Skip to main content

Abstract

The phylum Platyhelminthes comprises dorso-ventrally flattened worms commonly known as flatworms (from the Greek platys, meaning flat, and helminthos, meaning worm) (for a general overview of this phylum, see Hyman 1951; Rieger et al. 1991). Platyhelminthes are one of the largest animal phyla after arthropods, mollusks, and chordates and includes more than 20,000 species, more than half of which are parasitic flatworms. Free-living flatworms (classically referred to as ‘Turbellaria’) live in a large variety of habitats, from freshwater springs, rivers, lakes, and ponds to the ocean and moist terrestrial habitats. Their size ranges from microscopic worms to the 30 m long tapeworms found in the sperm whale. Free-living flatworms are most often white, brown, grey, or black; polyclads (marine flatworms) and terrestrial species usually display bright colours and patterns. Molecular phylogenetic studies place the Platyhelminthes within the Spiralia (=Lophotrochozoa) clade. The most recent internal phylogenies support the subdivision of the Platyhelminthes into two main groups: the earliest branching lineages grouped into the paraphyletic ‘Archoophora’ and the more divergent monophyletic Neoophora (Laumer and Giribet 2014; Riutort et al. 2012). The ‘Archoophora’ includes those groups with endolecithal eggs. They are exclusively free-living organisms and are classified into three orders: Catenulida, Polycladida, and Macrostomida (Fig. 3.1). The Neoophora includes all groups with ectolecithal eggs. It comprises several free-living orders, together with the parasitic groups (the classes Trematoda, Cestoda, and Monogenea) united under the monophyletic Neodermata.

Chapter vignette artwork by Brigitte Baldrian.© Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JM, Johann JC (1958) Some aspects of reproductive biology in the freshwater triclad turbellarian, Cura foremanii. Biol Bull 115:375–383

    Article  Google Scholar 

  • Azimzadeh J, Wong ML, Downhour DM, Sánchez Alvarado A, Marshall WF (2012) Centrosome loss in the evolution of planarians. Science 335:461–463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baguñà J, Boyer BC (1990) Experimental embryology in aquatic plants and animals. Plenum Press, New York, pp 95–128, Chap Descriptive and experimental embryology of the Turbellaria: present knowledge, open questions and future trends

    Book  Google Scholar 

  • Benazzi M (1950) Ginogenesi in tricladi di acqua dolce. Chromosoma 3:474–482

    Article  CAS  PubMed  Google Scholar 

  • Bolaños DM, Litvaitis MK (2009) Embryonic muscle development in direct and indirect developing marine flatworms (Platyhelminthes: Polycladida). Evol Dev 11:290–301

    Article  PubMed  Google Scholar 

  • Boyer BC, Henry JQ, Martindale MQ (1996) Dual origins of mesoderm in a basal spiralian: cell lineage analyses in the polyclad turbellarian Hoploplana inquilina. Dev Biol 179:329–338

    Article  CAS  PubMed  Google Scholar 

  • Boyer BC, Henry JQ, Martindale MQ (1998) The cell lineage of a polyclad turbellarian embryo reveals close similarity to coelomate spiralians. Dev Biol 204:111–123

    Article  CAS  PubMed  Google Scholar 

  • Brøndsted HV (1969) Planarian regeneration. Pergamon Press, Oxford

    Google Scholar 

  • Cardona A, Hartenstein V, Romero R (2005) The embryonic development of the triclad Schmidtea polychroa. Dev Genes Evol 215:109–131

    Article  PubMed  Google Scholar 

  • Cardona A, Hartenstein V, Romero R (2006) Early embryogenesis of planaria: a cryptic larva feeding on maternal resources. Dev Genes Evol 216:667–681

    Article  PubMed  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD et al (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–750

    Article  CAS  PubMed  Google Scholar 

  • Freitas TC, Jung E, Pearce EJ (2007) TGF-beta signaling controls embryo development in the parasitic flatworm Schistosoma mansoni. PLoS Pathog 3:e52

    Article  PubMed Central  PubMed  Google Scholar 

  • Gammoudi M, Noreña C, Tekaya S, Prantl V, Egger B (2011) Insemination and embryonic development of some Mediterranean polyclad flatworms. Invertebr Reprod Dev. doi:10.1080/07924259.2011.611825

    Google Scholar 

  • Gammoudi M, Egger B, Tekaya S, Noreña C (2012) The genus Leptoplana (Leptoplanidae, Polycladida) in the Mediterranean basin. Redescription of the species Leptoplana mediterranea (Bock,1913) comb. nov. Zootaxa 3178:45–56

    Google Scholar 

  • Hartenstein V, Ehlers U (2000) The embryonic development of the rhabdocoel flatworm Mesostoma lingua (Abildgaard, 1789). Dev Genes 210:399–415

    Article  CAS  Google Scholar 

  • Hartenstein V, Jones M (2003) The embryonic development of the bodywall and nervous system of the cestode flatworm Hymenolepis diminuta. Cell Tissue Res 311:427–435

    PubMed  Google Scholar 

  • Hyman LH (1951) The invertebrates. II. Platyhelminthes and rhynchocoela. The acoelomate bilateria. McGraw-Hill, New York

    Google Scholar 

  • Jurberg AD, Gonçalves T, Costa TA, de Mattos AC, Pascarelli BM, de Manso PP, Ribeiro-Alves M, Pelajo-Machado M, Peralta JM, Coelho PM, Lenzi HL (2009) The embryonic development of Schistosoma mansoni eggs: proposal for a new staging system. Dev Genes Evol 219:219–234

    Article  PubMed  Google Scholar 

  • Koziol U, Domínguez MF, Marín M, Kun A, Castillo E (2010) Stem cell proliferation during in vitro development of the model cestode Mesocestoides corti from larva to adult worm. Front Zool 7:22. doi:10.1186/1742-9994-7-22

    Article  PubMed Central  PubMed  Google Scholar 

  • Lapraz F, Rawlinson KA, Girstmair J, Tomiczek B, Berger J, Jékely G, Telford MJ, Egger B (2013) Put a tiger in your tank: the polyclad flatworm Maritigrella crozieri as a proposed model for evo-devo. Evodevo 4:29. doi:10.1186/2041-9139-4-29

    Article  PubMed Central  PubMed  Google Scholar 

  • Laumer CE, Giribet G (2014) Inclusive taxon sampling suggest a single, stepwise origin of ectolecithality in Platyhelminthes. Biol J Linn Soc 111:570–588

    Google Scholar 

  • Martín-Durán JM, Egger B (2012) Developmental diversity in free-living flatworms. EvoDevo 3:7. doi:10.1186/2041-9139-3-7

    Article  PubMed Central  PubMed  Google Scholar 

  • Martín-Durán JM, Romero R (2011) Evolutionary implications of morphogenesis and molecular patterning of the blind gut in the planarian Schmidtea polychroa. Dev Biol 352:164–176

    Article  PubMed  Google Scholar 

  • Martín-Durán JM, Amaya E, Romero R (2010) Germ layer specification and axial patterning in the embryonic development of the freshwater planarian Schmidtea polychroa. Dev Biol 340:145–158

    Article  PubMed  Google Scholar 

  • Martín-Durán JM, Monjo F, Romero R (2012a) Planarian embryology in the era of comparative developmental biology. Int J Dev Biol 56:39–48

    Article  PubMed  Google Scholar 

  • Martín-Durán JM, Monjo F, Romero R (2012b) Morphological and molecular development of the eyes during embryogenesis of the freshwater planarian Schmidtea polychroa. Dev Genes Evol 222:45–54. doi:10.1007/s00427-012-0389-5

    Article  PubMed  Google Scholar 

  • Młocicki D, Swiderski Z, Conn DB (2010) Ultrastructure of the early embryonic stages of Corallobothrium fimbriatum (Cestoda: Proteocephalidea). J Parasitol 96:839–846

    Article  PubMed  Google Scholar 

  • Morris J, Nallur R, Ladurner P, Egger B, Rieger R, Hartenstein V (2004) The embryonic development of the flatworm Macrostomum sp. Dev Genes Evol 214:220–239

    Article  PubMed  Google Scholar 

  • Rawlinson KA (2010) Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits. Front Zool 7:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Rawlinson KA (2014) The diversity, development and evolution of polyclad flatworm larvae. EvoDevo 5:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Reisinger E (1924) Die Gattung Rhynchoscolex. Z Morphol Ökol Tiere 1:1–37

    Article  Google Scholar 

  • Reisinger E (1972) Die Evolution des Orthogons der Spiralier und das Archicoelomatenproblem. Z Zool Syst Evolutionforsch 10:1–43

    Article  Google Scholar 

  • Reiter D, Ladurner P, Mair G, Salvenmoser W, Rieger R, Boyer B (1996) Differentiation of the body wall musculature in Macrostomum hystricinum marinum and Hoploplana inquilina (Plathelminthes), as models for muscle development in lower Spiralia. Rouxs Arch Dev Biol 205:410–423

    Article  Google Scholar 

  • Rieger R, Tyler S, Smith JPS III, Rieger G (1991) Platyhelminthes: Turbellaria. In: Harrison FW, Bogitsh BJ (eds) Microscopic anatomy of invertebrates, vol 3. Wiley-Liss, New York, pp 7–140

    Google Scholar 

  • Riutort M, Álvarez-Presas M, Lázaro E, Solà E, Paps J (2012) Evolutionary history of the Tricladida and the Platyhelminthes: an up-to-date phylogenetic and systematic account. Int J Dev Biol 56:5–17

    Article  PubMed  Google Scholar 

  • Ruppert EE (1978) A review of metamorphosis of turbellarian larvae. Settlement and metamorphosis of marine invertebrate larvae. Elsevier, New York, pp 65–81

    Google Scholar 

  • Seilern-Aspang F (1957) Die Entwicklung von Macrostomum appendiculatum (Fabricius). Zool Jahrb Anat 76:311–330

    Google Scholar 

  • Seilern-Aspang F (1958) Entwicklungsgeschichtliche Studien an paludicolen Tricladen. Arch EntwMech Org 150:425–480

    Article  Google Scholar 

  • Semmler H, Wanninger A (2010) Myogenesis in two polyclad platyhelminths with indirect development, Pseudoceros canadensis and Stylostomum sanjuania. Evol Dev 12:210–221

    Article  PubMed  Google Scholar 

  • Solana J, Romero R (2009) SpolvlgA is a DDX3/PL10-related DEAD-box RNA helicase expressed in blastomeres and embryonic cells in planarian embryonic development. Int J Biol Sci 5:64–73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Struck TH, Wey-Fabrizius AR, Golombek A, Hering L, Weigert A, Bleidorn C, Klebow S, Iakovenko N, Hausdorf B, Petersen M, Kück P, Herlyn H, Hankeln T (2014) Platyzoan paraphyly based on phylogenomic data supports a noncoelomate ancestry of Spiralia. Mol Biol Evol. doi:10.1093/molbev/msu143

    Google Scholar 

  • Surface FA (1907) The early development of a polyclad, Planocera inquilina. Proc Acad Nat Sci Phila 59:514–559

    Google Scholar 

  • Swiderski Z, Poddubnaya LG, Gibson DI, Levron C, Młocicki D (2011) Egg formation and the early embryonic development of Aspidogaster limacoides Diesing, 1835 (Aspidogastrea: Aspidogastridae), with comments on their phylogenetic significance. Parasitol Int 60:371–380

    Article  PubMed  Google Scholar 

  • Tekaya S, Sluys R, Zghal F (1999) Cocoon production, deposition, hatching and embryonic development in the marine planarian Sabussowia dioica (Platyhelminthes, Tricladida, Maricola). Invertebr Reprod Dev 35:215–223

    Article  Google Scholar 

  • Thomas MB (1986) Embryology of the Turbellaria and its phylogenetic significance. Hydrobiologia 132:105–115

    Article  Google Scholar 

  • Van den Biggelaar JA, Guerrier P (1979) Dorsoventral polarity and mesentoblast determination as concomitant results of cellular interactions in the mollusk Patella vulgata. Dev Biol 68:462–471

    Article  PubMed  Google Scholar 

  • Van den Biggelaar JAM, Dictus WJAG, van Loon AE (1997) Cleavage patterns, cell-lineages and cell specification are clues to phyletic lineages in Spiralia. Semin Cell Dev Biol 8:367–378

    Article  PubMed  Google Scholar 

  • Willems M, Egger B, Wolff C, Mouton S, Houthoofd W, Fonderie P, Couvreur M, Artois TJ, Borgonie G (2009) Embryonic origins of hull cells in the flatworm Macrostomum lignano through cell lineage analysis: developmental and phylogenetic implications. Dev Genes Evol 219:409–417

    Article  PubMed  Google Scholar 

  • Younossi-Hartenstein A, Hartenstein V (2000) The embryonic development of the polyclad flatworm Imogine mcgrathi. Dev Genes Evol 210:383–398

    Article  CAS  PubMed  Google Scholar 

  • Younossi-Hartenstein A, Ehlers U, Hartenstein V (2000) Embryonic development of the nervous system of the rhabdocoel flatworm Mesostoma lingua (Abilgaard, 1789). J Comp Neurol 16:461–474

    Article  Google Scholar 

Download references

Acknowledgements

We thank Bernhard Egger for providing platyhelminth images showed in Fig. 3.1, the schemes of platyhelminth embryogenesis in Fig. 3.2, and the images of larvae in Fig. 3.3. We thank Iain Patten for advice on the English. This work was supported by grant BFU2012-31701 (Ministerio de Economía y Competitividad, Spain) to F.C; grant BFU2008-01544 (Ministerio de Economía y Competitividad, Spain) to ES and TA; grant 2009SGR1018 (Agència de Gestió d’Ajuts Universitaris i de Recerca) to ES, FC, and TA; and grant AIB2010DE-00402 (Ministerio de Economia y Competitividad Accion Integrada). J.M.M-D. is supported by Marie Curie intra-European fellowship 329024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emili Saló .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Adell, T., Martín-Durán, J.M., Saló, E., Cebrià, F. (2015). Platyhelminthes. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1871-9_3

Download citation

Publish with us

Policies and ethics