Skip to main content

Advertisement

Log in

Micro total analysis system (μ-TAS) in biotechnology

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nanobiotechnology raises fascinating possibilities for new analytical assays in various fields such as bioelectronic assembly, biomechanics and sampling techniques, as well as in chips or micromachined devices. Recently, nanotechnology has greatly impacted biotechnological research with its potential applications in smart devices that can operate at the level of molecular manipulation. Micro total analysis system (μ-TAS) offers the potential for highly efficient, simultaneous analysis of a large number of biologically important molecules in genomic, proteomic and metabolic studies. This review aims to describe the present state-of-the-art of microsystems for use in biotechnological research, medicine and diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson RC, Su X, Bogdan GJ, Fenton J (2000) A miniature integrated device for automated multistep genetic assays. Nucleic Acids Res 28:e60

    Article  CAS  PubMed  Google Scholar 

  • Auroux P, Lossifidis D, Reyes DR, Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74:2637–2652

    Article  CAS  PubMed  Google Scholar 

  • Badal MT, Wong M, Chiem N, Salimi-Moosavi H, Harison DJ (2002) Protein separation and surfactant control of electroosmotic flow in poly(dimethylsiloxane) coated capillaries and microchips. J Chromatogr A 947:277–286

    Article  PubMed  Google Scholar 

  • Battersby BJ, Trau M (2002) Novel miniaturized systems in high-throughput screening. Trends Biotechnol 20:167–173

    Article  CAS  PubMed  Google Scholar 

  • Belgrader P, Benett W, Hadley D, Richards J, Stratton P, Mariella R Jr, Milanovich F (1999) Science 284:449–450

    Article  CAS  PubMed  Google Scholar 

  • Bilitewski U, Genrich M, Kadow S (2003) Biochemical analysis with microfluidic systems. Anal Bioanal Chem 377:556–569

    Article  CAS  PubMed  Google Scholar 

  • Blankenstein G, Larsen UD (1998) Molecular concept of a laboratory on a chip for chemical and biochemical analysis. Biosens Bioelectron 13:427–438

    Article  CAS  Google Scholar 

  • Bousse L, Mouradian S, Minalla A, Yee H, Williams K, Dubrow R (2001) Protein sizing on a microchip. Anal Chem 73:1207–1212

    CAS  PubMed  Google Scholar 

  • Bromberg A, Mathies RA (2003) Homogeneous immunoassay for detection of TNT and its analogues on a microfabricated capillary electrophoresis chip. Anal Chem 75:1188–1195

    Article  CAS  PubMed  Google Scholar 

  • Bruin GJM (2000) Recent developments in electrokinetically driven analysis on microfabricated devices. Electrophoresis 21:3931–3951

    Article  CAS  PubMed  Google Scholar 

  • Burke BJ, Regnier FE (2001) Electrophoretically mediated microanalysis of galactosidase on microchips. Electrophoresis 22:3744–3751

    CAS  PubMed  Google Scholar 

  • Burns MA, Mastrangelo CH, Sammaroco TS, Man FP, Webster JR, Johnson BN, Foerster B, Jones D, Fields Y, Kaiser AR, Burke DT (1996) Microfabricated structures for integrated DNA analysis. Proc Natl Acad Sci USA 93:5556–5561

    CAS  PubMed  Google Scholar 

  • Burns MA, Johnson BN, Brahmasndra SN, Handique K, Webster JR, Krishnan M, Sammarco TS, Man PM, Jones D, Heldsinger D, Mastrangelo CH, Burke DT (1998) An integrated nanoliter DNA analysis device. Science 282:484–487

    CAS  PubMed  Google Scholar 

  • Chabinyc ML, Chiu DT, McDonald JC, Stroock AD, Christian JF, Karger AM, Whitesides GM (2001) An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal Chem 73:4491–4498

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Shoffner MA, Hvichia GE, Kricka LJ, Wilding P (1996) Chip PCR. II. Investigation of different PCR amplification systems in microfabricated silicon-glass. Nucleic Acids Res 24:380–385

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wu H, Mao C, Whitesides GM (2002) A prototype two-dimensional capillary electrophoresis system fabricated in poly(dimethylsiloxane). Anal Chem 74:1772–1778

    Article  CAS  PubMed  Google Scholar 

  • Chovan T, Guttman A (2002) Microfabricated devices in biotechnology and biochemical processing. Trends Biotechnol 20:116–122

    Article  CAS  PubMed  Google Scholar 

  • Cohen CB, Chin-Dixon E, Jeong S, Nikiforov TT (1999) A microchip-based enzyme assay for protein kinase A. Anal Chem 273:89–97

    Article  CAS  Google Scholar 

  • Colyer CL, Mangru SD, Harrison DJ (1997) Microchip based capillary electrophoresis of human serum proteins. J Chromatogr A 781:271–276

    Article  CAS  PubMed  Google Scholar 

  • Csapo Z, Gerstner A, Sasvari-Szekely M, Guttman A (2000) Automated ultra thin layer SDS gel electrophoresis of proteins using noncovalent fluorescent labeling. Anal Chem 72:2519–2525

    Article  CAS  PubMed  Google Scholar 

  • Culbertson CT, Jacobson SC, Ramsey JM (2000) Microchip devices for high-efficiency separations. Anal Chem 72:5814–5819

    CAS  PubMed  Google Scholar 

  • Deng Y, Henion J (2001a) Chip-based quantitative capillary electrophoresis/mass spectrometry determination of drugs in human plasma. Anal Chem 73:639–646

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Zhang H, Henion J (2001b) Chip-based quantitative capillary electrophoresis mass spectrometry determination of drugs in human plasma. Anal Chem 73:1432–1439

    Article  CAS  PubMed  Google Scholar 

  • Dodge A, Fluri K, Verpoorte E, Rooij NF (2001) Electrokinetically driven microfluidic chips with surface modified chambers for heterogeneous immunoassays. Anal Chem 73:3400–3409

    CAS  PubMed  Google Scholar 

  • Dolnik V, Liu S, Jovanovich S (2000) Capillary electrophoresis on microchip. Electrophoresis 21:41–54

    CAS  PubMed  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    CAS  Google Scholar 

  • Duffy DC, Gillis HL, Lin J, Sheppard NF, Kellogg GJ (1999) Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays. Anal Chem 71:4669–4678

    Article  CAS  Google Scholar 

  • Ekstrom S, Onnerfjord P, Nilsson J, Bengtsson M, Laurell T, Marko-Varga G (2000) Integrated microanalytical technology enabling rapid and automated protein identification. Anal Chem 72:286–293

    Article  CAS  PubMed  Google Scholar 

  • Fan ZH, Mangru S, Granzow R, Heaney P, Ho W, Dong Q, Kumar R (1999) Dynamic DNA hybridization on a chip using paramagnetic beads. Anal Chem 71:4851–4859

    Article  CAS  PubMed  Google Scholar 

  • Fiedler S, Shirley SG, Schnelle T, Fuhr G (1998) Dielectrophoretic sorting of particles and cells in a microsystem. Anal Chem 70:1909–1915

    Article  PubMed  Google Scholar 

  • Figeys D, Pinto D (2001) Proteomics on a chip: promising developments. Electrophoresis 22:208–216

    Article  CAS  PubMed  Google Scholar 

  • Fu AY, Spence C, Xcherer A, Arnold FH, Quake SR (1999a) A microfabricated fluorescent-activated cell sorter. Nat Biotechnol 17:1109–1111

    Article  CAS  PubMed  Google Scholar 

  • Fu AY, Spence C, Xcherer A, Arnold FH, Quake SR (1999b) An integrated microfabricated cell sorter. Anal Chem 74:2451–245

    Article  Google Scholar 

  • Galvin P (2002) A nanobiotechnology roadmap for high-throughput single nucleotide polymorphism analysis. Psychiatr Genet 12:75–82

    Article  PubMed  Google Scholar 

  • Gao J, Xu J, Locascio LE, Lee CS (2001) Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification. Anal Chem 73:2648–2655

    Article  CAS  PubMed  Google Scholar 

  • Giordano BC, Copeland ER, Landers JP (2001a) Towards dynamic coating of glass microchip chambers for amplifying DNA via the polymerase chain reaction. Electrophoresis 22:334–340

    Article  CAS  PubMed  Google Scholar 

  • Giordano BC, Ferrance J, Swedberg S, Huhmer AFR, Landers JP (2001b) Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds. Anal Biochem 291:124–132

    Article  CAS  PubMed  Google Scholar 

  • Gottschlich N, Culbertson CT, McKnight TE, Jacobson SC, Ramsey JM (2000) Integrated microchip-device for the digestion, separation and postcolumn labeling of proteins and peptides. J Chromatogr B 745:243–249

    Article  CAS  Google Scholar 

  • Gottschlich N, Jacobson SC, Culbertson CT, Ramsey JM (2001) Two-dimensional electrochromatography/capillary electrophoresis on a microchip. Anal Chem 73:2669–2674

    Article  CAS  PubMed  Google Scholar 

  • Guetens G, Cauwenberghe KV, Boeck GD, Maes R, Tjaden UR, Greef J, Highley M, Oosterom AT, Brujin EA (2000) Nanotechnology in bio/clinical analysis. J Chromatogr B 739:139–150

    Article  CAS  Google Scholar 

  • Guttman A (1996) High-resolution carbohydrate profiling by capillary gel electrophoresis. Nature 380:461–462

    Article  CAS  PubMed  Google Scholar 

  • Hadd AG, Raymond DE, Halliwell JW, Jacobson SC, Ramsey JM (1997) Microchip device for performing enzyme assays. Anal Chem 69:3407–3412

    CAS  PubMed  Google Scholar 

  • Hadd AG, Jacobson SC, Ramsey JM (1999) Microfluidic assays of acetylcholinesterase inhibitors. Anal Chem 71:5206–5212

    CAS  Google Scholar 

  • Harrison DJ, Fluri K, Seiler K, Fan ZH, Effenhauser CS, Manz A (1993) Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip. Science 261:895–897

    CAS  Google Scholar 

  • Haruyama T (2003) Micro- and nanobiotechnology for biosensing cellular responses. Adv Drug Deliv Rev 55:393–401

    Article  CAS  PubMed  Google Scholar 

  • He B, Ji J, Regnier FE (1999) Capillary electrochromatography of peptides in a microfabricated system. J Chromatogr A 853:257–262

    CAS  PubMed  Google Scholar 

  • He Y, Zhang YH, Yeung ES (2001) Capillary based fully integrated and automated system for nanoliter polymerase chain reaction analysis directly from cheek cells. J Chromatogr A 924:271–284

    Article  CAS  PubMed  Google Scholar 

  • Heeren FV, Verpoorte E, Manz A, Thormann W (1996) Micellar electrokinetic chromatography separations and analyses of biological samples on a cyclic planar microstructure. Anal Chem 68:2044–2053

    PubMed  Google Scholar 

  • Hong JW, Quake SR (2003) Integrated nanoliter systems. Nat Biotechnol 21:1179–1183

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Mather EL, Bell JL, Madou M (2002) MEMS-based sample preparation for molecular diagnostics. Anal Bioanal Chem 372:49–65

    Article  CAS  PubMed  Google Scholar 

  • Hühmer AFR, Landers JP (2000) Noncontact infrared-mediated thermocycling for effective polymerase chain reaction amplification of DNA in nanoliter volumes. Anal Chem 72:5507–5512

    Article  PubMed  Google Scholar 

  • Huikko K, Kostiainen R, Kotiaho T (2003) Introduction to micro-analytical systems bioanalytical and pharmaceutical applications. Eur J Pharm Sci 20:149–171

    Article  CAS  PubMed  Google Scholar 

  • Hutt LD, Glavin DP, Bada JL, Mathies RA (1999) Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration. Anal Chem 71:4000–4006

    Article  CAS  PubMed  Google Scholar 

  • Jacobson SC, Ramsey JM (1996) Integrated microdevice for DNA restriction fragment analysis. Anal Chem 68:720–723

    CAS  Google Scholar 

  • Jacobson SC, Hergenoroder R, Koutny LB, Ramsey JM (1994) High-speed separations on a microchip. Anal Chem 66:1114–1118

    CAS  Google Scholar 

  • Jiang G, Attiya S, Ocvirk G, Lee WE, Harrison DJ (2000) Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis. Biosens Bioelectron 14:861–869

    Google Scholar 

  • Judos AJ, Besselink G.AJ, Schasfoort BM (2001) Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1:83–95

    Article  Google Scholar 

  • Kameoka J, Craighead HG, Zhang H, Henion J (2001) A polymeric microfluidic chip for CE MS determination of small molecules. Anal Chem 73:1935–1941

    Article  CAS  PubMed  Google Scholar 

  • Kamholz AE, Weigl BH, Finlayson BA, Yager P (1999) Quantitative analysis of molecular interaction in a microfluidic channel: the T sensor. Anal Chem 71:5340–5347

    Article  CAS  PubMed  Google Scholar 

  • Kerby M, Chien RL (2001) A fluorogenic assay using pressure-driven flow on a microchip. Electrophoresis 22:3916–3923

    Article  CAS  PubMed  Google Scholar 

  • Khandurina J, Guttman A (2002) Bioanalysis in microfluidic devices. J Chromatogr A 943:159–183

    Article  CAS  PubMed  Google Scholar 

  • Khandurina J, McKnight TE, Jacobson SC, Waters LC, Foote RS, Ramsey JM (2000) Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal Chem 72:2995–3000

    Article  CAS  PubMed  Google Scholar 

  • Kopf-Sill AR (2002) Successes and challenges of lab-on-a-chip. Lab Chip 2:42N–47N

    Article  CAS  Google Scholar 

  • Kopp MU, de Mello J, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280:1046–1048

    Article  CAS  PubMed  Google Scholar 

  • Koutny LB, Schmalzing D, Taylor TA, Fuchs M (1996) Microchip electrophoretic immunoassay for serum cortisol. Anal Chem 68:18–22

    CAS  PubMed  Google Scholar 

  • Lagally ET, Simpson PC, Mathies RA (2000) Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system. Sen Actuators B 63:138–146

    Article  Google Scholar 

  • Lagally ET, Medintz I, Mathies RA (2001) Single-molecule DNA amplification and analysis in an integrated microfluidic device. Anal Chem 73:565–570

    Article  CAS  PubMed  Google Scholar 

  • Laval J, Mazeran P, Thomas D (2000) Nanobiotechnology and its role in the development of new analytical devices. Analyst 125:29–33

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Goodrich TT, Corn RM (2001) SPR imaging measurements of 1-D and 2-D DNA microarrays created from microfluidic channels on gold thin films. Anal Chem 73:5525–5531

    Article  CAS  PubMed  Google Scholar 

  • Li J, Thibault P, Bings NH, Skinner CD, Wang C, Colyer C, Harrison J (1999) Integration of microfabricated devices to capillary electrophoresis-electrospray mass spectrometry using a low dead volume connection: application to rapid analyses of proteolytic digests. Anal Chem 71:3036–3045

    Article  CAS  PubMed  Google Scholar 

  • Litborn E, Emmer A, Roeraade J (2000) Parallel reactions in open chip-base nanovials with continuous compensations for solvent evaporation. Electrophoresis 21:91–99

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Foote RS, Jacobson SC, Ramsey RS, Ramsey JM (2000) Electrophoretic separation of proteins on a microchip with noncovalent postcolumn labeling. Anal Chem 72:4608–4613

    Article  CAS  PubMed  Google Scholar 

  • Lowe CR (2000) Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures. Curr Opin Struct Biol 10:428–434

    Article  CAS  PubMed  Google Scholar 

  • Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Ludi H, Widmer HM (1992) Planar chips technology for miniaturization and integration of separation techniques into monitoring systems-capillary electrophoresis on a chip. J Chromatogr 593:253–258

    CAS  Google Scholar 

  • Mazar LM, Ramsey RS, Ramsey JM (2001) On-chip proteolytic digestion and analysis using “wrong-way-round” electrospray time-of-flight mass spectrometry. Anal Chem 73:1733–1739

    Article  PubMed  Google Scholar 

  • Medintz IL, Paegel BM, Blazej RG, Emrich CA, Berti L, Scherer JR, Mathies RA (2001) High-performance genetic analysis using microfabricated capillary array electrophoresis microplates. Electrophoresis 22:3845–3856

    Article  CAS  PubMed  Google Scholar 

  • Merkle RC (1999) Biotechnology as a route to nanotechnology. Trends Biotechnol 17:271–274

    Article  CAS  PubMed  Google Scholar 

  • Miliotis T, Kjellström S, Önnerfjord P, Nilsson J, Laurell T, Edholm LE, Marko-Varga G (2000) Protein identification platform utilizing micro dispensing technology interfaced to matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Chromatogr A 886:99–110

    Article  CAS  PubMed  Google Scholar 

  • Munro NJ, Huang Z, Finegold DN, Landers JP (2000) Indirect fluorescence detection of amino acids on electrophoretic microchips. Anal Chem 72:2765–2773

    Article  CAS  PubMed  Google Scholar 

  • Munro NJ, Huhmer AFR, Landers JP (2001) Robust polymeric microchannel coatings for microchip-based analysis of neat PCR products. Anal Chem 73:1784–1794

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Karube I (2003) Current research activity in biosensors. Anal Bioanal Chem 377:446–468

    Article  CAS  PubMed  Google Scholar 

  • Oda RP, Strausbauch MA, Huhmer AFR, Borson N, Jurrens SR, Craighead J, Wettstein PJ, Eckloff B, Kline B, Landers JP (1998) Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA. Anal Chem 70:4361–4368

    Article  CAS  PubMed  Google Scholar 

  • Oleschuk RD, Harrison DJ (2000) Analytical microdevices for mass spectrometry. Trends Anal Chem 19:379–388

    Article  CAS  Google Scholar 

  • Pumera M, Wang J, Grushka E, Polsky R (2001) Gold nanoparticle-enhanced microchip capillary electrophoresis. Anal Chem 73:5625–5628

    Article  CAS  PubMed  Google Scholar 

  • Regnier FE, He B, Lin S, Busse J (1999) Chromatography and electrophoresis on chips: critical elements of future integrated, microfluidic analytical systems for life science. Trends Biotechnol 17:101–106

    Article  CAS  PubMed  Google Scholar 

  • Reyes DR, Iossifidis D, Auroux P, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74:2623–2636

    Article  CAS  PubMed  Google Scholar 

  • Rocklin RD, Ramsey RS, Ramsey JM (2000) A microfabricated fluidic device for performing two-dimensional liquid phase separations. Anal Chem 72:5244–5249

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez I, Zhang Y, Lee HK, Li SFY (1997) Conventional capillary electrophoresis in comparison with short-capillary capillary electrophoresis and microfabricated glass chip capillary electrophoresis for the analysis of fluorescein isothiocyanate anti-human immunoglobulin G. J Chromatogr A 781:287–293

    CAS  PubMed  Google Scholar 

  • Rodriguez I, Jin LJ, Li SFY (2000) High-speed chiral separations on microchip electrophoresis devices. Electrophoresis 21:211–219

    Article  CAS  PubMed  Google Scholar 

  • Sanders GHW, Manz A (2000) Chip-based microsystem for genomic and proteomic analysis. Trends Anal Chem 19:364–378

    CAS  Google Scholar 

  • Schrum DP, Culbertson CT, Jacobson SC, Ramsey JM (1999) Microchip flow cytometry using electrokinetic focusing. Anal Chem 71:4173–4177

    Article  CAS  Google Scholar 

  • Shamansky LM, Davis CB, Stuart JK, Kuhr WG (2001) Immobilization and detection of DNA on microfluidic chips. Talanta 55:909–918

    Article  CAS  Google Scholar 

  • Shimura K, Kasai K (1997) Affinity capillary electrophoresis: a sensitive tool for the study of molecular interactions and its use in microscale analyses. Anal Biochem 251:1–16

    Article  CAS  PubMed  Google Scholar 

  • Shoffner MA, Chen J, Hvichia GE, Kricka LJ, Wilding P (1996) Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR. Nucleic Acids Res 24:375–379

    Article  CAS  PubMed  Google Scholar 

  • Slentz BE, Penner NA, Lugowska E, Regnier F (2001) Nanoliter capillary electrochromatography columns based on collocated monolithic support structures molded in poly(dimethyl siloxane). Electrophoresis 22:3736–3743

    Article  CAS  PubMed  Google Scholar 

  • Starkey DE, Han A, Bao JJ, Ahn CH, Wehmeyer KR, Prenger MC, Halsall HB, Heineman WR (2001) Fluorogenic assay for glucuronidase using microchip based capillary electrophoresis. J Chromatogr B 762:33–41

    Google Scholar 

  • Sundberg SA, Chow A, Nikiforov T, Wada HG (2000) Microchip-based systems for target validation and HTS. Drug Discov Today 5:92–103

    Article  Google Scholar 

  • Taylor TB, Winn-Deen ES, Picozza E, Woudenberg TM, Albin M (1997) Optimization of the performance of the polymerase chain reaction in silicon-based microstructures. Nucleic Acids Res 25:3164–38168

    Article  CAS  PubMed  Google Scholar 

  • Verpoorte E (2002) Microfluidic chips for clinical and forensic analysis. Electrophoresis 23:677–712

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Oleschuk R, Ouchen F, Li J, Thibault P, Harrison DJ (2000a) Integration of immobilized trypsin bead beds for protein digestion within a microfluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface. Rapid Commun Mass Spectrom 14:1377–1383

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chartathi MP, Tian B, Polsky R (2000b) Microfabricated electrophoresis chips for simultaneous bioassays of glucose, uric acid, ascorbic acid, and acetaminophen. Anal Chem 72:2514–2518

    Article  CAS  PubMed  Google Scholar 

  • Weigel BH, Bardell R, Schulte T, Battrell F, Hayenga J (2001) Design and rapid prototyping of thin-film laminate-based microfluidic devices. Biomed Microdevices 3:267–274

    Article  Google Scholar 

  • Weigel BH, Bardell RL, Cabrera CR (2003) Lab-on-a-chip for drug development. Adv Drug Deliv Rev 55:349–377

    Article  PubMed  Google Scholar 

  • Wilding P, Kricka L, Cheng J, Hvichia G, Shoffner MA, Fortina P (1998) Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Anal Chem 257:95–100

    Article  CAS  Google Scholar 

  • Wolff A, Perch-Nielsen IR, Larsen UD, Friis P, Goranovc G, Poulsen CR, Kutter JP, Telleman P (2003) Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. Lab Chip 3:22–27

    Article  CAS  Google Scholar 

  • Woolley AT, Mathes RA (1994) Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc Natl Acad Sci USA 91:11348–11352

    CAS  PubMed  Google Scholar 

  • Woolley AT, Hadley D, Landre P, deMello AJ, Mathies RA, Northrup MA (1996) Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal Chem 68:4081–4086

    CAS  PubMed  Google Scholar 

  • Woolley AT, Sensabaugh GF, Mathies RA (1997) High-speed DNA genotyping using microfabricated capillary array electrophoresis chips. Anal Chem 69:2181–2186

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Regnier FE (2001) Channel specific coatings on microfabricated chips. J Chromatogr A 924:165–176

    Article  CAS  PubMed  Google Scholar 

  • Xue Q, Wainright A, Gangakhedkar S, Gibbons I (2001) Multiplexed enzyme assays in capillary electrophoretic single use microfluidic devices. Electrophoresis 22:4000–4007

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Jung S, Mao H, Cremer PS (2001) Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays. Anal Chem 73:165–169

    Article  CAS  PubMed  Google Scholar 

  • Yao S, Anex DS, Caldwell WB, Arnold DW, Smith KB (1999) SDS capillary gel electrophoresis of proteins in microfabricated channels. Proc Natl Acad Sci USA 96:5372–5377

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Liu H, Karger BL, Foret F (1999) Microfabricated devices for capillary electrophoresis-electrospray mass spectrometry. Anal Chem 71:3258–3264

    CAS  PubMed  Google Scholar 

  • Zhang B, Foret F, Karger BL (2001) High-throughput microfabricated CE/ESI-MS: automated sampling from a microwell plate. Anal Chem 73:2675–2681

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Snyder M (2003) Protein chip technology. Curr Opin Chem Biol 7:55–63

    Article  CAS  PubMed  Google Scholar 

  • Zugel SA, Burke BJ, Regnier FE, Lytle FE (2000) Electrophoretically mediated microanalysis of leucine aminopeptidase using two-photon excited fluorescence detection on a microchip. Anal Chem 72:5731–5735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review was made possible by the support from the Center for Ultramicrochemical Process Systems sponsored by KOSEF, National Research Laboratory Program (2000-N-NL-01-C-237) of the Ministry of Science and Technology, the Advanced Backbone IT Technology Development Project (IMT2000-B3–2) of the Ministry of Information and Communication (MIC), and BK21 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.J., Lee, S.Y. Micro total analysis system (μ-TAS) in biotechnology. Appl Microbiol Biotechnol 64, 289–299 (2004). https://doi.org/10.1007/s00253-003-1515-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1515-0

Keywords

Navigation