Skip to main content

Semi-arid Regions and Deserts

  • Chapter
  • First Online:
Ecology of Cyanobacteria II

Summary

Phototrophic microorganisms are mostly endolithic or hypolithic in the more extreme arid environments and are here restricted to situations where sufficient moisture is retained for occasional growth to occur. Slightly less extreme environments frequently have biological soil crusts. In both cases cyanobacteria are the phototrophs most likely to be found and in some cases the only ones. In most cases of crust development Microcoleus vaginatus is one of the first cyanobacteria to occur. The crusts play an important role in maintaining soil and sand surfaces in arid regions, so it is important to understand how environmental factors influence communities at a site. In addition to light, water, temperature, salinity, nutrients, and carbon dioxide, these include wind action and physical and chemical features of the underlying substratum. Experimental studies have confirmed that some species, such as the semi-desert Nostoc flagelliforme, are extremely resistant to damage by high light and UV levels. N. flagelliforme and at least some other species require a regular cycle of hydration and dehydration. Cyanobacterial extracellular polysaccharide not only helps cells to withstand desiccation, but aids the development of crust and soil structure. Understanding of crust structure and succession has proved important in planning reclamation programmes in semi-arid regions of China using cyanobacterial inocula. Details of the procedure are described, which sometimes includes techniques to minimize the effects of wind, such as the use a checker-board arrangement of protective straw to prevent the inocula from being blown away. Reclamation of semi-arid regions in other parts of the world will require similar understanding of the ecology of the cyanobacteria involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acea MJ, Prieto-Fernández A, Diz-Cid N (2003) Cyanobacterial inoculation of heated soils: effect on microorganisms of C and N cycles and on chemical composition in soil surface. Soil Biol Biochem 35:513–524

    Article  CAS  Google Scholar 

  • Agrawal SC, Pal U (2003) Viability of dried vegetative cells or filaments, survivability and/or reproduction under water and light stress, and following heat and UV exposure in some blue-green and green algae. Folia Microbiol 48:501–509

    Article  CAS  Google Scholar 

  • Agrawal SC, Singh V (2000) Vegetative survival, akinete formation and germination in three blue-green algae and one green alga in relation to light intensity, temperature, heat shock and UV exposure. Folia Microbiol 45:439–446

    Article  CAS  Google Scholar 

  • Aranibar JN, Anderson IC, Ringrose S, Macko SA (2003) Importance of nitrogen fixation in soil crusts of southern African arid ecosystems: acetylene reduction and stable isotope studies. J Arid Environ 54(2):345–358

    Article  Google Scholar 

  • Arnold RJ, Convey P, Hughes KA, Wynn-Williams DD (2003) Seasonal periodicity of physical factors, inorganic nutrients and microalgae in Antarctic fellfields. Polar Biol 26(6):396–403

    Google Scholar 

  • Bahl J, Lau MCY, Smith DLD, Vijaykrishna D, Cary SC, Kumberley D, Warren-Rhodes AW, Wong FKY, McKay CP, Pointing SB (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163. doi:10.1038/ncomms1167

    Article  PubMed  CAS  Google Scholar 

  • Balskus EP, Walsh CT (2008) Investigating the initial steps in the biosynthesis of cyanobacterial sunscreen scytonemin. J Am Chem Soc 130:15260–15261

    Article  CAS  Google Scholar 

  • Bamforth SS (2008) Protozoa of biological soil crusts of a cool desert in Utah. J Arid Environ 72(5):722–729

    Article  Google Scholar 

  • Banerjee M, Whitton BA, Wynn-Williams DD (2000a) Surface phosphomonoesterase activity of a natural immobilized system: Chroococcidiopsis in an Antarctic desert rock. J Appl Phycol 12:549–552

    Article  CAS  Google Scholar 

  • Banerjee M, Whitton BA, Wynn-Williams DD (2000b) Phosphatase activities of endolithic communities in rocks of the Antarctic Dry Valleys. Microb Ecol 39:80–91

    Article  PubMed  CAS  Google Scholar 

  • Becerra-Absalon I, Tavera R (2009) Life cycle of Nostoc sphaericum (Nostocales, Cyanoprokaryota) in tropical wetlands. Nova Hedwig 88(1–2):117–128

    Article  Google Scholar 

  • Belnap J (1993) Recovery rates of cryptobiotic crusts: inoculant use and assessment methods. Gt Basin Nat 53:89–95

    Google Scholar 

  • Belnap J (2003) The world at your feet: desert biological soil crusts. Front Ecol Environ 1:181–189

    Article  Google Scholar 

  • Belnap J, Gardner JS (1993) Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. Gt Basin Nat 53:40–47

    Google Scholar 

  • Belnap J, Gillette.DA (1998) Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. J Arid Environ 39:133–142

    Article  CAS  Google Scholar 

  • Belnap J, Lange OL (eds) (2001) Biological soil crusts: structure, function, management. Springer, Berlin, 503 pp

    Google Scholar 

  • Belnap J, Büdel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, management. Springer, Berlin, p 1et seq, 503 pp

    Chapter  Google Scholar 

  • Belnap J, Phillips SL, Herrick JE, Johansen JR (2007) Wind erodibility of soils at Fort Irwin, California (Mojave Desert), USA, before and after trampling disturbance: implications for land management. Earth Surf Process Landf 32:75–84

    Article  Google Scholar 

  • Belnap J, Phillips SL, Witwicki DL, Miller ME (2008) Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts. J Arid Environ 72:1257–1264

    Article  Google Scholar 

  • Beraldi H, Farmer JD (2010) Evidence of subaerial environments in the Mesoproterozoic Dripping Spring Quartzite, Apache Group, Arizona. Geol Soc Am Abstr Program 42(5):430

    Google Scholar 

  • Berard A, Dorigo U, Humbert JF, Martin-Laurent F (2005) Microalgae community structure analysis based on 18S rDNA amplification from DNA extracted directly from soil as a potential soil bioindicator. Agron Sustain Dev 25:285–291

    Article  CAS  Google Scholar 

  • Bhatnagar A, Bhatnagar M (2005) Microbial diversity in desert eco­systems. Curr Sci 89:91–100

    Google Scholar 

  • Bhatnagar A, Makandar MB, Garg MK, Bhatnagar M (2008) Community structure and diversity of cyanobacteria and green algae in the soils of Thar Desert (India). J Arid Environ 72:73–83

    Article  Google Scholar 

  • Billi D (2009) Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays. Extremophiles 13(1):49–57

    Article  PubMed  CAS  Google Scholar 

  • Billi D, Friedmann EI, Hofer K, Grilli-Caiola M, Ocampo-Friedmann R (2000) Ionizing-radiation resistance in the desiccation-tolerant cyano­bacterium Chroococcidiopsis. Appl Environ Microbiol 66:1489–1492

    Article  PubMed  CAS  Google Scholar 

  • Billi D, Wilmotte A, McKay CP (2010) Desert strains of Chroo­coccidiopsis: a platform to investigate genetic diversity in extreme environments and explore survival potential beyond Earth. European Planetary Science Congress 5: EPSC2010-267, Rome, 2 pp

    Google Scholar 

  • Boison G, Mergel A, Jolkver H, Bothe H (2004) Bacterial life and dinitrogen fixation at a gypsum rock. Appl Environ Microbiol 70:7070–7077

    Article  PubMed  CAS  Google Scholar 

  • Booth WE (1941) Regeneration of abandoned fields in Kansas and Oklahoma. Am J Bot 28:415–422

    Article  CAS  Google Scholar 

  • Bowker MA (2007) Biological soil crust rehabilitation in theory and practice: an underexploited opportunity. Restor Ecol 15:13–23

    Article  Google Scholar 

  • Bowker MA, Reed SC, Belnap J, Phillips SL (2002) Temporal variation in community composition, pigmentation, and Fv/Fm of desert of cyanobacterial soil crusts. Microb Ecol 43:13–25

    Article  PubMed  CAS  Google Scholar 

  • Boye-Petersen J (1923) The freshwater Cyanophyceae of Iceland. In: Rosenvinge LK, Arming EW (eds) Arb Bot Kobenhavn (The Botany of Iceland 2) 101(7):251–324

    Article  CAS  Google Scholar 

  • Boyer SL, Johansen JR, Flechtner VR, Howard GL (2002) Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16s rRNA gene and associated 16S-23S ITS region. J Phycol 38:1222–1235

    Article  CAS  Google Scholar 

  • Branco LHZ, Hoffmann L, Teixeira JP, Ferreira V, de Morais JC (2009) Aerophytic cyanoprokaryotes from the Atlantic rainforest region of Sao Paulo State, Brazil: Chroococcales and Oscillatoriales. Cryptogam Algol 30(2):135–152

    Google Scholar 

  • Broady PA (2005) The distribution of terrestrial and hydro-terrestrial algal associations at three contrasting locations in southern Victoria Land, Antarctica. Algol Stud 118:95–112

    Article  Google Scholar 

  • Büdel B (2005) Microorganisms of biological crusts on soil surfaces. Soil Biol 3(V):307–323

    Article  Google Scholar 

  • Büdel B, Veste M (2008) Arid zone ecosystems. Ecol Stud 208B:149–155

    Article  Google Scholar 

  • Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247

    Article  PubMed  Google Scholar 

  • Chen LZ, Liu YD, Song LR (2002) The function of exopolysaccharides of Microcoleus in the formation of desert soil. Acta Hydrobiol Sin 26(2):155–159

    CAS  Google Scholar 

  • Chen LZ, Li DH, Liu YD (2003a) Salt tolerance of Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crust, was enhanced by exogenous carbohydrates. J Arid Environ 55:645–656

    Article  Google Scholar 

  • Chen LZ, Liu YD, Li DH (2003b) Effect of salt stress on physiological and biochemical characteristics of Scytonema javanicum. J Desert Res 23:285–288

    Google Scholar 

  • Chen LZ, Xie ZM, Hu CX, Li YD, Wang GH, Liu YD (2006a) Man-made desert algal crusts as affected by environmental factors in Inner Mongolia. China J Arid Environ 67:521–527

    Article  Google Scholar 

  • Chen LZ, Li DH, Song LR, Hu CX, Wang GH, Liu YD (2006b) Effects of salt stress on carbohydrate metabolism in desert soil alga Microcoleus vaginatus. J Integr Plant Biol 48(8):1–5

    Article  Google Scholar 

  • Chen LZ, Xie ZM, Li DH, Liu YD, Wang GH (2006c) Recovery of photosynthetic activity of Microcoleus vaginatus after water loss and rehydration. Acta Hydrobiol Sin 30(4):404–407

    Google Scholar 

  • Chen LZ, Wang GH, Hong S, Liu A, Li C, Lui Y-D (2009a) UV-B induced oxidative damage and protective role of exopolysaccharides in desert cyanobacterium Microcoleus vaginatus. J Integr Plant Biol 51(2):194–200

    Article  PubMed  CAS  Google Scholar 

  • Chen XF, Jia SR, Yue SJ, Wang N, Li CT, Wang Y (2009b) Effect of solid bed-materials on growth of vegetative cells of Nostoc flagelliforme. J Appl Phycol 22:341–347

    Article  Google Scholar 

  • Chen XF, Jia SR, Yue SJ, Wang Y, Wang N (2011) Biological crust of Nostoc flagelliforme (cyanobacteria) on sand bed materials. J Appl Phycol 23:67–71

    Article  Google Scholar 

  • Cockell CS (2010) Geomicrobiology beyond Earth: microbe-mineral interactions in space exploration and settlement. Trends Microbiol 18(7):308–314

    Article  PubMed  CAS  Google Scholar 

  • Cockell CS, Schuerger AC, Billi D, Friedmann EI, Panitz C (2005) Effects of a simulated Martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029. Astrobiology 5:127–140

    Article  PubMed  CAS  Google Scholar 

  • Cox PA, Richer R, Metcalf JS, Banack SA, Codd GA, Bradley WG (2009) Cyanobacteria and BMAA Exposure from desert dust: a possible link to sporadic ALS among Gulf War veterans. Amyotroph Lateral Scler 10(Suppl 2):109–117

    Article  PubMed  CAS  Google Scholar 

  • Dana ED, Mota JF (2006) Vegetation and soil recovery on gypsum outcrops in semi-arid Spain. J Arid Environ 65(3):444–459

    Article  Google Scholar 

  • Darby BJ, Housman DC, Zaki AM, Shamout Y, Adl S, Belnap J, Neher DA (2006) Effects of altered temperature and precipitation on desert protozoa associated with biological soil crusts. J Euk Microb 53:207–514

    Article  CAS  Google Scholar 

  • Darby BJ, Neher DA, Belnap J (2007) Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts. Appl Soil Ecol 35:203–212

    Article  Google Scholar 

  • Davey MC, Clarke KJ (1992) Fine structure of a terrestrial cyanobacterial mat from Antarctica. J Phycol 28:199–202

    Article  Google Scholar 

  • De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13:293–299

    Article  Google Scholar 

  • De Philippis R, Paperi R, Sili C, Vincenzini M (2003) Assessment of the metal removal capability of two capsulated cyanobacteria, Cyanospira capsulata and Nostoc PCC7936. J Appl Phycol 15:155–161

    Article  Google Scholar 

  • De Philippis R, Paperi R, Sili C (2007) Heavy metal sorption by released polysaccharides and whole cultures of two exopolysaccharide-producing cyanobacteria. Biodegradation 18:181–187

    Article  PubMed  CAS  Google Scholar 

  • Dhar DW, Prasanna R, Singh BV (2007) Comparative performance of three carrier based blue green algal biofertilizers for sustainable rice cultivation. J Sustain Agric 30(2):41–50

    Article  Google Scholar 

  • Drouet F (1981) Summary of the classification of blue-green algae. Beih Nova Hedwig 66:133–209

    Google Scholar 

  • Eldridge DJ, Leys JF (2003) Exploring some relationships between biological soil crusts, soil aggregation and wind erosion. J Arid Environ 53:457–466

    Article  Google Scholar 

  • Flechtner VR (2007) North American microbiotic soil crust communities: diversity despite challenge. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Berlin, pp 537–551, 811 pp

    Chapter  Google Scholar 

  • Flechtner VR, Boyer SL, Johansen JR, DeNoble ML (2002) Spirirestis rafaelensis gen. et sp. nov (Cyanophyceae), a new cyanobacterial genus from arid soils. Nova Hedwig 74(1–2):1–24

    Article  Google Scholar 

  • Flechtner VR, Johansen JR, Belnap J (2008) The biological soil crusts of the San Nicolas Island: enigmatic algae from a geographically isolated ecosystem. West N Am Nat 68(4):405–436

    Article  Google Scholar 

  • Fleming ED, Castenholz RW (2007) Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environ Microbiol 9(6):1448–1455

    Article  PubMed  CAS  Google Scholar 

  • Fleming ED, Bebout BM, Castenholz RW (2007) Effects of salinity and light intensity on the resumption of photosynthesis in rehydrated cyanobacterial mats from Baja California Sur, Mexico. J Phycol 43:15–24

    Article  CAS  Google Scholar 

  • Fleming ED, Castenholz RW (2008) Effects of nitrogen source on the synthesis of the UV-screening compound, scytonema, in the cyanobacterium Nostoc punctiforme PCC 73102. FEMS Microb Ecol 63(3):301–308

    Article  CAS  Google Scholar 

  • Freeman KR, Pescador MY, Reed SC, Robeson SC, Schmidt SK, Townsend AR (2009) Soil CO2 flux and photoautotrophic community composition in high-elevation, ‘barren’ soil. Environ Microbiol 11(3):674–686

    Article  PubMed  CAS  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Friedmann EI, Kibler AP (1980) Nitrogen economy of endolithic microbial communities in hot and cold deserts. Microb Ecol 6:95–108

    Article  CAS  Google Scholar 

  • Friedmann EI, Ocampo-Friedmann R (1984) Endolithic microorganisms in extreme dry environments: analysis of a lithobiontic microbial habitat. In: Klug MJ, Reddy CA (eds) Current perspectives in microbiology. American Society for Microbiology, Washington, DC, pp 177–185

    Google Scholar 

  • Friedmann EI, Ocampo-Friedmann R (1995) A primitive cyanobacterium as pioneer microorganism for terraforming Mars. Adv Space Res 15:143–246

    Google Scholar 

  • Friedmann EI, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–196

    Article  Google Scholar 

  • Fujita Y, Nakahara H (2006) Variations in the microalgal structure in paddy soil in Osaka, Japan: comparison between surface and subsurface soils. Limnology 7(2):83–91

    Article  CAS  Google Scholar 

  • Fukuda S, Yamakawa R, Hirai M, KashinoY KH, Satoh K (2008) Mechanisms to avoid photoinhibition in a desiccation-tolerant cyanobacterium, Nostoc commune. Plant Cell Physiol 49(3):488–492

    Article  PubMed  CAS  Google Scholar 

  • Gao KS (1998) Chinese studies on the edible blue-green alga, Nostoc flagelliforme: a review. J Appl Phycol 10:37–49

    Article  Google Scholar 

  • Gao KS, Ye CP (2003) Culture of the terrestrial cyanobacterium, Nostoc flagelliforme (Cyanophyceae), under aquatic conditions. J Phycol 39:617–623

    Article  Google Scholar 

  • Gao KS, Ye CP (2007) Photosynthetic insensitivity of the terrestrial cyanobacterium Nostoc flagelliforme to solar UV radiation while rehydrated or desiccated. J Phycol 43:628–635

    Article  CAS  Google Scholar 

  • Gao KS, Yu AJ (2000) Influence of CO2, light and watering on growth of Nostoc flagelliforme. J Appl Phycol 12:185–189

    Article  Google Scholar 

  • Gao KS, Qiu BS, Xia JR, Yu AJ, Li YG (1998) Effect of wind speed on loss of water from Nostoc flagelliforme colonies. J Appl Phycol 10:55–58

    Article  Google Scholar 

  • Gao S, Ye X, Chu Y, Dong M (2010) Effects of biological crusts on profile distribution of soil water, organic carbon and total nitrogen in Mu Us Sandland, China. Plant Ecol 3(4):279–284

    Article  Google Scholar 

  • Garbacki N, Gloaguen V, Damas J, Hoffmann L, Tits M, Angenot L (2000) Inhibition of croton oil-induced oedema in mice ear skin by capsular polysaccharides from cyanobacteria. Naunyn Schmiedebergs Arch Pharmacol 361(4):460–464

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crusts. J Phycol 32:774–782

    Article  Google Scholar 

  • Garcia-Pichel F, Pringault O (2001) Cyanobacteria track water in desert soils. Nature 413:380–381

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, Lopez-Cortes A, Nubel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67(4):1902–1910

    Article  PubMed  CAS  Google Scholar 

  • Geitler L (1932) Cyanophyceae. In: Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz 14. Akademische Verlagsgesellschaft, Leipzig, 1356 pp

    Google Scholar 

  • George DB, Roundy BA, St Clair LL, Johansen JR, Schaalje GB, Webb BL (2003) The effects of microbiotic soil crusts on soil water loss. Arid Land Res Manage 17:113–125

    Article  Google Scholar 

  • Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol 52:345–357

    Article  PubMed  Google Scholar 

  • Guo YR, Zhao HL, Zuo XA, Sam D, Zhao XY (2008) Biological soil crust development and its topsoil properties in the process of dune stabilization, Inner Mongolia, China. Environ Geol 54(3):653–662

    Article  CAS  Google Scholar 

  • Gupta S, Agrawal SC (2006) Survival of blue-green and green algae under stress conditions. Folia Microbiol 51(2):121–128

    Article  CAS  Google Scholar 

  • Gupta S, Agrawal SC (2008) Vegetative survival of some wall and soil blue-green algae under stress conditions. Folia Microbiol 53(4):343–350

    Article  CAS  Google Scholar 

  • Harel Y, Ohad I, Kaplan A (2004) Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological ­desert crust. Plant Physiol 136:3070–3079

    Article  PubMed  CAS  Google Scholar 

  • Helm RF, Huang Z, Edwards D, Leeson H, Peery W, Potts M (2000) Structural characterization of the released polysaccharide of desiccation-tolerant Nostoc commune DRH-1. J Bacteriol 182:974–982

    Article  PubMed  CAS  Google Scholar 

  • Higo A, Suzuki T, Ikeuchi M, Ohmori M (2007) Dynamic transcriptional changes in response to rehydration in Anabaena sp. PCC 7120. Microbiology 153:3685–3694

    Article  PubMed  CAS  Google Scholar 

  • Hirai M, Yamakawa R, Nishio J, Yamaji T, Kashino Y, Koike H, Satoh K (2004) Deactivation of photosynthetic activities is triggered by loss of a small amount of water in a desiccation-tolerant cyanobacterium, Nostoc commune. Plant Cell Physiol 45(7):872–878

    Article  PubMed  CAS  Google Scholar 

  • Hokputsa S, Hu CX, Paulsen BS, Harding SE (2003) A physico-chemical comparative study on extracellular carbohydrate polymers from five desert algae. Carbohydr Polym 54(1):27–32

    Article  CAS  Google Scholar 

  • Hong Y, Li YY, Ley SH (1992) Preliminary study on the blue-green algae community of arid soil in Qaidam Basin. Acta Bot Sin 34:161–168

    Google Scholar 

  • Housman DC, Powers HH, Collins AD, Belnap J (2006) Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. J Arid Environ 66:620–634

    Article  Google Scholar 

  • Hu CX, Liu YD (2003a) Primary succession on algal community structure in desert soil. Acta Bot Sin 45(8):917–924

    Google Scholar 

  • Hu CX, Liu YD (2003b) Vertical distribution of algae in semi-desert soil of Shapotou area Ningxia Hui Autonomous Region. Acta Ecol Sin 23:38–44

    Google Scholar 

  • Hu CX, Liu YD (2003c) Soil algal biomass and its influential factors in desert soil crusts. Acta Ecol Sin 23(2):284–291

    Google Scholar 

  • Hu CX, Liu YD, Song LR (1999) Species composition and distribution of algae in Shapotou area, Ningxia Hui Autonomous region, China. Acta Hydrobiol Sin 23(5):443–448

    Google Scholar 

  • Hu CX, Liu YD, Song LR, Zhang DL (2002a) Effect of desert soil algae on the stabilization of fine sands. J Appl Phycol 14:281–292

    Article  CAS  Google Scholar 

  • Hu CX, Liu YD, Zhang DL, Huang ZB, Paulsen BS (2002b) Cementing mechanism of algal crusts from desert area. Chin Sci Bull 47:1361–1368

    Article  CAS  Google Scholar 

  • Hu CX, Liu YD, Paulsen BS, Petersen D, Klaveness D (2003a) Extracellular carbohydrate polymers from five species of soil algae with different cohesion in the stabilization of fine sand grains. Carbohydr Polym 54(1):33–42

    Article  CAS  Google Scholar 

  • Hu CX, Ma HY, Pang HL, Zhang DL (2003b) Species composition and distribution of algae in Wuquanshan of Lanzhou. Acta Bot Boreal Occident Sin 23(12):2099–2106

    Google Scholar 

  • Hu CX, Zhang BC, Ma HY, Liu YD, Zhang DL (2003c) Species composition and community structure of terrestrial algae in the biological crusts of Lanzhou Northern Hill. J Northwest Norm Univ 39:59–63

    Google Scholar 

  • Hu CX, Zhang DL, Huang ZB, Liu YD (2003d) The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts. Plant Soil 257:91–111

    Google Scholar 

  • Hu CX, Zhang DL, Liu YD (2004) Research progresses on algae of the microbial crusts in arid and semiarid regions. Prog Nat Sci 14(4):289–295

    Article  CAS  Google Scholar 

  • Huang ZB, Liu YD, Smestad Paulsen B, Klaveness D (1998) Studies on polysaccharides from three edible species of Nostoc (cyanobacteria) with different colony morphologies: comparison of monosaccharide compositions and viscosities of polysaccharides from field colonies and suspension cultures. J Phycol 34:962–968

    Article  CAS  Google Scholar 

  • Ibraheem IBM (2007) Cyanobacteria as alternative biological conditioners for bioremediation of barren soil. Egypt J Phycol 8:99–116

    Google Scholar 

  • Issa OM, Trichet J, Defarge C, Couté A, Valentin C (1999) Morphology and microstructure of microbiotic soil crusts on a tiger bush sequence (Niger, Sahel). Catena 37:175–196

    Article  Google Scholar 

  • Issa OM, Defarge C, Le Bissonnais Y, Marin B, Duval O, Bruand A, D’Acqui L, Nordenberg S, Annerman M (2007) Effects of the ­inoculation of cyanobacteria on the microstructure and the ­structural stability of a tropical soil. Plant Soil 290(1–2):209–219

    Article  CAS  Google Scholar 

  • Johnson HE, King SR, Banack SA, Webster C, Callanaupa WJ, Cox PA (2008) Cyanobacteria (Nostoc commune) used as a dietary item in the Peruvian highlands produce the neurotoxic amino acid BMAA. J Ethnopharmacol 118:159–165

    Article  PubMed  CAS  Google Scholar 

  • Kang L (1999) Strategies for desertification control and ecological agricultural construction in Hexi Corridor. J Desert Res 19:195–198 (in Chinese)

    Google Scholar 

  • Khan Z, Park SD, Shin SY, Bae SG, Yeon IK, Seo YJ (2005) Management of Meloidogyne incognita on tomato root-dip treatment in culture filtrate of the blue-green alga, Microcoleus vaginatus. Bioresour Technol 96(12):1338–1341

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood AE, Henley WJ (2006) Algal community dynamics and halotolerance in a terrestrial, hypersaline environment. J Phycol 42:537–547

    Article  CAS  Google Scholar 

  • Kirkwood AE, Buchheim JA, Buchheim MA, Henley WJ (2008) Cyanobacterial diversity and halotolerance in a variable hypersaline environment. Microb Ecol 55:453–465

    Article  PubMed  Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil/Part 2 Oscillatoriales. Spektrum. Akademischer Verlag, Heidelberg, 759 pp

    Google Scholar 

  • Kulik MM (1995) The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur J Plant Pathol 101:585–599

    Article  Google Scholar 

  • Lacap DC, Warren-Rhodes KA, McKay CP, Pointing SB (2011) Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz the hyper-arid core of the Atacama Desert, Chile. Extremophiles 15:31–38

    Article  PubMed  Google Scholar 

  • Lalley JS, Viles HA (2005) Terricolous lichens in the northern Namib Desert of Namibia: distribution and community composition. Lichenologist 37:77–91

    Article  Google Scholar 

  • Lan SB, Hu CX, Rao BQ, Wu L, Zhang DL, Liu YD (2010a) Non-rainfall water sources in the topsoil and their changes during formation of man-made algal crusts at the eastern edge of Qubqi Desert, Inner Mongolia. Sci China Life Sci 53(9):1135–1141

    Article  PubMed  Google Scholar 

  • Lan SB, Wu L, Zhang DL, Hu CX, Liu YD (2010b) Effects of drought and salt stresses on man-made cyanobacterial crusts. Eur J Soil Biol 46:381–386

    Article  Google Scholar 

  • Lan SB, Wu L, Zhang DL, Hu CX (2011a) Ethanol outperforms multiple solvents in the extraction of chlorophyll-a from biological soil crusts. Soil Biol Biochem 43:857–861

    Article  CAS  Google Scholar 

  • Lan SB, Wu L, Zhang DL, Hu CX (2011b) Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China). Environ Earth Sci. doi:10.1007/s1 2665 -011-1066-0

  • Langston G, Neuman CM (2005) An experimental study on the susceptibility of crusted surfaces to wind erosion: a comparison of the strength properties of biotic and salt crusts. Geomorphology 72(1–4):40–53

    Article  Google Scholar 

  • Lesica P, Shelly JS (1992) Effect of cryptogamic soil crust on the population dynamics of Arabis fecunda (Brassicaceae). Am Midl Nat 128:58–60

    Article  Google Scholar 

  • Li XR, Wang XP, Li T, Zhang JG (2002) Microbiotic soil crust and its effect on vegetation and habitat on artificially stabilized desert dunes in Tengger Desert, North China. Biol Fertil Soils 35(3):147–154

    Article  Google Scholar 

  • Liu XJ, Chen F (2003) Cell differentiation and colony alteration of an edible terrestrial cyanobacterium Nostoc flagelliforme, in liquid suspension cultures. Folia Microbiol 48(5):619–626

    Article  CAS  Google Scholar 

  • Liu YZ, Dong GR, Li CZ (1994) A study on the factors influencing soil erosion through wind tunnel experiments. Chin J Arid Land Res 7(2):359–367

    Google Scholar 

  • Liu YD, Shen YW, Song LR, Zhu YZ, Zhuang HR, Qin SW (1999) Species composition of algae and the relationship with fertility of soils in the middle reach of Yellow River, China. Acta Hydrobiol Sin 23(5):434–442

    Google Scholar 

  • Liu YD, Song LR, Shen YW, Li DH, Hu CX, Huang ZB, Hu ZL, Zhu YZ (2001) Potential of terrestrial microalgae and cyanobacteria in environmental technology. In: Kojima H, Lee YK (eds) Photosynthetic microorganisms in environmental biotechnology. Springer, Hong Kong, pp 195–216, 310 pp

    Google Scholar 

  • Liu LC, Li SZ, Duan ZH, Li XR (2006) Effects of microbiotic crusts on dew deposition in the restored vegetation area at Shapotou, northwest China. J Hydrol 328(1–2):331–337

    Article  Google Scholar 

  • Liu YD, Cockell CS, Wang GH, Hu CX, Chen LZ, De Philippis R (2008) Control of lunar and martian dust – experimental insights from artificial and natural cyanobacterial and algal crusts in the desert of Inner Mongolia, China. Astrobiology 8(1):75–86

    Article  PubMed  CAS  Google Scholar 

  • LukeÅ¡ová A (1993) Soil algae in four secondary successional stages on abandoned fields. Algol Stud 71:81–102

    Google Scholar 

  • Maestre FT, Martin N, Diez B, López-Poma R, Santos F, Luque I, Cortina J (2006) Watering, fertilization, and slurry inoculation promote recovery of biological crust function in degraded soils. Microb Ecol 52:365–377

    Article  PubMed  Google Scholar 

  • Mager DM, Thomas AD (2010) Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ 72(2):91–97

    Google Scholar 

  • Malliga P, Subramanian G (2002) Cyanobacterial biofertilizer for ­sustainable agriculture. In: Reddy SM, Reddy R, Sindarachary S, Girishnan S (eds) Proceedings of national symposium on bio­inoculants for sustainable agriculture and forestry. Scientific publishers, Jodhpur, India, pp 99–106

    Google Scholar 

  • Marker AFH (1995) Chlorophyll analysis: standard methods. National Rivers Authority, Bristol

    Google Scholar 

  • Marker AFH, Nusch EA, Rai H, Reimann H (1980) The measurement of photosynthetic pigments in freshwaters and standardization of methods, conclusions and recommendations. Arch Hydrobiol 14:91–106

    CAS  Google Scholar 

  • Mataloni G, Tell G (2002) Microalgal communities from orthnogenic soils at Cierva Point, Antarctic Peninsula. Polar Biol 25(7):488–491

    Article  Google Scholar 

  • Mataloni G, Tell G, Wynn-Williams DD (2000) Structure and diversity of soil algal communities from Cierva Point (Antarctic Peninsula). Polar Biol 23(3):205–211

    Article  Google Scholar 

  • Mazor G, Kidron GJ, Vonshak A, Abeliovich A (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol Ecol 21:121–130

    Article  CAS  Google Scholar 

  • McCay CP, Friedmann EI, Gomez-Silva B, Cacere L, Andersen D, Landheim R (2003) Temperature and moisture conditions in the extreme arid regions of the Atacama Desert: four years of observations including the El Nio of 1997–1998. Astrobiology 3:393–406

    Article  CAS  Google Scholar 

  • McKenna-Neuman C, Maxwell CD, Boulton JW (1996) Wind transport of sand surface crusted with photoautotrophic microorganisms. Catena 27:229–247

    Article  Google Scholar 

  • Metting B (1981) The systematics and ecology of soil algae. Bot Rev 47:195–312

    Article  CAS  Google Scholar 

  • Micheletti E, Colica G, Viti C, Tamagnini P, De Philippis R (2008) Selectivity in the heavy metal removal by exopolysaccharide-producing cyanobacteria. J Appl Microbiol 105:88–94

    Article  PubMed  CAS  Google Scholar 

  • Navarro-González R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthar CL, Gomez-Silva B, McKay CP (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit for microbial life. Science 302(5647):1018–1021

    Article  PubMed  CAS  Google Scholar 

  • Nayak S, Prasanna R, Prasanna BM, Sahoo D (2009) Genotypic and phenotypic diversity of Anabaena isolates from diverse rice agro-ecologies of India. J Basic Microbiol 49(2):165–177

    Article  PubMed  CAS  Google Scholar 

  • Nisha R, Kaushik A, Kaushik CP (2007) Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma 138:49–56

    Article  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  PubMed  CAS  Google Scholar 

  • Novis PM, Smissen RD (2006) Two genetic and ecological groups of Nostoc commune in Victoria Land, Antarctica, revealed by AFLP analysis. Antarct Sci 18(4):573–581

    Article  Google Scholar 

  • Novis PM, Whitehead D, Gregorich EG, Hunt JE, Sparrow AD (2007) Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an Antarctic dry valley is driven by temperature regime. Glob Change Biol 13(6):1224–1237

    Article  Google Scholar 

  • Obana S, Miyamoto K, Morita S, Ohmori M (2007) Effect of Nostoc sp. on soil characteristics, plant growth and nutrient uptake. J Appl Phycol 19:641–646

    Article  Google Scholar 

  • Omoregie EO, Crumbliss LL, Bebout BM, Zehr JP (2004) Determination of nitrogen-fixing phylotypes in Lyngbya sp. and Microcoleus chthonoplastes cyanobacterial mats from Guerrero Negrao, Baja, California, Mexico. Appl Environ Microbiol 70(4):2119–2128

    Article  PubMed  CAS  Google Scholar 

  • Page-Sharp M, Behm CA, Smith GD (1999) Involvement of the compatible solutes trehalose and sucrose in the response to salt stress of a cyanobacterial Scytonema species isolated from desert soils. Biochim Biophys Acta 1472:519–528

    Article  PubMed  CAS  Google Scholar 

  • Painter TJ (1993) Carbohydrate polymers in desert reclamation the potential of microalgal biofertilizers. Carbohydr Polym 20:77–86

    Article  CAS  Google Scholar 

  • Pandey KD, Shukla PN, Giri DD, Kashyap AK (2005) Cyanobacteria in alkaline soil and the effect of cyanobacteria inoculation with pyrite amendments on their reclamation. Biol Fertil Soil 41:451–457

    Article  Google Scholar 

  • Pankratova EM (2006) Functioning of cyanobacteria in soil ecosystems. Eurasia Soil Sci 39(Suppl 1):S118–S127

    Article  Google Scholar 

  • Pattanaik B, Roleda MY, Schumann R, Karsten U (2002) Isolate-specific effects of amino acids and scytonemin is responsible for the UV-insensitivity of photosynthesis in Nostoc flagelliforme. J Photochem Photobiol B 66(1):47–53

    Article  CAS  Google Scholar 

  • Pardo MT, Lopez-Fando C, Almendros G, Herrero A (2009) Laboratory assessment of Nostoc 9v (cyanobacteria) effects on N2 fixation and chemical fertility of degraded Arican soils. Commun Soil Sci Plant Anal 40(7–8):1295–1321

    Article  CAS  Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  PubMed  CAS  Google Scholar 

  • Pluis JLA (1994) Algal crust formation in the inland dune area Laarder Wasmeer, The Netherlands. Vegetatio 13:41–51

    Article  Google Scholar 

  • Pointing SB, Warren-Rhodes KA, Lacap D, Rhodes K, McKay CP (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Environ Microbiol 9:414–424

    Article  PubMed  CAS  Google Scholar 

  • Pointing SB, Chan Y. Lacap DC, Lau MCY, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci USA 106(47):19964–19969

    Article  CAS  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    Article  CAS  Google Scholar 

  • Potts M (1999) Minireview: mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol 34:319–332

    Article  Google Scholar 

  • Potts M (2000) Nostoc. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 465–504, 699 pp

    Article  CAS  Google Scholar 

  • Potts M (2001) Desiccation tolerance: a simple process? Trends Microbiol 9:553–559

    Article  PubMed  CAS  Google Scholar 

  • Prasanna R, Saxena AK, Jaiswal P, Nayak S (2006) Development of alternative support system for viable count of cyanobacteria by most probable number method. Folia Microbiol 51(5):455–458

    Article  CAS  Google Scholar 

  • Pringault O, Garcia-Pichel F (2004) Hydrotaxis of cyanobacteria in desert crusts. Microb Ecol 47:366–373

    Article  PubMed  CAS  Google Scholar 

  • Qiu BS, Gao KS (1999) Dried field populations of Nostoc flagelliforme (Cyanophyceae) require exogenous nutrients for their photosynthetic recovery. J Appl Phycol 11:535–541

    Article  CAS  Google Scholar 

  • Qiu BS, Gao KS (2002) Daily production and photosynthetic characteristics of Nostoc flagelliforme grown under ambient and elevated CO2 conditions. J Appl Phycol 14:77–83

    Article  Google Scholar 

  • Qiu BS, Zhang AH, Liu ZL, Gao KS (2004a) Studies on the photo­synthesis of the terrestrial cyanobacterium Nostoc flagelliforme subjected to desiccation and subsequent rehydration. Phycologia 43(5):521–528

    Article  Google Scholar 

  • Qiu BS, Zhang AH, Zhou WB, Wei JM, Hui D (2004b) Effects of potassium on the photosynthetic recovery of the terrestrial cyano­bacterium Nostoc flagelliforme (Cyanophyceae) during rehydration. J Phycol 40:323–332

    Article  CAS  Google Scholar 

  • Rao BQ, Wang WB, Lan SB, Li DH, Hu CX, Liu YD (2009a) Development characteristics and distribution of microorganisms within 3-year-old artificial algal crust in Hopq Desert. Acta Hydrobiol Sin 33(5):937–944

    Article  Google Scholar 

  • Rao BQ, Wang WB, Li DH, Hu CX, Lan SB (2009b) Influence of dew on biomass and photosystem II activity of cyanobacterial crusts in the Hopq Desert, northwest China. Soil Biol Biochem 41(12):2387–2393

    Article  CAS  Google Scholar 

  • Rastogi RP, Sinha RP (2009) Biotechnological and industrial signi­ficance of cyanobacterial secondary metabolites. Biotechnol Adv 27(4):521–539

    Article  PubMed  CAS  Google Scholar 

  • Read CF, Duncan DH, Vesk PA, Elith J (2011) Surprisingly fast recovery of biological soil crusts following livestock removal in southern Australia. J Veg Sci. doi:10.1111/j.1654-1103.2011.01296.x

  • Reddy PM, Roger PA, Ventura W, Watanabe I (1986) Blue-green algal treatment and inoculation had no significant effect on rice yield in an acidic wetland soil. Philipp Agric 69:629–632

    Google Scholar 

  • Redfield E, Barns SM, Belnap J, Daane LL, Kuske CR (2002) Comparative diversity and composition of cyanobacteria in three predominant soil crusts of the Colorado Plateau. FEMS Microbiol Ecol 40(1):55–63

    Article  PubMed  CAS  Google Scholar 

  • Rippka R, Waterbury JW, Herman M, Castenholz RW (2001) Form-genus 1. Chroococcidiopsis Geitler 1933, emend. Waterbury and Stanier 1978. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 528–532, 721 pp

    Google Scholar 

  • Rivera-Aguilar V, Montjano G, Rodriguez-Zaragoza S, Duran-Diaz A (2006) Distribution and composition of cyanobacetria, mosses and lichens of the biological soil crusts of the Tehuacan Valley, Puebla, Mexico. J Arid Environ 67:208–225

    Article  Google Scholar 

  • Roger PA, Santiago-Ardales S, Reddy PM, Watanabe I (1987) The abundance of heterocystous blue-green algae in rice soils and inocula used for application in rice fields. Biol Fertil Soils 5:98–105

    Article  Google Scholar 

  • Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial populations, and seeding emergence, following inoculation of soil Nostoc muscorum. Biol Fertil Soils 18:209–215

    Article  Google Scholar 

  • Roney BR, Renhui L, Banack SA, Murch S, Honegger R, Cox PA (2009) Consumption of fa cai Nostoc soup: a potential for BMAA exoisure from Nostoc cyanobacteria in China. Amyotroph Lateral Scler 2009(Suppl 2):44–49

    Article  CAS  Google Scholar 

  • Rosentreter R, Belnap J (2003) Biological soil crusts of North America. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, New York, pp 31–50

    Chapter  Google Scholar 

  • Rychert RC (2002) Assessment of cryptobiotic crust recovery. West N Am Nat 62(2):223–226

    Google Scholar 

  • Safonova E, Reisser W (2005) Growth promoting and inhibiting effects of extracellular substances of soil microalgae and cyanobacteria on Escherichia coli and Micrococcus luteus. Phycol Res 53(3):189–193

    Google Scholar 

  • Schlesinger WH, Pippin J, Wallenstein M, Hofmockel K, Klepeis D, Hahall B (2003) Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert. Ecology 84:3222–3231

    Article  Google Scholar 

  • Schwabe GH (1960) Blaualgen aus ariden Böden. Forsch Fortsch 34:194–197

    Google Scholar 

  • Shachak M, Steinberger Y (1980) An algae – desert snail food chain: energy flow and soil turnover. Oecol Berl 146:402–411

    Google Scholar 

  • Shachak M, Chapman EA, Steinberger Y (1976) Feeding, energy flow and soil turnover in the desert isopod Hemilepistus reanmuri. Oecologia 24:57–69

    Article  Google Scholar 

  • Shaw E, Hill DR, Brittain N, Wright DJ, Tauber U, Marand H, Helm RF, Potts M (2003) Unusual water flux in the extracellular ­polysaccharide of the cyanobacterium Nostoc commune. Appl Environ Microbiol 69(9):5679–5684

    Article  PubMed  CAS  Google Scholar 

  • Shirkey B, Kovarcik DP, Wright DJ, Wilmoth G, Prickett TF, Helm RF, Gregory EM, Potts M (2000) Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) after years of desiccation. J Bacteriol 182(1):189–197

    Article  PubMed  CAS  Google Scholar 

  • Shirkey B, McMaster NJ, Smith SC, Wright DJ, Rodriguez H, Jaruga P, Birincioglu M, Helm RF, Potts M (2003) Genomic DNA of Nostoc commune (Cyanobacteria) becomes covalently modified during long-term (decades) desiccation but is protected from oxidative damage and degradation. Nucleic Acids Res 31(12):2995–3005

    Article  PubMed  CAS  Google Scholar 

  • Siegesmund MA, Johansen JR, Karsten U, Friedl T (2008) Coleo­fasciculus Gen. Nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol 44(6):1572–1585

    Article  Google Scholar 

  • Singh RN (1950) Reclamation of usar lands in India through blue-green algae. Nature 165:325–326

    Article  Google Scholar 

  • Soule T, Stout V, Swingley WD, Meeks JC, Garcia-Pichel F (2007) Molecular genetics and genomic analysis of scytonemin biosynthesis in Nostoc punctiforme ATCC 29133. J Bacteriol 189:4465–4472

    Article  CAS  Google Scholar 

  • Soule T, Palmer K, Gao Q, Potrafka RM, Stout V, Garcia-Pichel F (2009) A comparative genomics approach to understanding the biosynthesis of the sunscreen scytonemin in cyanobacteria. BMC Genomics 10:336–345

    Article  CAS  Google Scholar 

  • Stal LJ (2000) Cyanobacterial mats and stromatolites. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 61–120, 669 pp

    Google Scholar 

  • Starkenburg SR, Reitenga KG, Freitas T, Johnson S, Chain PSG, Garcia-Pichel F, Kuske CR (2011) The genome of the cyanobacterium Microcoleus vaginatus FGP-2, a photosynthetic ecosystem engineer of arid land soil biocrusts worldwide. J Bacteriol. doi:10.1128/JB.05138-11

  • Su YG, Li XR, Cheng YW, Tan HJ, Jia RL (2007) Effects of biological soil crusts on emergence of desert vascular plants in North China. Plant Ecol 191:11–19

    Article  Google Scholar 

  • Svircev Z, Cetojevic-Simin D, Simeunovic J, Karaman M, Stojanovic D (2008) Antibacterial, antifungal and cytotoxic activity of terrestrial cyanobacterial strains from Serbia. Sci China C Life Sci 51(10):941–947

    Article  PubMed  Google Scholar 

  • Swarnalakshmi K, Dhar DW, Singh PK (2007) Evaluation of blue-green algal inoculation on specific soil parameters. Acta Agron Hung 55(3):307–313

    Article  CAS  Google Scholar 

  • Tang D, Shi S, Li D, Hu C, Liu Y (2007a) Physiological and biochemical responses of Scytonema javanicum (cyanobacterium) to salt stress. J Arid Environ 71:312–320

    Article  Google Scholar 

  • Tang DS, Wang WB, Li DH, Hu CX, Liu YD (2007b) Effects of artificial algal crust on soil enzyme activities of Hobq Desert, China. Acta Hydrobiol Sin 31(3):339–344

    CAS  Google Scholar 

  • Tirkey J, Adhikary SP (2005) Cyanobacteria in biological soil crusts of India. Curr Sci 89(3):515–521

    Google Scholar 

  • Tiwari BS, Tripathi SN (1998) Effect of hydration and dehydration on initiation and dynamics of some physiological reactions in desiccation tolerant cyanobacterium Scytonema geitleri. Indian J Biochem Biophys 35(3):172–178

    PubMed  CAS  Google Scholar 

  • Tripathi RD, Dwivedi S, Shukla MK, Mishra S, Srivastava S, Singh P (2008) Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere 70(10):1919–1929

    Article  PubMed  CAS  Google Scholar 

  • Tsujimura S, Nakahara H, Kosaki T, Ishida N, Iskakov AR (1998) Distribution of soil algae in salinized irrigation land in the arid region of Central Asia – II a case study of 25-year old Bakbakty farm in the flood plain of the River Ili, Kazakstan. Soil Sci Plant Nutr 44(1):67–76

    Article  Google Scholar 

  • Tsujimura S, Nakahara H, Ishida N (2000) Estimation of soil algal biomass in salinized irrigation land: a comparison of culture dilution and chlorophyll a extraction methods. J Appl Phycol 12:1–8

    Article  CAS  Google Scholar 

  • Valentin C, Rajot JL, Mitja D (2004) Responses of soil crusting, runoff and erosion to fallowing in the sub-humid and semi-arid regions of West Africa. Agric Ecosyst Environ 104(2):287–302

    Article  Google Scholar 

  • Veluci RM, Neher DA, Weicht TR (2006) Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils. Microb Ecol 51(2):189–196

    Article  PubMed  CAS  Google Scholar 

  • Vigna MS, Alberghina J, Belmonte CF (2001) Remarks about the taxonomical position of Nodularia harveyana Thuret ex Bornet et Flahault (Cyanophya, Nostocales) growing on soil. Nova Hedwig 72(1–2):241–250

    Google Scholar 

  • Wang GH, Hu CX, Li DH, Zhang DL, Li XY, Chen K, Liu YD (2007a) The response of antioxidant systems in Nostoc sphaeroides against UV-B radiation and the protective effects of exogenous antioxidants. Adv Space Res 39(6):1034–1042

    Article  CAS  Google Scholar 

  • Wang WB, Yang CY, Tang DS, Li DH, Liu YD, Hu CX (2007b) Effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of man-made cyanobacterial crusts under experimental conditions. Sci China C Life Sci 50(4):530–534

    Article  PubMed  CAS  Google Scholar 

  • Wang GH, Chen K, Chen LZ, Hu CX, Zhang DL, Liu YD (2008) The involvement of the antioxidant system in protection of desert cyanobacterium Nostoc sp. against UV-B radiation and the effects of exogenous antioxidants. Ecotoxicol Environ Saf 69:150–157

    Article  PubMed  CAS  Google Scholar 

  • Wang WB, Liu YD, Li DH, Hu CX, Rao BQ (2009) Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biol Biochem 41:926–929

    Article  CAS  Google Scholar 

  • Warren SD (2001) Biological soil crusts and hydrology in North American deserts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 327–377, 503 pp

    Google Scholar 

  • Warren-Rhodes KA, Rhodes K, Pointing S, Ewing S, Lacap D, Gómez-Silva B, Amundso R, Freidmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398

    Article  PubMed  Google Scholar 

  • Warren-Rhodes KA, Rhodes KL, Boyle LN, Pointing SB, Chen Y, Liu S, Zhuo P, McKay CP (2007a) Cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiol Ecol 61:470–482

    Article  PubMed  CAS  Google Scholar 

  • Warren-Rhodes KA, Rhodes K, Liu S, Zhou P, McKay CP (2007b) Nanoclimate environment of cyanobacterial communities in China’s hot and cold hyperarid deserts. J Geophys Res Biogeosci 112. doi:10.1029/2006/G000260

  • Whitton BA (2000) Soils and rice-fields. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 233–255

    Google Scholar 

  • Whitton BA, Al-Shehri AH, Ellwood NTW, Turner BL (2005) Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. Commonwealth Agricultural Bureau, Wallingford, pp 205–241, 399 pp

    Chapter  Google Scholar 

  • Wierzchos J, Ascasp C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6(3):15–22

    Article  Google Scholar 

  • Wong FK, Lacap DC, Lau MCY, DA Aitchison C, Pointing DB (2010) Hypolithic microbial community of quarzt pavement in the high-altitude tundra of central Tibet. Microb Ecol 60:730–739

    Article  PubMed  Google Scholar 

  • Wood SA, Rueckert A, Cowan DA, Cary SC (2008) Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J 2(3):308–320

    Article  PubMed  CAS  Google Scholar 

  • Wright DJ, Smith SC, Joardar V, Scherer S, Jervis J, Warren A (2005) UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria). J Biol Chem 280(48):40271–40281

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Lan S(B), Zhang D, Hu C(X) (2011) Small-scale vertical distribution of algae and structure of lichen soil crusts. Microb Ecol. doi:10.1007/s00248-011-9828-5

  • Wynn-Williams DD (2000) Cyanobacteria in desert-life at the limit? In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 341–366, 669 pp

    Google Scholar 

  • Xie ZM, Liu YD, Hu CX, Chen LZ, Li DH (2007) Relationships between the biomass of algal crusts in fields and their compressive strength. Soil Biol Biochem 39:567–572

    Article  CAS  Google Scholar 

  • Xie ZM, Liu YD, Chen LZ, Hu CX, Li DH, Shen YW (2008) The effects of different cultivation conditions on the biomass and exopolysaccharide production by Microcoleus vaginatus Gom. Acta Hydrobiol Sin 32(2):272–275

    Article  Google Scholar 

  • Xu JJ, Zhang DL, Wu GQ, Wang GH, Liu YD, Hu CX (2010) The effects of wind force on the biomass and the activity of photosynthesis of Microcoleus vaginatus crust. Acta Hydrobiol Sin 34(3):575–581

    Article  CAS  Google Scholar 

  • Yang XH, Zhang KB, Zhao YJ (2001) Microbiotic soil crust – a research forefront in desertification prone area. Acta Ecol Sin 21(3):474–480 (in Chinese)

    Google Scholar 

  • Yan-Gui S, Xin-Rong L, Ying-Wu C, Zhi-Shan Z, Yan L (2011) Carbon fixation of cyanobacterial-algal crusts after desert fixation and its implication to soil organic carbon accumulation in desert. Land Degrad Dev 22. doi:10:1002/ldr.1131

  • Ye C, Gao K, Giordano M (2008) The odd behaviour of carbonic anhydrase in the terrestrial cyanobacterium Nostoc flagelliforme during hydration-dehydration cycles. Environ Microbiol 10(4):1018–1023

    Article  PubMed  CAS  Google Scholar 

  • Yeager CM, Kornosky JL, Housman DC, Grote EE, Belnap J, Kuske CR (2004) Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado plateau and Chihuahuan desert. Appl Environ Microbiol 70(2):973–983

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Sakamoto T (2009) Water-stress induced trehalose accumulation and control of trehalase in the cyanobacterium Nostoc punctiforme IAM M-15. J Gen Appl Microbiol 55(2):135–145

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura H, Okamoto S, Tsumuraya Y, Ohmori M (2007) Group 3 sigma factor gene, sigJ, a key regulator of desiccation tolerance, regulates the synthesis of extracellular polysaccharide in cyano­bacterium Anabaena sp strain PCC 7120. DNA Res 14(1):13–24

    Article  PubMed  CAS  Google Scholar 

  • Zaady E, Kuhn U, Wilske B, Sandoval-Soto L, Kesselmeier J (2000) Patterns of CO2 exchange in biological soil crusts of successional age. Soil Biol Biochem 32:959–966

    Article  CAS  Google Scholar 

  • Zaady E, Bouskila A (2002) Lizard burrows association with successional stages of biological soil crusts in an arid sandy region. J Arid Environ 50(2):235–246

    Article  Google Scholar 

  • Zancan S, Trevisan R, Paoletti MG (2006) Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agric Ecosyst Environ 112(1):1–12

    Article  Google Scholar 

  • Zhang YM, Wang HL, Wang XQ, Yang WK, Zhang DY (2006) The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China. Geoderma 132:441–449

    Article  Google Scholar 

  • Zhang H, Ma HY, Zhang DL LVY, Wang GH, Chen K, Liu YD, Hu CX (2008) On apoptosis of human epidermoid carcinoma A431 cells induced by the extracellular polymeric substances of Scytonema javanicum. Acta Hydrobiol Sin 32(6):89–95

    Google Scholar 

  • Zhang BC, Zhang YM, Downing A, Niu Y (2011) Distribution and composition of cyanobacteria and microalgae associated with biological soil crusts in the Gurbantunggut Desert, China. Arid Land Res Dev 25(3):275–293

    Article  CAS  Google Scholar 

  • Zhao J, Zheng Y, Zhang B, Chen Y, Zhang Y (2009) Progress in the study of algae and mosses in biological soil crusts. Front Biol China 4(2):143–150. doi:10.1007/(5)1515-008-0104-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiang Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hu, C., Gao, K., Whitton, B.A. (2012). Semi-arid Regions and Deserts. In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_12

Download citation

Publish with us

Policies and ethics