Skip to main content
Log in

Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family Acetobacteraceae, widespread in sugary, acidic and alcoholic niches. They are known for their ability to partially oxidise a variety of carbohydrates and to release the corresponding metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they are used to perform specific oxidation reactions through processes called “oxidative fermentations”, especially in vinegar production. In the last decades physiology of AAB have been widely studied because of their role in food production, where they act as beneficial or spoiling organisms, and in biotechnological industry, where their oxidation machinery is exploited to produce a number of compounds such as l-ascorbic acid, dihydroxyacetone, gluconic acid and cellulose. The present review aims to provide an overview of AAB physiology focusing carbon sources oxidation and main products of their metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sievers M, Swings J (2005) Family Acetobacteraceae. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 41–95

    Google Scholar 

  2. Wu J, Gullo M, Chen F, Giudici P (2010) Diversity of Acetobacter pasteurianus strains isolated from solid-state fermentation of cereal vinegars. Curr Microbiol 60:280–286

    Article  PubMed  CAS  Google Scholar 

  3. Mamlouk D, Hidalgo C, Torija MJ, Gullo M (2011) Evaluation and optimization of bacterial genomic DNA extraction for no-culture techniques applied to vinegars. Food Microbiol 28:1374–1379

    Article  PubMed  CAS  Google Scholar 

  4. Gullo M, Giudici P (2008) Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection. Int J Food Microbiol 125(1):46–53

    Article  PubMed  CAS  Google Scholar 

  5. Pedraza RO (2008) Recent advances in nitrogen-fixing acetic acid bacteria. Int J Food Microbiol 125(1):25–35

    Article  PubMed  CAS  Google Scholar 

  6. Kim EK, Kim SH, Nam HJ, Choi MK, Lee KA, Choi SH, Seo YY, You H, Kim B, Lee WJ (2012) Draft genome sequence of Gluconobacter morbifer G707T, a pathogenic gut bacterium isolated from Drosophila melanogaster intestine. J Bacteriol 194(5):1245

    Article  PubMed  CAS  Google Scholar 

  7. Adachi O, Moonmangmee D, Toyama H, Yamada M, Shinagawa E, Matsushita K (2003) New developments in oxidative fermentation. Appl Microbiol Biotechnol 60(6):643–653

    PubMed  CAS  Google Scholar 

  8. Kersters K, Lisdiyanti P, Komagata K, Swings J (2006) The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter and Kozakia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York, pp 163–200

    Chapter  Google Scholar 

  9. Pasteur L (1864) Mémoire sur la fermentation acétique. Annales Scientifiques de l’E.N.S Paris 1:113–158

    Google Scholar 

  10. Swings J, De Ley J (1977) The biology of Zymomonas. Bacteriol Rev 41:1–46

    PubMed  CAS  Google Scholar 

  11. Camu N, De Winter T, Verbrugghe K, Cleenwerck I, Vandamme P, Takrama JS, Vancanneyt M, De Vuyst L (2007) Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl Environ Microbiol 73(6):1809–1824

    Article  PubMed  CAS  Google Scholar 

  12. Bartowsky EJ, Henschke PA (2008) Acetic acid bacteria spoilage of bottled red wine-a review. Int J Food Microbiol 125(1):60–70

    Article  PubMed  CAS  Google Scholar 

  13. Gullo M, Romano AD, Pulvirenti A, Giudici P (2003) Candida humilis-dominant species in sourdoughs for the production of durum wheat bran flour bread. Int J Food Microbiol 80(1):55–59

    Article  PubMed  CAS  Google Scholar 

  14. Greenfield S, Claus GW (1972) Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans. J Bacteriol 112:1295–1301

    PubMed  CAS  Google Scholar 

  15. Gupta A, Singh VK, Qazi GN, Kumar A (2001) Gluconobacter oxydans: its biotechnological applications. J Mol Microbiol Biotechnol 3(3):445–456

    PubMed  CAS  Google Scholar 

  16. De Vero L, Gullo M, Giudici P (2010) Acetic acid bacteria, biotechnological applications. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess bioseparation and cell technology. Wiley, New York, pp 9–25

    Google Scholar 

  17. Singh OV, Kumar R (2007) Biotechnological production of gluconic acid: future implications. Appl Microbiol Biotechnol 75(4):713–772

    Article  PubMed  CAS  Google Scholar 

  18. Czaja W, Young D, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12

    Article  PubMed  CAS  Google Scholar 

  19. Saeki A, Theeragol G, Matsushita K, Toyama H, Lotong N, Adachi O (1997) Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosci Biotechnol Biochem 61:138–145

    Article  CAS  Google Scholar 

  20. Ndoye B, Lebecque S, Dubois-Dauphin R, Tounkara L, Guiro AT, Kere C, Diawara B, Thonart P (2006) Thermoresistant properties of acetic acids bacteria isolated from tropical products of Sub-Saharan Africa and destined to industrial vinegar. Enzyme Microb Technol 39:916–923

    Article  CAS  Google Scholar 

  21. De Ley J, Gillis M, Swings J (1984) Family VI. Acetobacteraceae. In: Krieg NR, Holt JG. (eds.) Bergey’s manual of systematic bacteriology, baltimore, pp 267–278

  22. Euzéby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 47:590–592 (List of prokaryotic names with standing in nomenclature). http://www.bacterio.net

  23. Ludwig W (2008) Nucleic acid techniques in bacterial systematics and identification. Int J Food Microbiol 125:1–12

    Article  Google Scholar 

  24. Cleenwerck I, de Vos P (2008) Polyphasic taxonomy of acetic acid bacteria: an overview of the currently applied methodology. Int J Food Microbiol 125(1):2–14

    Article  PubMed  CAS  Google Scholar 

  25. Gullo M, Mamlouk D, De Vero L, Giudici P (2012) Acetobacter pasteurianus strain AB0220: cultivability and phenotypic stability over 9 years of preservation. Curr Microbiol 64:576–580

    Article  PubMed  CAS  Google Scholar 

  26. Kondo K, Horinouchi S (1997) Characterization of the genes encoding the three-component membrane-bound alcohol dehydrogenase from Gluconobacter suboxydans and their expression in Acetobacter pasteurianus. Appl Environ Microbiol 63:1131–1138

    PubMed  CAS  Google Scholar 

  27. Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M (2009) Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res 37(17):5768–5783

    Article  PubMed  CAS  Google Scholar 

  28. Coucheron DH (1991) An Acetobacter xylinum insertion sequence element associated with inactivation of cellulose production. J Bacteriol 173:5723–5731

    PubMed  CAS  Google Scholar 

  29. Cleenwerck I, De Vos P, De Vuyst L (2010) Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov. Int J Syst Evol Microbiol 60(10):2277–2283

    Article  PubMed  Google Scholar 

  30. Matsutani M, Hirakawa H, Yakushi T, Matsushita K (2011) Genome-wide phylogenetic analysis of Gluconobacter, Acetobacter, and Gluconacetobacter. FEMS Microbiol Lett 315(2):122–1228

    Article  PubMed  CAS  Google Scholar 

  31. Kittelman M, Stamm WW, Follmann H, Truper HG (1989) Isolation and classification of acetic acid bacteria from high percentage vinegar fermentations. Appl Bicrobiol Biotechnol 30:47–52

    Google Scholar 

  32. Millet V, Lonvaud-Funel A (2000) The viable but non-culturable state of wine microorganisms during storage. Lett Appl Microbiol 30:136–141

    Article  PubMed  CAS  Google Scholar 

  33. De Vero L, Gala E, Gullo M, Solieri L, Landi S, Giudici P (2006) Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiol 23(8):809–813

    Article  PubMed  Google Scholar 

  34. Gullo M, De Vero L, Giudici P (2009) Succession of selected strains of Acetobacter pasteurianus and other acetic acid bacteria in traditional balsamic vinegar. Appl Environ Microbiol 75:2585–2589

    Article  PubMed  CAS  Google Scholar 

  35. Dupuy P (1952) Recherche d’une technique d’isolement des Acetobacter du vin. Ann Technol Agric 1:107–112

    Google Scholar 

  36. Drysdale GS, Fleet GH (1988) Acetic acid bacteria in winemaking: a review. Am J Enol Vitic 39(2):143–154

    CAS  Google Scholar 

  37. Carr JG, Passmore SM (1979) Methods for identifying acetic acid bacteria. In: Skinner FA, Lovelock DW (eds) Identification methods for microbiologists. Academic Press, UK, pp 33–47

    Google Scholar 

  38. Sievers M, Sellmer S, Teuber M (1992) Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in central Europe. Syst Appl Microbiol 15:386–392

    Article  Google Scholar 

  39. Entani E, Ohmori S, Masai H, Suzuki KI (1985) Acetobacter polyoxogenes sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity. J Gen Appl Microbiol 31:475–490

    Article  CAS  Google Scholar 

  40. Sokollek SJ, Hertel C, Hammes WP (1998) Cultivation and preservation of vinegar bacteria. J Biotechnol 60:195–206

    Article  CAS  Google Scholar 

  41. Gullo M, Caggia C, De Vero L, Giudici P (2006) Characterization of acetic acid bacteria in traditional balsamic vinegar. Int J Food Microbiol 106:209–212

    Article  PubMed  CAS  Google Scholar 

  42. Matsushita K, Toyama H, Adachi O (2004) Respiratory chains in acetic acid bacteria: membrane bound periplasmic sugar and alcohol respirations. In: Zannoni D (ed) Respiration in archaea and bacteria, advances in photosynthesis and respiration. Springer, Dordrecht, pp 81–99

    Chapter  Google Scholar 

  43. Anthony C (1996) Quinoprotein-catalysed reactions. Biochem J 320:697–711

    PubMed  CAS  Google Scholar 

  44. Goodwin PM, Anthony C (1998) The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microb Physiol 40:1–80

    Article  PubMed  CAS  Google Scholar 

  45. Yakushi T, Matsushita K (2010) Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol 86(5):1257–1265

    Article  PubMed  CAS  Google Scholar 

  46. Adachi O, Matsushita K, Shinagawa E, Ameyama M (1980) Crystallization and properties of NADP-dependent d-glucose dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem 44:301–308

    Article  CAS  Google Scholar 

  47. Muraoka H, Watabe Y, Ogasawara N, Takahashi H (1983) Trigger damage by oxygen deficiency to the acid production system during submerged acetic acid fermentation with Acetobacter aceti. J Ferment Technol 61:89–93

    CAS  Google Scholar 

  48. De Ley J, Gillis M, Swings J (1984) Family VI. Acetobacteraceae. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, 1st edn. Williams and Wilkins Co, Baltimore, pp 267–278

    Google Scholar 

  49. White GA, Wang CH (1964) The dissimilation of glucose and gluconate by Acetobacter xylinum. The origin and the fate of triose phosphate. Biochem J 90(2):408–423

    PubMed  CAS  Google Scholar 

  50. Deppenmeier U, Ehrenreich A (2009) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16:69–80

    Article  PubMed  CAS  Google Scholar 

  51. Attwood M, van Dijken JP, Pronk JT (1991) Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus. J Ferment Bioeng 72(2):101–105

    Article  CAS  Google Scholar 

  52. Klasen R, Bringer-Meyer S, Sahm H (1995) Biochemical characterization and sequence analysis of the gluconate: NADP 5-oxidoreductase gene from Gluconobacter oxydans. J Bacteriol 177(10):2637–2643

    PubMed  CAS  Google Scholar 

  53. Roehr M, Kubicek CP, Kominek J (1996) Gluconic acid. In: Roehr M (ed) Biotechnology, vol 2. VCH, New York, pp 348–362

    Google Scholar 

  54. Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechonol 23:195–200

    Article  CAS  Google Scholar 

  55. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Mol Biol Rev 55:135–158

    Google Scholar 

  56. Yukphan P, Malimas T, Muramatsu Y, Potacharoen W, Tanasupawat S, Nakagawa Y, Tanticharoen M, Yamada Y (2011) Neokomagataea gen. nov., with descriptions of Neokomagataea thailandica sp. nov. and Neokomagataea tanensis sp. nov., osmotolerant acetic acid bacterium of the a Proteobacteria. Biosci Biotechnol Biochem 75(3):419–426

    Article  PubMed  CAS  Google Scholar 

  57. Yukphan P, Malimas T, Muramatsu Y, Takahashi M, Kaneyasu M, Potacharoen W, Tanasupawat S, Nakagawa Y, Hamana K, Tahara Y, Suzuki K, Tanticharoen M, Yamada Y (2009) Ameyamaea chiangmaiensis gen. nov., sp. nov., an acetic acid bacterium in the alpha proteobacteria. Biosci Biotechnol Biochem 73(10):2156–2162

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gullo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamlouk, D., Gullo, M. Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation. Indian J Microbiol 53, 377–384 (2013). https://doi.org/10.1007/s12088-013-0414-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-013-0414-z

Keywords

Navigation