Skip to main content
Log in

Antibacterial, antifungal and cytotoxic activity of terrestrial cyanobacterial strains from Serbia

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Cyanobacteria are known to be a rich source of biologically active compounds some of which can have pharmaceutical importance. In this work we present the screening results of cyanobacterial strains for their antibacterial, antifungal, and cytotoxic activity. Cyanobacterial strains were isolated from various soil types in province of Vojvodina and Central Serbia, Republic of Serbia. The screening included 9 strains of Anabaena and 9 strains of Nostoc. Both, extracellular products (from the culture liquid) and cellular crude lipophilic extracts were tested against 13 bacterial strains and 8 fungal strains. Cytotoxic activity was tested against three human cell lines. Methanol extracts were prepared according to Østensvik. Antibacterial and antifungal activities were determined measuring inhibition zone, 48 h after inoculation. The cytotoxic activity was determined by sulforhodamine B (SRB) colorimetric assay. Of all cyanobacterial strains tested, 52% showed some antifungal and 41% antibacterial activity. Two out of six tested strains possessed cytotoxic activity. The cytotoxic activity of Anabaena strain S12 was found both in culture liquid and crude cell extract. It occurred specifically between the 21st and 42nd day of cultivation against HeLa and MCF7 cells, but had no activity against cell line derived from a healthy tissue. A high percentage of the active strains among the tested strains justify the effort of screening cyanobacteria that are isolated from terrestrial environments. The most promising strains for the further study are Anabaena strain S12 which showed strong cytotoxic and antibacterial activity and Anabaena strain S20 which produces a potent antifungal compound. The future work, besides further screening and chemical identification of the active compounds, should also include the development of culture techniques that would lead to more efficient production of biologically active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chapman D J, Gellenbeck K W. An historical perspective of algal biotechnology. In: Cresswell R C, Rees T A V, Shah N, eds. Algal and Cyanobacterial Biotechnology UK. Harlow: Longman Scientific and Technical, 1998. 1–23

    Google Scholar 

  2. Patterson G M L, Larsen L K, Moore R E. Bioactive natural products from blue-green algae. J Appl Phycol, 1994, 6: 151–157 10.1007/BF02186069, 1:CAS:528:DyaK2cXlslClu78%3D

    Article  Google Scholar 

  3. Frassanito R, Cantonati M, Tardìo M et al. On-line identification of secondary metabolites in freshwater microalgae and cyanobacteria by combined liquid chromatography-photodiode array detection-mass spectrometric techniques. J Chromatography, 2005, 1: 33–42 10.1016/j.chroma.2005.02.066

    Article  Google Scholar 

  4. Tan T L. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry, 2007, 7: 954–979 10.1016/j.phytochem.2007.01.012

    Article  Google Scholar 

  5. Carmichael W W. Cyanobacteria secondary metabolities—the cytotoxins. J Appl Bacteriol, 1992, 72: 445–459 1644701, 1:CAS:528:DyaK38Xls1Ohs74%3D

    Article  PubMed  Google Scholar 

  6. Codd G A. Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecol Eng, 2000, 16: 51–60 10.1016/S0925-8574(00)00089-6

    Article  Google Scholar 

  7. Berry J B, Gantar M, Gawley R E, et al. Pharmacology and toxicology of pahayokolide A, a bioactive metabolite from freshwater species of Lyngbya isolated from the Florida Everglades. Comparat Biochem Physiol (Part C), 2004, 139: 231–238

    Google Scholar 

  8. Wiegand C, Pflugmacher S. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharmacol, 2005, 3: 201–218 10.1016/j.taap.2004.11.002

    Article  Google Scholar 

  9. Burja A M, Banaigs B B, Abou-Mansour E, et al. Marine cyanobacteria—a prolific source of natural products. Tetrahedron, 2001, 57: 9347–9377 10.1016/S0040-4020(01)00931-0, 1:CAS:528:DC%2BD3MXnvFWmurc%3D

    Article  Google Scholar 

  10. Dunlap W C, Battershill C N, Liptrot C H, et al. Biomedicinals from the phytosymbionts of marine invertebrates: A molecular approach. Methods, 2007, 4: 358–376 10.1016/j.ymeth.2007.03.001

    Article  Google Scholar 

  11. Falch B S, Koening G M, Wright A D, et al. Biological activity of cyanobacteria: Evaluation of extracts and pure compounds. Planta Med, 1995, 61: 321–328 7480178, 10.1055/s-2006-958092, 1:CAS:528:DyaK2MXnvFWrtrk%3D

    Article  PubMed  Google Scholar 

  12. Volk R-B, Furkert F H. Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res, 2006, 161: 180–186 16427523, 10.1016/j.micres.2005.08.005, 1:CAS:528:DC%2BD28Xjt1yqur4%3D

    Article  PubMed  Google Scholar 

  13. Valdor R, Aboal M. Effect of living cyanobacteria, cyanobacterial extracts and pure microcystins on growth and ultrastructure of microalgae and bacteria. Toxicon, 2007, 49: 769–779 17292433, 10.1016/j.toxicon.2006.11.025, 1:CAS:528:DC%2BD2sXksVegtrY%3D

    Article  PubMed  Google Scholar 

  14. Schlegel I, Doan N T, De Chazal N, et al. Antibiotic activity of a new cyanobacterial isolates from Australia and Asia against algae and cyanobacteria. J Appl Phycol, 1999, 10: 471–479 10.1023/A:1008042619686

    Article  Google Scholar 

  15. Frankmölle W P, Larsen L K, Caplan F R, et al. Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa. J Antibiot, 1992, 45: 1451–1457 1429231

    Article  PubMed  Google Scholar 

  16. Loya S, Reshef V, Mizrachi E, et al. The inhibition of the reverse transcriptase of HIV-1 by the natural sulfoglycolipids from cyanobacteria: Contribution of different moieties to their potency. J Nat Prod, 1998, 61: 891–895 9677270, 10.1021/np970585j, 1:CAS:528:DyaK1cXktlWitbw%3D

    Article  PubMed  Google Scholar 

  17. Skulberg O M. Microalgae as a source of bioactive molecules—experience from cyanophyte research. J Appl Microbiol, 2000, 12: 341–348 1:CAS:528:DC%2BD3cXoslejtb8%3D

    Google Scholar 

  18. Wagner M M, Paul D C, Shih C, et al. In vitro pharmacology of cryptophycin 52 (LY355703) in human tumor cell lines. Cancer Chemother Pharmacol, 1999, 43: 115–125 9923816, 10.1007/s002800050871, 1:CAS:528:DyaK1MXhvFWkur8%3D

    Article  PubMed  Google Scholar 

  19. Stevenson J P, Gallagher M, Vaughn D, et al. Phase I trial of the cryptophycin analogue LY355703 administered as an IV infusion, D1 and D8, repeated every 21 days. Proc Am Assoc Cancer Res, 1999, 40: 92

    Google Scholar 

  20. Sessa C, Weigang-Kohler K, Pagani O, et al. Phase I and pharmacological studies of the cryptophycin analogue LY355703 administered on a single intermittent or weekly schedule. Europ J Cancer, 2002, 38: 2388–2396 10.1016/S0959-8049(02)00489-6, 1:CAS:528:DC%2BD38XptFGlsLw%3D

    Article  Google Scholar 

  21. Moore R E, Patterson G M L, Carmichael W W. New pharmaceuticals from cultured blue-green algae. In: Fautin D G, eds. Biomedical Importance of Marine Organisms. Mem Cal Acad Sci, 1988, 13. 143–150

  22. Leusch H, Moore R E, Paul V J, et al. Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod, 2001, 64: 907–910 10.1021/np010049y

    Article  Google Scholar 

  23. Moore R E. Cyclic peptides and depsipeptides from cyanobacteria: A review. J Ind Microbiol, 1996, 16: 134–143 8730577, 10.1007/BF01570074, 1:CAS:528:DyaK28XhvVWntb8%3D

    Article  PubMed  Google Scholar 

  24. Smith C D, Zhang X. Mechanism of action of Cryptophycin. J Biol Chem, 1996, 271: 6192–6198 8626409, 10.1074/jbc.271.11.6192, 1:CAS:528:DyaK28XhslGgtLw%3D

    Article  PubMed  Google Scholar 

  25. Drew L, Fine R L, Do T N, et al. The novel antimicrotubule agent cryptophycin 52 (LY355703) induces apoptosis via multiple pathways in human prostate cancer. Clin Cancer Res, 2002, 8: 3922–3932 12473608, 1:CAS:528:DC%2BD38XpslCjtbs%3D

    PubMed  Google Scholar 

  26. Davidson B S. New dimensions in natural products research: cultured marine microorganisms. Curr Opin Biotechnol, 1995, 6: 284–291 10.1016/0958-1669(95)80049-2, 1:CAS:528:DyaK2MXlvFOrsLc%3D

    Article  Google Scholar 

  27. Tokuda H, Nishino H, Shirahashi H, et al. Inhibition of 12-O-tetradecanoylphorbol-13-acetate promoted mouse skin papilloma by digalactosyl diacylglycerols from the fresh water cyanobacterium Phormidium tenue. Cancer Lett, 1996, 104: 91–95 8640752, 10.1016/0304-3835(96)04237-1, 1:CAS:528:DyaK28Xjt1Sgt7g%3D

    Article  PubMed  Google Scholar 

  28. Reisser W. Biotechnological potentials of aeroterrestrial algae. Abstract Book 4th European Workshop. Biotechnology of Microalgae, May 2000 Bergholz-Rehbrücke, Germany, pp49

  29. Gantar M, Obreht Z, Fojkar O. Occurrence and characterization of nitrogen-fixing cyanobacteria in different temperate soils. Mikrobiologija (YU), 1991, 28: 33–44

    Google Scholar 

  30. Rippka R, Deruelles J, Waterbury J B, et al. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol, 1979, 111: 1–61

    Google Scholar 

  31. Østensvik Ø, Skulberg O M, Underdal B, et al. Antibacterial properties of extracts from selected planktonic feshwater cyanobacteria—a comparative study of bacterial bioassays. J Appl Microbiol, 1998, 84: 1117–1124 9717298, 10.1046/j.1365-2672.1998.00449.x

    Article  PubMed  Google Scholar 

  32. Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Nat Cancer Inst, 1990, 13: 1107–1112 10.1093/jnci/82.13.1107

    Article  Google Scholar 

  33. Piccardi R, Frosini A, Tredici M R, et al. Bioactivity in free-living and symbiotic cyanobacteria of the genus Nostoc. J Appl Phycol, 2000, 12: 543–547 10.1023/A:1008106715148

    Article  Google Scholar 

  34. Tamas I, Svircev Z, Anderson S G E. Determinative value of a portion of the nif H sequence for the genera Nostoc and Anabaena (Cyanobacteria). Curr Microbiol, 2000, 41: 197–200 10915207, 1:CAS:528:DC%2BD3cXmvFGksr0%3D

    PubMed  Google Scholar 

  35. Jaki B, Orjala J, Buergi H-R, et al. Biological screening of cyanobacteria for antimicrobial and molluscicidal activity, brine shrimp lethality, and cytotoxicity. Pharm Biol, 1999, 37: 138–143 10.1076/phbi.37.2.138.6092

    Article  Google Scholar 

  36. Lyck S, Gjolme N, Utkilen H. Iron starvation increases toxicity of Microcystis aeruginosa CYA 228/1 (Chroococcales, Cyanophyceae). Phycologia, 1996, 35: 120–124

    Article  Google Scholar 

  37. Bloor S, England R R. Elucidation and optimisation of the medium constituents controlling antibiotic production by the cyanobacterium Nostoc muscorum. Enz Microb Technol, 1991, 13: 76–81 10.1016/0141-0229(91)90192-D, 1:CAS:528:DyaK3MXmtVeksA%3D%3D

    Article  Google Scholar 

  38. Kosakowska A, Nedzi M, Pempkowiak J. Responses of the toxic cyanobacterium Microcystis aeruginosa to iron and humic substances. Plant Phys Biochem, 2007, 45: 365–370 10.1016/j.plaphy.2007.03.024, 1:CAS:528:DC%2BD2sXmtlahu7o%3D

    Article  Google Scholar 

  39. Burgess G, Jordan E M, Bregu M, et al. Microbial antagonism: a neglected avenue of natural products research. J Biotech, 1999, 70: 27–32 10.1016/S0168-1656(99)00054-1, 1:CAS:528:DyaK1MXjs1Shsro%3D

    Article  Google Scholar 

  40. Armstrong J E, Janda K E, Alvarado B, et al. Cytotoxin production by a marine Lyngbya strain (cyanobacterium) in a large-scale laboratory bioreactor. J Appl Phycol, 1991, 3: 277–282 10.1007/BF00003586, 1:CAS:528:DyaK38XhtVCns74%3D

    Article  Google Scholar 

  41. Calabrese E J, Baldwin L A. The scientific foundation of hormesis. Crit Rev Toxicol, 2001, 31: 349–691

    Google Scholar 

  42. Calabrese E J, Baldwin L A. Agonist concentration gradients as a generalizable regulatory implementation strategy. Crit Rev Toxicol, 2001, 31: 471–474 11504174, 10.1080/20014091111758, 1:CAS:528:DC%2BD3MXmsVOhu7s%3D

    Article  PubMed  Google Scholar 

  43. Calabrese E J. Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Pollut, 2005, 138: 378–411 10.1016/j.envpol.2004.10.001, 1:CAS:528:DC%2BD2MXnslynurk%3D

    Article  Google Scholar 

  44. Kreitlow S, Mundt S, Lindequist U. Cyanobacteria—a potential source of new biologically active substances. J Biotech, 1999, 70: 61–63 10.1016/S0168-1656(99)00058-9, 1:CAS:528:DyaK1MXjs1ShsrY%3D

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Cetojevic-Simin.

Additional information

Supported by the Ministry of Science and Environmental Protection of the Republic of Serbia (Grant No. 146021B)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svircev, Z., Cetojevic-Simin, D., Simeunovic, J. et al. Antibacterial, antifungal and cytotoxic activity of terrestrial cyanobacterial strains from Serbia. SCI CHINA SER C 51, 941–947 (2008). https://doi.org/10.1007/s11427-008-0115-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0115-8

Keywords

Navigation