Skip to main content

Beneficial Microorganisms: Current Challenge to Increase Crop Performance

  • Chapter
  • First Online:
Bioformulations: for Sustainable Agriculture

Abstract

The major goal of agricultural microbiology is a comprehensive analysis of beneficial microorganisms. Fundamental knowledge of the ecology and evolution of interactions could enable the development of microbe-based sustainable agriculture. Plant growth-promoting bacteria (PGPB) have gained worldwide importance and acceptance for their agricultural benefits. This is due to the emerging demand to reduce dependence on synthetic chemical products within a holistic vision of developing and focalizing environmental protection. Beneficial microorganisms also help to solubilize mineral phosphates and other nutrients, enhance resistance to stress, stabilize soil aggregates, improve soil structure and organic matter content, and inhibit phytopathogens. Several efforts have been made in research to clarify definitions as well as develop commercial inoculants using these organisms, with a special emphasis on formulations that interact synergistically and are currently being devised. In addition, numerous recent studies indicate increased crop performance with the use of these commercial inoculants. In this chapter, the progress to date in the use of beneficial microbes for agricultural applications is summarized and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Albareda M, Rodríguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40:2771–2779

    Article  CAS  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  CAS  PubMed  Google Scholar 

  • Ansari SA, Matricardi P, Di Meo C, Alhaique F, Coviello T (2012) Evaluation of rheological properties and swelling behavior of sonicated scleroglucan samples. Molecules 17:2283–2297

    Article  CAS  PubMed  Google Scholar 

  • Araujo FF (2008) Seed inoculation with Bacillus subtilis, formulated with oyster meal and growth of corn, soybean and cotton. Ciênc Agrotecnol 32(2):456–462

    Article  Google Scholar 

  • Araujo FF, Henning AA, Hungria M (2005) Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechnol 21:1639–1645

    Article  CAS  Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27(2):197–205

    Article  CAS  Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Badel S, Bernardi T, Michaud P (2011) New perspectives for Lactobacilli exopolysaccharides. Biotechnol Adv 29:54–66

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:642–650

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y, De-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Berger LRR, Stamford NP, Santos CERS, Freitas ADS, Franco LO, Stamford TCM (2013) Plant and soil characteristics affected by biofertilizers from rocks and organic matter inoculated with diazotrophic bacteria and fungi that produce chitosan. J Soil Sci Plant Nutr 13:592–603

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bogino PC, Oliva MM, Sorroche SG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14:15838–15859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bomfeti CA, Florentino LA, Guimarães AP, Cardoso PG, Guerreiro MC, Moreira FMS (2011) Exopolysaccharides produced by the symbiotic nitrogen-fixing bacteria of Leguminosae. Rev Bras Ciênc Solo 35:657–671

    Article  CAS  Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13(9):492–498

    Article  CAS  PubMed  Google Scholar 

  • Boonlertnirun S, Boonraung C, Suvanasara R (2008) Application of chitosan in rice production. J Min Met Mat S 18(2):47–52

    CAS  Google Scholar 

  • Brahmaprakash GP, Sahu PK (2012) Biofertilizers for sustainability. J Indian Inst Sci 92:37–69

    CAS  Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza Á, Takayuki T, Fernie AR, Chet I, Viterbo A, Willmitzer L (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9(3):1003221

    Article  CAS  Google Scholar 

  • Castellane TCL, Lemos VFM, Lemos EGM (2014) Evaluation of the biotechnological potential of Rhizobium tropici strains for exopolysaccharide production. Carbohydr Polym 111:191–197

    Article  CAS  PubMed  Google Scholar 

  • Chanway CP (1998) Bacterial endophytes: ecological and practical implications. Sydowia 50:149–170

    Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Article  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790–803

    Article  CAS  PubMed  Google Scholar 

  • Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92(1):29–44

    Article  CAS  PubMed  Google Scholar 

  • Colla G, Rouphael Y, Di Mattia E, El-Nakhel C, Cardarelli M (2014) Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. J Sci Food Agric. doi:10.1002/jsfa.6875

    Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delbarre-Ladrat C, Sinquin C, Lebellenger L, Zykwinska A, Colliec-Jouault S (2014) Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front Chem 2:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Dobbelare S, Croonenborghs A, Thys A, van de Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164

    Google Scholar 

  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962

    Article  CAS  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013) Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas. Plant Soil 369(1–2):453–465

    Article  CAS  Google Scholar 

  • El Tarabily KA, Soaud A, Saleh M, Matsumoto S (2006) Isolation and characterization of sulfur bacteria, including strains of Rhizobium from calcareous soils and their effects on nutrient uptake and growth of maize (Zea mays L.). Austr J Agric Res 57:101–111

    Article  Google Scholar 

  • Elkoca E, Turan M, Donmez MF (2010) Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. Phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris L. cv. ‘elkoca-05’). J Plant Nutr 33(14):2104–2119

    Article  CAS  Google Scholar 

  • Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM (2013) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 201–202:42–51

    Article  PubMed  CAS  Google Scholar 

  • Fernandes Júnior PI, Rohr TG, Oliveira PJ, Xavier GR, Rumjanek NG (2009) Polymers as carriers for rhizobial inoculant formulations. Pesq Agrop Brasileira 44:1184–1190

    Article  Google Scholar 

  • Fernandes Júnior PI, Silva Júnior EB, Silva Júnior S, Santos CES, Oliveira PJ, Rumjanek NG, Martins LMV, Xavier GR (2012) Performance of polymer compositions as carrier to cowpea rhizobial inoculant formulations: survival of rhizobia in pre-inoculated seeds and field efficiency. African J Biotechnol 11(12):2945–2951

    Google Scholar 

  • Fernández L, Agaras B, Zalba P, Wall L, Valverde C (2012) Pseudomonas spp. isolates with high phosphate-mobilizing potential and root colonization properties from agricultural bulk soils under no-till management. Biol Fertil Soils 48:763–773

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Vilar JJ, Burity HA, França FP (1999) Alleviation of water stress effects in cowpea by Bradyrhizobium spp. inoculation. Plant Soil 207:67–75

    Article  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Figueiredo MVB, Seldin L, Araujo FF, Mariano RLR (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer-Verlag, Berlin

    Google Scholar 

  • Figueiredo MVB, Kuklinsky-Sobral J, Lima CEP, Araújo ASF (2012) Ecological agriculture: strategy for sustainable development. In: Thangadurai D, Busso C, Arenas LGA, Jayabalan S (eds) Frontiers in biodiversity studies. IK International, New Delhi

    Google Scholar 

  • Finore I, Di Donato P, Mastascusa V, Nicolaus B, Poli A (2014) Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Mar Drugs 12:3005–3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fliessbach A, Winkler M, Lutz MP, Oberholzer HR, Mader P (2009) Soil amendment with Pseudomonas fluorescens CHA0: lasting effects on soil biological properties in soils low in microbial biomass and activity. Microb Ecol 57:611–623

    Article  PubMed  Google Scholar 

  • Franco LO, Maia RCC, Porto ALF, Messias AS, Fukushima K, Takaki GMC (2004) Heavy metal biosorption by chitin and chitosan isolated from Cunninghamella elegans (IFM 46109). Braz J Microbiol 35:243–247

    Article  CAS  Google Scholar 

  • Franco LO, Albuquerque CDC, Stamford NP, Lima MAB, Takaki-Campos GM (2011) Evaluation of acid and alkaline activity and accumulation of inorganic phosphate in samples with Cunninghamella elegans. Analytica 54:70–78

    Google Scholar 

  • Freitas F, Alves VD, Reis MAM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398

    Article  CAS  PubMed  Google Scholar 

  • Frey-Klett P, Garbaye JA, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176(1):22–36

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55(5):501–514

    Article  CAS  PubMed  Google Scholar 

  • Giavasis I (2014) Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr Opin Biotechnol 26:162–173

    Article  CAS  PubMed  Google Scholar 

  • Goy RC, Britto D, Assis OBG (2009) A review of the antimicrobial activity of chitosan polymers. Sci Technol 9:241–247

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008) Rock phosphate-solubilizing Actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol 24:2565–2575

    Article  CAS  Google Scholar 

  • Hazell P, Wood S (2008) Drivers of change in global agriculture. Phil Trans R Soc B 363(1491):495–515

    Article  PubMed  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873

    Article  CAS  PubMed  Google Scholar 

  • Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49(7):791–801

    Article  Google Scholar 

  • Javaid A (2010) Beneficial microorganisms for sustainable agriculture. In: Lichtfouse E (ed) Genetic engineering, biofertilisation, soil quality and organic farming sustainable agriculture reviews. Springer-Verlag, Berlin

    Google Scholar 

  • Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000) Fzb24 Bacillus subtilis – mode of action of a microbial agent enhancing plant vitality. Planzenschutz-Nachrich Bayer 1/00(1):72–93

    Google Scholar 

  • Kloepper JW, Schroth MN, Miller TD (1980) Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078–1082

    Article  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1226

    Article  CAS  PubMed  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Rolda A (2007) Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilizing fungus in the rhizosphere of Lactuca sativa. Appl Soil Ecol 35:480–487

    Article  Google Scholar 

  • Larrainzar E, Molenaar JA, Wienkoop S, Gil-Quintana E, Alibert B, Limami AM, Arrese-Igor C, González EM (2014) Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules. Plant Cell Environ 37:2051–2063

    Article  CAS  PubMed  Google Scholar 

  • Lima FS, Stamford NP, Sousa CS, Lira Junior MA, Malheiros S, van Straaten P (2010) Earthworm compound and rock biofertilizer enriched in nitrogen by inoculation with free-living diazotrophic bacteria. World J Microbiol Biotechnol 26:1769–1777

    Article  Google Scholar 

  • Lima AST, Xavier TF, Lima CEP, Oliveira JP, Mergulhão ACES, Figueiredo MVB (2011) Triple inoculation with Bradyrhizobium, Glomus and Paenibacillus on cowpea (Vigna unguiculata [L.] walp.) development. Braz J Microbiol 42(3):919–926

    Article  PubMed  PubMed Central  Google Scholar 

  • Lingua G, Bona E, Manassero P, Marsano F, Todeschini V, Cantamessa S, Copetta A, D’Agostino G, Gamalero E, Berta G (2013) Arbuscular Mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. selva) in conditions of reduced fertilization. Int J Mol Sci 14(8):16207–16225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahapatra S, Banerjee D (2013) Fungal exopolysaccharide: production, composition and Applications. Microbiol Insights 6:1–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meier S, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol 42(7):741–775

    Article  CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    Article  CAS  PubMed  Google Scholar 

  • Molla AH, Haque M, Haque A, Ilias GNM (2012) Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agric Res 1:265–272

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448

    Article  PubMed  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  CAS  PubMed  Google Scholar 

  • Nwodo U, Green E, Okoh A (2012) Bacterial EPS: functionality and prospects. Int J Mol Sci 13:14002–14015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26(12):1591–1601

    Article  CAS  Google Scholar 

  • Oliveira JP (2011) Genetic characterization, production of extracellular biopolymers and proteome of diazotrophic bacteria. Thesis, Federal University of Ceará

    Google Scholar 

  • Oliveira JP, Figueiredo MVB, Silva MV, Mendes MMC, Vendrusculo C, Burity HA (2012) Production of extracellular biopolymers and identification of intracellular proteins and Rhizobium tropici. Curr Microbiol 65(6):686–691

    Article  CAS  PubMed  Google Scholar 

  • Pallai R, Hynes RK, Verma B, Nelson LM (2012) Phytohormone production and colonization of canola (Brassica napus L.) roots by Pseudomonas fluorescens 6–8 under gnotobiotic conditions. Can J Microbiol 58(2):170–178

    Article  CAS  PubMed  Google Scholar 

  • Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34(1–3):17–42

    Article  Google Scholar 

  • Pindi PK (2012) Liquid microbial consortium – a potential tool for sustainable soil health. J Biofertil Biopestici 3:1–9

    Google Scholar 

  • Poli A, Donato P, Abbamondi G, Nicolaus B (2011) Synthesis, production and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Archaea 693253:1–13

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63:881–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11

    Article  CAS  Google Scholar 

  • Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

    Article  PubMed  Google Scholar 

  • Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev 8:578–592

    CAS  Google Scholar 

  • Rivera D, Obando M, Barbosa H, Tapias DR, Buitrago RB (2014) Evaluation of polymers for the liquid rhizobial formulation and their influence in the Rhizobium-Cowpea interaction. Univ Sci 19(3):265–275

    Article  CAS  Google Scholar 

  • Rodrigues AC (2012) Interrelationship Bradyrhizobium and PGPB and Cowpea: evaluation of the enzymatic activity and symbiotic performance. Thesis, Federal Agricultural University of Pernambuco

    Google Scholar 

  • Rodrigues AC, Silveira JAG, Bonifacio A, Figueiredo MVB (2013a) Metabolism of nitrogen and carbon: optimization of biological nitrogen fixation and cowpea development. Soil Biol Biochem 67:226–234

    Article  CAS  Google Scholar 

  • Rodrigues AC, Bonifacio A, Antunes JEL, Silveira JAG, Figueiredo MVB (2013b) Minimization of oxidative stress in cowpea nodules by the interrelationship between Bradyrhizobium sp. and plant growth-promoting bacteria. Appl Soil Ecol 64:245–251

    Article  Google Scholar 

  • Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Article  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fertil Soil 46:17–26

    Article  CAS  Google Scholar 

  • Santos AA (2010) Polysaccharides production aiming to obtain biological inoculants of interest to agriculture. Dissertation, Federal Agricultural University of Pernambuco

    Google Scholar 

  • Schmid J, Meyer V, Sieber V (2011) Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Appl Microbiol Biotechnol 91:937–947

    Article  CAS  PubMed  Google Scholar 

  • Seneviratne G, Thilakaratne RMS, Jayasekara APDA, Seneviratne KACN, Padmathilake KRE, Silva MSDL (2009) Developing beneficial microbial biofilms on roots of non-legumes: a novel biofertilizing technique. In: Khan MS, Zaid A, Musarrat J (eds) Microbial strategy for crop improvement. Springer-Verlag, Berlin

    Google Scholar 

  • Serrato RV, Sassaki GL, Gorin PAJ, Cruz LM, Pedrosa FO, Choudhury B, Carlson RW, Iacomini M (2008) Structural characterization of an acidic exoheteropolysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica. Carbohydr Polym 73:564–572

    Article  CAS  PubMed  Google Scholar 

  • Sharmila K, Thillaimaharani KA, Durairaj R, Kalaiselvam M (2014) Production and characterization of exopolysaccharides (EPS) from mangrove filamentous fungus, Syncephalastrum sp. Afr J Microbiol Res 8(21):2155–2161

    Article  CAS  Google Scholar 

  • Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73(4):515–531

    Article  CAS  PubMed  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140(3):339–353

    Article  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104(1):1–13

    Article  PubMed  Google Scholar 

  • Soliman AS, Shanan NT, Massoud ON, Swelim DM (2012) Improving salinity tolerance of Acacia saligna (Labill.) plant by arbuscular mycorrhizal fungi and Rhizobium inoculation. Afr J Biotechnol 11(5):1259–1266

    CAS  Google Scholar 

  • Stamford NP, Santos PR, Santos CERS, Freitas ADS, Dias SHL, Lira Junior MA (2007) Agronomic effectiveness of biofertilizers with phosphate rock, sulphur and Acidithiobacillus in a Brazilian tableland acidic soil grown with yam bean. Biores Technol 98:1311–1318

    Article  CAS  Google Scholar 

  • Stamford NP, Lima RA, Lira Junior MA, Santos CERS (2008) Effectiveness of phosphate and potash rocks with Acidithiobacillus on sugar cane yield and their effects in soil chemical attributes. World J Microbiol Biotechnol 24:2061–2066

    Article  CAS  Google Scholar 

  • Star L, Matan O, Dardanelli MS, Kapulnik Y, Burdman S, Okon Y (2012) The Vicia sativa spp. nigra-Rhizobium leguminosarum bv. viciae symbiotic interaction is improved by Azospirillum brasilense. Plant Soil 356(1–2):165–174

    Article  CAS  Google Scholar 

  • Staudt AK, Wolfe L, Shrout JD (2012) Variations in exopolysaccharide production by Rhizobium tropici. Arch Microbiol 194:197–206

    Article  CAS  PubMed  Google Scholar 

  • Triveni S, Prasanna R, Saxena AK (2012) Optimization of conditions for in vitro development of Trichoderma viride-based biofilms as potential inoculants. Folia Microbiol 57:431–437

    Article  CAS  Google Scholar 

  • Van Straaten P (2007) Agrogeology – the use of rocks for crops. Enviroquest, Canada

    Google Scholar 

  • Vandenkoornhuyse P, Mahe S, Ineson P, Staddon P, Ostle N, Cliquet JB, Francez AJ, Fitter AH, Young JP (2007) Active root-inhabiting microbes identified by rapid incorporation of plant derived carbon into RNA. Proc Natl Acad Sci U S A 104:16970–16975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vessey JK (2003) Plant growth-promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vos CMF, Cremer KD, Cammue BPA, Coninck BD (2014) The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. Mol Plant Pathol (online). doi:10.1111/mpp.12189

    Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  CAS  PubMed  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheug KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xavier TF (2009) Production and characterization of exopolysaccharides (EPSs) synthetized by diazotrophic microorganisms. Dissertation, Federal Agricultural University of Pernambuco

    Google Scholar 

  • Xie X, Zhang H, Paré PW (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:948–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav SK, Dave A, Sarkar A, Singh HB, Sarma BK (2013) Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. Int J Agric Environ Biotechnol 6(2):255–259

    Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim M, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency inducible mechanisms. Plant J 58:568–577

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Kong H, Fang Y, Nishinari K, Phillips GO (2013) Schizophyllan: a review on its structure, properties, bioactivities and recent developments. Bioact Carbohydr Diet Fibre 1(1):53–71

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcia do Vale Barreto Figueiredo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Figueiredo, M.d.V.B., Bonifacio, A., Rodrigues, A.C., de Araujo, F.F., Stamford, N.P. (2016). Beneficial Microorganisms: Current Challenge to Increase Crop Performance. In: Arora, N., Mehnaz, S., Balestrini, R. (eds) Bioformulations: for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2779-3_3

Download citation

Publish with us

Policies and ethics