltazar BM, Sanchez-Gonzalez JD, Feng P, Buckler ES, Doebley J (2008) The genetic architecture of complex traits in Teosinte (Zea mays ssp parviglumis): new evidence from association mapping. Genetics 180(2):1221–1232

    Article  CAS  PubMed  Google Scholar 

  • Weber AL, Zhao Q, McMullen MD, Doebley JF (2009) Using association mapping in Teosinte to investigate the function of maize selection-candidate genes. PLoS One. doi:10.1371/Journal.Pone.0008227

  • Welcker C, Boussuge B, Bencivenni C, Ribaut JM, Tardieu F (2007) Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of Anthesis-Silking Interval to water deficit. J Exp Bot 58(2):339–349

    Article  CAS  PubMed  Google Scholar 

  • Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES (2002) Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci USA 99(20):12959–12962

    Article  CAS  PubMed  Google Scholar 

  • Wilson LM, Whitt SR, Ibanez AM, Rocheford TR, Goodman MM, Buckler ES (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16(10):2719–2733

    Article  CAS  PubMed  Google Scholar 

  • Winkel BSJ (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107

    Article  CAS  PubMed  Google Scholar 

  • Wisser RJ, Balint-Kurti PJ, Nelson RJ (2006) The genetic architecture of disease resistance in maize: a synthesis of published studies. Phytopathology 96(2):120–129

    Article  CAS  PubMed  Google Scholar 

  • Wisser RJ, Kolkman JM, Patzoldt ME, Holland JB, Yu JM, Krakowsky M, Nelson RJ, Balint-Kurti PJ (2011) Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. Proc Natl Acad Sci USA 108(18):7339–7344

    Article  CAS  PubMed  Google Scholar 

  • Wolters P, Frey T, Conceicao A, Multani D, Broglie K, Davis S, Fengler K, Johnson E, Bacot K, Simcox K, Weldekidan T, Hawk J (2006) Map based cloning of a major QTL for anthracnose stalk rot resistance in maize. Plant and Animal Genomes XIV conference W 412, San Diego

    Google Scholar 

  • Wu JY, Ding JQ, Du YX, Xu YB, Zhang XC (2007) Genetic analysis and molecular mapping of two dominant complementary genes determining resistance to sugarcane mosaic virus in maize. Euphytica 156(3):355–364

    Article  CAS  Google Scholar 

  • Xia XC, Melchinger AE, Kuntze L, Lubberstedt T (1999) Quantitative trait loci mapping of resistance to sugarcane mosaic virus in maize. Phytopathology 89(8):660–667

    Article  CAS  PubMed  Google Scholar 

  • Xu ML, Melchinger AE, Xia XC, Lubberstedt T (1999) High-resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers. Mol Gen Genet 261(3):574–581

    Article  CAS  PubMed  Google Scholar 

  • Yan JB, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J (2009) Genetic characterization and linkage dsequilibrium estimation of a global maize collection using SNP markers. PLoS One. doi:10.1371/Journal.Pone.0008451

  • Yan JB, Kandianis CB, Harjes CE, Bai L, Kim EH, Yang XH, Skinner DJ, Fu ZY, Mitchell S, Li Q, Fernandez MGS, Zaharieva M, Babu R, Fu Y, Palacios N, Li JS, DellaPenna D, Brutnell T, Buckler ES, Warburton ML, Rocheford T (2010) Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nat Genet 42(4):322–327

    Article  CAS  PubMed  Google Scholar 

  • Yang DE, Zhang CL, Zhang DS, Jin DM, Weng ML, Chen SJ, Nguyen H, Wang B (2004) Genetic analysis and molecular mapping of maize (Zea mays L.) stalk rot resistant gene Rfg1. Theor Appl Genet 108(4):706–711

    Article  CAS  PubMed  Google Scholar 

  • Yang WP, Zheng YL, Zheng WT, Feng R (2005) Molecular genetic mapping of a high-lysine mutant gene (opaque-16) and the double recessive effect with opaque-2 in maize. Mol Breeding 15(3):257–269

    Article  CAS  Google Scholar 

  • Yang Q, Yin GM, Guo YL, Zhang DF, Chen SJ, Xu ML (2010a) A major QTL for resistance to Gibberella stalk rot in maize. Theor Appl Genet 121(4):673–687

    Article  PubMed  Google Scholar 

  • Yang XH, Guo YQ, Yan JB, Zhang J, Song TM, Rocheford T, Li JS (2010b) Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. Theor Appl Genet 120(3):665–678

    Article  CAS  PubMed  Google Scholar 

  • Yu JM, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178(1):539–551

    Article  PubMed  Google Scholar 

  • Zaitlin D, Demars S, Ma Y (1993) Linkage of rhm, a recessive gene for resistance to Southern corn leaf blight, to RFLP marker loci in maize (Zea mays) seedlings. Genome 36(3):555–564

    Article  CAS  PubMed  Google Scholar 

  • Zhang NY, Gur A, Gibon Y, Sulpice R, Flint-Garcia S, McMullen MD, Stitt M, Buckler ES (2010) Genetic analysis of central carbon metabolism unveils an amino acid substitution that alters maize NAD-dependent isocitrate dehydrogenase activity. PLoS ONE. doi:10.1371/Journal.Pone.0009991

    Google Scholar 

  • Zhang D, Liu Y, Guo Y, Yang Q, Ye J, Chen S, Xu M (2012) Fine-mapping of qRfg2, a QTL for resistance to Gibberella stalk rot in maize. Theor Appl Genet 124(3):585–596

    Article  CAS  PubMed  Google Scholar 

  • Zhao BY, Ardales E, Brasset E, Claflin LE, Leach JE, Hulbert SH (2004a) The Rxo1/Rba1 locus of maize controls resistance reactions to pathogenic and non-host bacteria. Theor Appl Genet 109(1):71–79

    Article  CAS  PubMed  Google Scholar 

  • Zhao BY, Ardales EY, Raymundo A, Bai JF, Trick HN, Leach JE, Hulbert SH (2004b) The avrRxo1 gene from the rice pathogen Xanthomonas oryzae pv. oryzicola confers a nonhost Defense reaction on maize with resistance gene Rxo1. Mol Plant Microbe Interact 17(7):771–779

    Article  CAS  PubMed  Google Scholar 

  • Zhao BY, Lin XH, Poland J, Trick H, Leach J, Hulbert S (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci USA 102(43):15383–15388

    Article  CAS  PubMed  Google Scholar 

  • Zhao XR, Tan GQ, Xing YX, Wei L, Chao Q, Zuo WL, Lubberstedt T, Xu ML (2012) Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Mol Breed. doi:10.1007/s11032-011-9694-3

  • Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong GY, Tarczynski MC, Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40(3):367–372

    Article  CAS  PubMed  Google Scholar 

  • Zwonitzer JC, Bubeck DM, Bhattramakki D, Goodman MM, Arellano C, Balint-Kurti PJ (2009) Use of selection with recurrent backcrossing and QTL mapping to identify loci contributing to southern leaf blight resistance in a highly resistant maize line. Theor Appl Genet 118(5):911–925

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingliang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yang, Q., Xu, M. (2013). Qualitative and Quantitative Trait Polymorphisms in Maize. In: Lübberstedt, T., Varshney, R. (eds) Diagnostics in Plant Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5687-8_19

Download citation

Publish with us

Policies and ethics