Skip to main content

Cyanobacteria/Blue-Green Algae

  • Chapter
  • First Online:
Biology of Algae, Lichens and Bryophytes
  • 309 Accesses

Abstract

Dating back to the earliest period of geological time (Archean), cyanobacteria are the oldest known photoautotrophic organisms that release oxygen during their photosynthesis (= oxygenic photosynthesis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn SM, Hampel V, Heiss A, Hoppenrath M, Lara E, le Gall L, Lynn DH, McManus H, Mitchel EAD, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel F (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59(5):429–514

    Article  PubMed  PubMed Central  Google Scholar 

  • Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, del Campo J, Dunthorn M, Edvardsen B, Eglit Y, Guilou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karnovska A, Karpov S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJG, Lara E, Le Gall L, Lynn DH, Mann DG, Massana R, Mitchell EAD, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Rueckert S, Shadwick L, Shimano S, Spiegel FW, Toruella G, Youssef N, Zlatogursky V, Zhang Q (2018) Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol 66:4–119

    Google Scholar 

  • Albrecht M, Pröschold T, Schumann R (2017) Identification of cyanobacteria in a eutrophic coastal lagoon on the Southern Baltic Coast. Front Microbiol 8:923. https://doi.org/10.3389/fmicb.2017.00923

    Article  PubMed  PubMed Central  Google Scholar 

  • Alpert P (2005) The limits and frontiers of desiccation-tolerant life. Integr Comp Biol 45:685–695

    Article  PubMed  Google Scholar 

  • Anagnostidis K, Economou-Amilli A, Roussomoustakaki M (1983) Epilithic and chasmolithic microflora (Cyanophyta, Bacillariophyta) from marbles of the Parthenon (Acropolis-Athens, Greece). Nova Hedwigia 38:227–287

    Google Scholar 

  • Anagnostidis K, Komárek J (1985) Modern approach to the classification system of cyanophytes. 1 – Introduction. Archiv für Hydrobiologie Supplement 71/Algol Stud 38(39): 291–302

    Google Scholar 

  • Anagnostidis K, Schwabe GH (1966) Über artenreiche Bestände von Cyanophyten und Bacteriophyten in einem Farbstreifensandwatt sowie das Auftreten Gomontiella-artig deformierter Oscillatoria trichome. Nova Hedwigia 11: 417–441 + 4 plates

    Google Scholar 

  • Archibald JM (2015) Genomic perspectives on the birth and spread of plastids. Proc Natl Acad Sci 112:10147–10153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badger MR, Pfanz H, Büdel B, Heber U, Lange OL (1993) Evidence for the functioning of photosynthetic CO2-concentrating mechanisms in lichens containing green algal and cyanobacterial photobionts. Planta 191:57–70

    Article  CAS  Google Scholar 

  • Badger MR, Hanson D, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29:161–173

    Article  CAS  PubMed  Google Scholar 

  • Bahl J, Lau MCY, Smith GJD, Vijakrishna D, Cary SC, Lacap DC, Lee CK, Papke RT, Warren-Rhodes KA, Wong FKY, McKay CP, Pointing SB (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163. https://doi.org/10.1038/ncomms1167

    Article  CAS  PubMed  Google Scholar 

  • Bahnwart M , Hübener T, Schubert H (1999) Downstream changes in phytoplankton composition and biomass in a lowland river–lake system (Warnow River, Germany). Hydrobiologia 391:99–111

    Google Scholar 

  • Barthlott W, Büdel B, Mall M, Neumann KM, Bartels D, Fischer E (2022) Superhydrophobic terrestrial cyanobacteria and land plant transition. Front Plant Sci 13:880439. https://doi.org/10.3389/fpls.2022.880439

  • Bauersachs T, Miller SR, Gugger M, Mudimu O, Friedl T, Schwark L (2019) Heterocyte glycolipids indicate polyphyly of stigonematalean cyanobacteria. Phytochemistry 166:112059. https://doi.org/10.1016/j.phytochem.2019.112059

    Article  CAS  PubMed  Google Scholar 

  • Behrendt L, Larkum AWD, Norman A, Qvortrup K, Chne M, Ralph P, Sørensen SJ, Trampe E, Kühl M (2011) Endolithic chlorophyll d-containing phototrophs. ISME J 5:1072–1076

    Article  CAS  PubMed  Google Scholar 

  • Belnap J, Büdel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management, vol 150, pp 3–30

    Google Scholar 

  • Beraldi-Campesi H, Retallack GJ (2016) Terrestrial ecosystems in the precambrian. In: Weber B, Büdel B, Belnap J (eds) Biological soil crusts: an organizing principle in drylands, vol 226, pp 37–54. https://doi.org/10.1007/978-3-319-30214-0_3

  • Berrendero Gómez E, Johansen JJ, Kaštovský J, Bohunická M, Čapková K (2016) Macrochaete gen. nov. (Nostocales, Cyanobacteria), a taxon morphologically and molecularly distinct from Calothrix. J Phycol 52:638–655

    Article  PubMed  Google Scholar 

  • Bhattacharya D, Friedl T, Schmidt H (1999) The phylogeny of thermophiles and hyperthermophiles and the three domains of life. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Springer Science + Business Media Dordrecht, pp 291–304

    Google Scholar 

  • Billi D (2009) Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability essays. Extremophiles 13:49–57

    Article  CAS  PubMed  Google Scholar 

  • Billi D, Potts M (2000) Life without water: responses of prokaryotes to desiccation. In: Storey KB, Storey JM (eds) Environmental stressors and gene responses. Elsevier, Amsterdam, pp 181–192

    Chapter  Google Scholar 

  • Blankenship RE (2015) Structural and functional dynamics of photosynthetic antenna complexes. Proc Natl Acad Sci 112(45):13751–13752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohunická M, Pietrasiak N, Johansen Jr, Berrendero Gómez E, Hauer T, Gaysina LA, Lukešová A (2015) Roholtiella, gen. nov. (Nostocales, Cyanobacteria)—a tapering and branching cyanobacteria of the family Nostocaceae. Phytotaxa 197(2): 84–103

    Google Scholar 

  • Böhm GA, Pfleiderer W, Böger P, Scherer S (1995) Structure of a novel oligosaccharide-mycosporine-amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium nostoc commune. J Biol Chem 270(15):8536–8539

    Google Scholar 

  • Boison G, Mergel A, Jolkver H, Bothe H (2004) Bacterial life and dinitrogen fixation at a gypsum rock. Appl Environ Microbiol 70:7070–7077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonthond G, Shalygin S, Bayer T, Weinberger T (2021) Draft genome and description of Waterburya agarophytonicola gen. nov. sp. nov. (Pleurocapsales, Cyanobacteria): a seaweed symbiont. Antonie van Leeuwenhoek. https://doi.org/10.1007/s10482-021-01672-x

  • Braun PD, Schulz-Vogt H, Vogts A, Nausch M (2018) Differences in the accumulation of phosphorous between vegetative cells and heterocysts in the cyanobacterium Nodularia spumigena. Sci Rep 8:5651. https://doi.org/10.1038/s41598-018-23992-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant DE (2014) A brief history of cyanobacterial research: past, present, and future prospects. In: Flores E, Herrero A (eds) The cell biology of cyanobacteria. Caister Academic Press, Norfolk, pp 1–6

    Google Scholar 

  • Büdel B (1999) Ecology and diversity of rock inhabiting cyanobacteria in tropical regions. Eur J Phycol 34:361–370

    Article  Google Scholar 

  • Büdel B (2011) Cyanobacteria: habitats and species. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Springer-Verlag, Berlin Heidelberg, pp 11–21

    Chapter  Google Scholar 

  • Büdel B, Lüttge U, Stelzer R, Huber O, Medina E (1994) Cyanobacteria of rocks and soils of the Orinoco lowlands and the Guayana Uplands, Venezuela. Botanica Acta 107:422–431

    Article  Google Scholar 

  • Büdel B, Becker U, Porembski S, Barthlott W (1997) Cyanobacteria and cyanobacterial lichens from insel-bergs of the Ivory Coast, Africa. Botanica Acta 110:458–465

    Article  Google Scholar 

  • Büdel B, Weber H-M, Porembski S, Barthlott W (2002) Cyanobacteria of inselbergs in the atlantic rain-forest zone of Eastern Brazil. Phycologia 41:498–506

    Article  Google Scholar 

  • Büdel B, Weber B, Kühl M, Pfanz H, Sültemeyer D, Wessels D (2004) Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2:261–268

    Article  Google Scholar 

  • Büdel B, Bendix J, Bicker F, Green TGA (2008) Dewfall as a water source frequently activates the endo-lithic cyanobacterial communities in the granites of Taylor Valley, Antarctica. J Phycol 44:1415–1424

    Article  PubMed  Google Scholar 

  • Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247

    Article  PubMed  Google Scholar 

  • Büdel B, Williams WJ, Reichenberger H (2018) Annual net primary productivity of a cyanobacteria-dominated biological soil crust in the Gulf Savannah, Queensland, Australia. Biogeosciences 15:491–505

    Article  Google Scholar 

  • Buongiorno J, Gomez FJ, Fike DA, Kah LC (2019) Mineralized microbialites as archives of environmental evolution, Laguna Negra, Catamarca Province, Argentina. Geobiology 17(2):199–222. https://doi.org/10.1111/gbi.12327

  • Cai F, Li X, Yang Y, Jia N, Huo D, Li R (2019) Compactonostoc shennongjiaensis gen. & sp. nov. (Nostocales, Cyanobacteria) from a wet rocky wall in China. Phycologia. https://doi.org/10.1080/00318884.2018.1541270

  • Cardona T, Sánchez-Baracaldo P, Rutherford AW, Larkum AW (2019) Early Archean origin of photosystem II. Geobiology 17(2):127–150. https://doi.org/10.1111/gbi.12322

    Article  CAS  PubMed  Google Scholar 

  • Carmichael WW, Biggs DF, Gorham PR (1975) Toxicology and pharmacological action of Anabaena flos-aquae toxin. Science 187:542–544

    Article  CAS  PubMed  Google Scholar 

  • Castenholz RW (2001) Phylum BX. Cyanobacteria. Oxygenic photosynthetic bacteria. In: Boode DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York

    Google Scholar 

  • Castenholz RW, Garcia-Pichel F (2012) Cyanobacterial responses to UV radiation. In: Whitton BE (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer Science and Business Media B.V., pp 481–499

    Google Scholar 

  • Chen M, Schliep M, Willows RD, Cai Z-L, Neilan BA, Scheer H (2010) A red shifted chlorophyll. Science 329:1318–1319

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Li Y, Birch D, Willows RD (2012) A cyanobacterium that contains chlorophyll f: a red-absorbing photopigment. FEBS Lett 586:3249–3254

    Article  CAS  PubMed  Google Scholar 

  • Chorus I, Bartram J (1999) Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. World Health Organization. E&FN Spon, London, UK, pp 416

    Google Scholar 

  • Clark JM, Schaeffer BA, Darling JA, Urquhart EA, Johnston JM, Ignatius AR, Myer MH, Loftin KA, Werdell PJ, Stumpf RP (2017) Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking water sources. Ecol Ind 80:84–95

    Article  Google Scholar 

  • Colesie C, Büdel B, Green TGA (2016) Endolithic communities in the Mc Murdo Dry Valleys: biomass, turnover, cyanobacteria and location: a preliminary insight. Algol Stud 151(152):51–68

    Article  Google Scholar 

  • Colica G, Li H, Rossi F, Li D, Liu Y, De Philippis R (2014) Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol Biochem 68:62–70. https://doi.org/10.1016/j.soilbio.2013.09.017

    Article  CAS  Google Scholar 

  • Couradeau E, Benzerara K, Gérard E, Moreira D, Bernard S, Brown GE Jr, López-García P (2012) An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336:459–462

    Article  CAS  PubMed  Google Scholar 

  • Crittenden PD, Llimona X, Sancho LG (2007) Lichenized unicellular cyanobacteria fix nitrogen in the light. Can J Bot 87:1003–1006

    Article  Google Scholar 

  • Crow WB (1927) Crinalium, a new genus of cyanophyceae, and its bearing on the morphology of the Group. Ann Bot 41:161–166

    Article  Google Scholar 

  • Damerval T, Guglielmi G, Houmard J, Tandeau de Marsac N (1991) Hormogonium differentiation in the cyanobacterium Calothrix: a photoregulated developmental process. Plant Cell 3:191–201

    Article  PubMed  PubMed Central  Google Scholar 

  • de los Rios A, Grube M, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395

    Google Scholar 

  • de Vries A, Archibald JM (2017) Endosymbiosis: did plastids evolve from a freshwater cyanobacterium? Curr Biol 27:103–105

    Article  Google Scholar 

  • de Winder B, Stal LJ, Muur LR (1992) Crinalium epipsammum sp. nov.: a filamentous cyanobacterium with trichomes composed of elliptical cells and containing poly-p-(1,4) glucan (cellulose). J Gen Microbiol 136:1645–1653

    Article  Google Scholar 

  • De Wever A, Benzerara K, Coutaud M, Caumes G, Poinsot M, Skouri-Panet F, Laurent T, Duprat E, Gugger M (2019) Evidence of high Ca uptake by cyanobacteria forming intracellular CaCO3 and impact on their growth. Geobiology 17(6):676–690

    Article  PubMed  Google Scholar 

  • DeMott WR, Moxter F (1991) Foraging cyanobacteria by copepods: responses to chemical defense and resource abundance. Ecology 72(5):1820–1834

    Article  Google Scholar 

  • Derikvand P, Llewellyn CA, Purton S (2017) Cyanobacteria metabolites as a source of sunscreens and moisturizers: a comparison with current synthetic compounds. Eur J Phycol 52:43–56

    Article  CAS  Google Scholar 

  • Dodds WK, Castenholz RW (1988) Effects of grazing and light on the growth of Nostoc pruniforme (Cyanobacteria). Brit Phycol J 23:219–227

    Article  Google Scholar 

  • Dojani S, Lakatos M, Rascher U, Wanek W, Lüttge U, Büdel B (2007) Nitrogen input by cyanobacterial biofilms of an inselberg into a tropical rainforest in French Guiana. Flora 202:521–529

    Article  Google Scholar 

  • Dojani S, Kauff F, Weber B, Büdel B (2014) Genotypic and phenotypic diversity of cyanobacteria in biological soil crusts of the succulent karoo and nama karoo of Southern Africa. Microb Ecol 67:286–301

    Article  PubMed  Google Scholar 

  • Dvořák P, Hašler P, Poulíčková A (2012) Phylogeography of the Microcoleus vaginatus (Cyanobacteria) from three continents: a spatial and temporal characterization. PLoS ONE 7(6):e40153. https://doi.org/10.1371/journal.pone.0040153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorák P, Poulícková A, Hasler P, Belli M, Casamatta DA, Papini A (2015) Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodivers Conserv 24:739–757

    Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    Article  CAS  Google Scholar 

  • Engene N, Tronholm A, Paul VJ (2018) Uncovering cryptic diversity of Lyngbya: the new tropical marine cyanobacterial genus Dapis (Oscillatoriales). J Phycol 54:435–446

    Article  PubMed  Google Scholar 

  • Fernandes VM, Giraldo-Silva A, Roush D, Garcia-Pichel F (2021) Coleofasciculaceae, a monophyletic home for the Microcoleus steenstrupii complex and other desiccation-tolerant filamentous Cyanobacteria. J Phycol. https://doi.org/10.1111/jpy.13199

    Article  Google Scholar 

  • Fewer D, Friedl T, Büdel B (2002) Chroococcidiopsis and heterocyst-differentiating cyanobacteria are each other’s closest living relatives. Mol Phylogenet Evol 23:82–90

    Article  CAS  PubMed  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  PubMed  Google Scholar 

  • Flores E, Herrero A (2010) Compartmentalized function through cell differentiation in filamentous cyanobacteria. Microbiology 8:39–50

    CAS  PubMed  Google Scholar 

  • Flores E, Herrero A, Forchhammer K, Maldener I (2016) Septal junctions in filamentous heterocyst-forming Cyanobacteria. Trends Microbiol 24(2):79–82

    Article  CAS  PubMed  Google Scholar 

  • Fogg GE (1969) The physiology of an algal nuisance. Proc Roy Soc Lond B 173:175–189

    Google Scholar 

  • Forchhammer K (2019) Erwachen aus der Chlorose: Wie scheintote Cyanobakterien ergrünen. Biospektrum 25:132–137

    Article  Google Scholar 

  • Forchhammer K, Schwarz R (2019) Nitrogen chlorosis in unicellular cyanobacteria: a developmental program for surviving nitrogen deprivation. Environ Microbiol 21(4):1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Freiberg E (1998) Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a Costa Rican premontane rain forest. Oecologia 17:9–18

    Article  Google Scholar 

  • Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2:561–570

    Article  PubMed  Google Scholar 

  • Gama WA Jr, Laughinghouse HD, SantAnna CL (2014) How diverse are coccoid cyanobacteria? A case study of terrestrial habitats from the Atlantic Rainforest (São Paulo, Brazil). Phytotaxa 178(2):61–97

    Google Scholar 

  • Gan F, Zhang S, Rockwell NC, Martin SS, Lagarias JC, Bryant DA (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345:1312–1317

    Article  CAS  PubMed  Google Scholar 

  • Gantt E (1975) Phycobilisomes: light-harvesting pigment complexes. Bioscience 25:781–788

    Article  CAS  Google Scholar 

  • Gao X, Xu H, Ye S, Liang W (2016) A proposal on the restoration of Nostoc flagelliforme for sustainable improvement in the ecology of arid steppes in China. Environments 3:14. https://doi.org/10.3390/environments3020014

    Article  Google Scholar 

  • Garcia-Pichel F (2006) Plausible mechanisms for the boring on carbonates by microbial phototrophs. Sed Geol 185:205–213

    Article  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27:395–409

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Ramírez-Reinat E, Gao Q (2010) Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport. Proc Natl Acad Sci 107:21749–21754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM (2013) Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340:1574–1577

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, Lombard J, Soule T, Dunaj S, Wu SH, Wojciechowski MF (2019b) Timing the evolutionary advent of the Cyanobacteria and the later great oxidation event using gene phylogenies of a sunscreen. Mbio 10:e00561-e619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Pichel F, Zehr JP, Bhattacharya D, Pakrasi HB (2019a) What’s in a name? The case of cyanobacteria. J Phycol. https://doi.org/10.1111/JPY.12932

  • Garcia-Pichel F (2009) Cyanobacteria. In: Schaechter M (ed) Encyclopedia of microbiology. Academic Press, Oxford, pp 107–124

    Google Scholar 

  • Geitler L (1932) Rabenhorst’s Kryptogamenflora von Deutschland, Österreich und der Schweiz. Cyanophyceae. Akademische Verlagsgesellschaft, Leipzig, Germany, Vierzehnter Band, p 1196

    Google Scholar 

  • Giddings TH, Staehelin LA (1981) Observation of microplasmodesmata in both heterocyst-forming and non-heterocyst forming filamentous cyanobacteria by freeze-fracture electron microscopy. Arch Microbiol 129:295–298

    Article  Google Scholar 

  • Golubic S (1967) Algenvegetation der Felsen, eine ökologische Algenstudie im dinarischen Karstgebiet. Die Binnengewässer 23:1–183

    Google Scholar 

  • Golubic S (1969) Distribution, taxonomy, and boring patterns of marine endolithic algae. Am Zool 9:747–751

    Article  Google Scholar 

  • Golubic S (2010) Encounters with greater bacteria. Period Biol 112:227–238

    Google Scholar 

  • Golubic S, Hofmann HJ (1976) Comparison of Holocene and mid-Precambrian Entophysalidacee (Cyanophyta) in stromatolitic mats: cell division and degradation. J Paleontol 50:1074–1082

    Google Scholar 

  • Golubic S, Pietrini AM, Ricci S (2015) Euendolithic activity of the cyanobacterium Chroococcus lithophilus Erc. in biodeterioration of the pyramid of Caius Cestius, Rome, Italy. Int Biodeterior Biodegradation 100:7–16

    Article  Google Scholar 

  • Graham LE, Graham JM, Wilcox LW, Cook ME (2016) Algae, 3rd edn. LJLM Press, p 683

    Google Scholar 

  • Green TGA, Kilian E, Lange OL (1991) Pseudocyphellaria dissimilis: a desiccation-sensitive, highly shade-adapted lichen from New Zealand. Oecologia 85:498–503

    Article  CAS  PubMed  Google Scholar 

  • Grettenberger CL, Sumner DY, Wall K, Brown CT, Eisen JA, Macley TJ, Hawes I, Jospin G, Jungblut AD (2020) A phylogenetically novel cyanobacterium most closely related to Gloeobacter. ISME J 14(8):2142–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gugger MF, Hoffmann L (2004) Polyphyly of true branching cyanobacteria (Stigonematales). Int J Syst Evol Microbiol 54:349–357

    Article  CAS  PubMed  Google Scholar 

  • Guiry MD, Guiry GM (2021) AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. http://www.algaebase.org

  • Ha K, Kim H-W, Joo G-J (1998) The phytoplankton succession in the lower part of hypertrophic Nakdong River (Mulgum), South Korea. Hydrobiologia 369(370):217–227

    Article  Google Scholar 

  • Hahn A, Schleiff E (2014) The cell envelope. In: Flores E, Herrero A (eds) The cell biology of cyanobacteria. Caister Academic Press, Norfolk, pp 29–87

    Google Scholar 

  • Henson BJ, Hesselbrock SM, Watson LE, Barnum SR (2004) Molecular phylogeny of the heterocystous cyanobacteria (subsections IV and V) based on nifD. Int J Syst Evol Microbiol 54:493–497

    Google Scholar 

  • Herdman M, Rippka R (2021) The cyanobacterial phylogeny and taxonomy reference website. Internet: http://cyanobact.000webhostapp.com/

  • Hernández-Muniz W, Stevens JE (1987) Characterization of the motile hormogonia of Mastigocladus laminosus. J Bacteriol 169:218–223

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrero A, Stavans J, Flores E (2016) The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol Rev 40:831–854

    Article  CAS  PubMed  Google Scholar 

  • Hirose H (1962) On the genus Nostoc Vaucher of Japan. Acta Phytotaxonomica Et Geobotanica 20:296–307

    Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Ann Rev Plant Biol 62:515–548

    Article  CAS  Google Scholar 

  • Hoiczyk E, Baumeister W (1998) The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria. Curr Biol 8:1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaag O (1945) Untersuchungen über die Vegetation und Biologie der Algen des nackten Gesteins in den Alpen, im Jua und im schweizerischen Mittelland. Beiträge zur Kryptogamenflora der Schweiz Band 9(3): 560 p + 21 plates

    Google Scholar 

  • Jahodářová E, Dvorak P, Hašler P, Poulíčková A (2017) Revealing hidden diversity among tropical cyanobacteria: the new genus Onodrimia (Synechococcales, Cyanobacteria) described using the polyphasic approach. Phytotaxa 326:28. https://doi.org/10.11646/phytotaxa.326.1.2

    Article  Google Scholar 

  • Jung P, Schermer M, Briegel-Williams L, Baumann K, Leinweber P, Karsten U, Lehnert L, Achilles S, Bendix J, Büdel B (2019) Water availability shapes edaphic and lithic cyanobacterial communities in the Atacama Desert. J Phycol 55:1306–1318

    Article  CAS  PubMed  Google Scholar 

  • Jung P, Mikhailyuk T, Emrich D, Baumann K, Dultz S, Büdel B (2020) Shifting boundaries: ecological and geographical range extension based on three new species in the cyanobacterial genera Aliterella, Cyanocohniella and Oculatella. J Phycol 56:1216–1231

    Article  CAS  PubMed  Google Scholar 

  • Jung P, Brust K, Büdel B, Donner A, Lakatos M (2021) Opening the Gap: Rare lichens with rare cyanobionts: unexpected cyanobiont diversity in cyanobacterial lichens of the order Lichinales. Front Microbiol 12:728378. https://doi.org/10.3389/fmicb.2021.728378

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung P, Briegel-Williams L, Schermer M, Büdel B (2018) Strong in combination: polyphasic approach enhances arguments for cold-assigned cyanobacterial endemism. Microbiol Open e279. https://doi.org/10.1002/mbo3.729

  • Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202

    Article  CAS  PubMed  Google Scholar 

  • Kahru M, Horstmann U, Rud O (1994) Satellite detection of increased cyanobacterial blooms in the Baltic Sea: natural fluctuation or ecosystem change? Ambio 23(8):469–472

    Google Scholar 

  • Kahru M, Elmgren R, Di Lorenzo E, Savchuk O (2018) Unexplained interannual oscillations of cyanobacterial blooms in the Baltic Sea. Sci Rep 8:6365. https://doi.org/10.1038/s41598-018-24829-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaštovský J, Fučíková K, Hauer T, Bohunická M (2011) Microvegetation on the top of Mt. Roraima, Venezuela. Fottea 11(1): 171–186

    Google Scholar 

  • Kaštovský J, Johansen JR (2008) Mastigocladus laminosus (Stigonematales, Cyanobacteria): phylogenetic relationship of strains from thermal springs to soil-inhabiting genera of the order and taxonomic implications for the genus. Phycologia 47:307–320

    Article  Google Scholar 

  • Kato K, Nagao R, Jiang T-Y, Ueno Y, Yokono M, Chan SK, Watanabe M, Ikeuchi M, Shen J-R, Akimoto S, Miyazaki N, Akita F (2019) Structure of a cyanobacterial photosystem I tetramer revealed by cryo-electron microscopy. Nat Commun 10:4929

    Article  PubMed  PubMed Central  Google Scholar 

  • Kedem I, Treves H, Boble G, Hagemann M, Murik O, Raanan H, Oren N, Giordano M, Kaplan A (2020) Keep your friends close and your competitors closer: novel interspecies interaction in desert biological sand crusts. Phycologia. https://doi.org/10.1080/00318884.2020.1843349

    Article  Google Scholar 

  • King RD, Thomas DP (1985) Environmental conditions and phytoplankton in the Mwenda River, a small intermittent river flowing into Lake Kariba. Hydrobiologia 126:81–89

    Article  CAS  Google Scholar 

  • Komárek J, Kaštovský J, Mareš J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera). Preslia 86:295–335

    Google Scholar 

  • Komárek J, Johansen JR, Šmarda J, Strunecký O (2020) Phylogeny and taxonomy of Synechococcus-like cyanobacteria. Fottea 20(2):171–191

    Article  Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota: Part II. Oscillatoriales. In: Büdel B, Krienitz L, Gärtner G, Schagerl M (eds) Süßwasserflora von Mitteleuropa 19(2). Spektrum Elsevier/Heidelberg, 759 pp

    Google Scholar 

  • Komárek J, Sant’Ana CL, Bohunická M, Mareš J, Hentschke GS, Rigonato J, Fiore MF (2013) Phenotype diversity and phylogeny of selected Scytonema–species. Fottea 13(2):173–200

    Google Scholar 

  • Kondrateva NK (1975) Morfogenz I osnovnye puti evoljucii gormogonievych vodoroslej. (Morphogenesis and the main evolutionary tendencies in hormogonal algae.). 302 pp. – Izd “Naukova dumka”, Kiev

    Google Scholar 

  • Kozlov AM, Zhang J, Yilmaz P, Glöckner FO, Stamatakis A (2016) Phylogeny-aware identification and correction of taxonomically mislabeled sequences. Nucleic Acids Res 44:5022–5033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krienitz L, Bock C, Dadheech PK, Kotut K, Lio W, Schagerl M (2016) An underexplored resource for biotechnology: selected microphytes of East African soda lakes and adjacent waters. In: Schagerls M (ed.) Soda Lakes of East Africa. Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-28622-8_13

  • Krienitz L (2018) Die Nachfahren des Feuervogels Phönix. Springer-Verlag GmbH, Germany, p 243

    Book  Google Scholar 

  • Kuiper-Goodman T, Falconer I, Fitzgerald J (1999) In toxic cyanobacteria in water: a guide to their public health consequences, monitoring, and management. In: Chorus I, Bartram J (eds). Spoon, London, pp 113–153

    Google Scholar 

  • Kumar K, Mella-Herrera RA, Golden JW (2010) Cyanobacterial heterocysts. Cold Spring Harbour Perspect Biol0 2:a000315

    Google Scholar 

  • Kunkel DD (1984) Cell division in baeocyte producing cyanobacteria. Protoplasma 123:104–115

    Article  Google Scholar 

  • Lakshminarayana (1965) Studies on the phytoplankton of the River Ganges, Varanasi, India, Part II: the seasonal growth and succession of the Plankton Algae in the River Ganges. Hydrobiologia 25:138–165

    Google Scholar 

  • Lalonde SV, Konhauser KO (2015) Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis. Proc Natl Acad Sci USA 112(4):995–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam CWY (1979) Dynamics of phytoplankton growth in the Waikato River, North Island, New Zealand. Hydrobiologia 66:237–244

    Article  CAS  Google Scholar 

  • Lang NJ (1977) Starria zimbabweensis (Cyanophyceae) gen. nov. et sp. nov.: a filament triradiate in transverse section. J Phycol 13(3):288–296

    Google Scholar 

  • Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110

    Article  CAS  PubMed  Google Scholar 

  • Lange OL, Büdel B, Heber U, Meyer A, Zellner H, Green TGA (1993) Temperate rainforest lichens in New Zealand: high thallus water content can severely limit photosynthetic CO2 exchange. Oecologia 95:303–313

    Article  CAS  PubMed  Google Scholar 

  • Lange OL, Meyer A, Büdel B (1994) Net photosynthesis activation of a desiccated cyanobacterium without liquid water in high air humidity alone. Experiments with Microcoleus sociatus isolated from a desert soil crust. Funct Ecol 8:52–57

    Article  Google Scholar 

  • Larsson J, Nylander JAA, Bergman B (2011) Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Evol Biol 11:187. http://www.biomedcentral.com/1471-2148/11/187

  • Latysheva N, Junker VL, Palmer WP, Codd GA, Barker D (2012) The evolution of nitrogen fixation in cyanobacteria. Bioinformatics 28(5):603–606

    Article  CAS  PubMed  Google Scholar 

  • Lea-Smith DJ, Bombelli P, Vasudevan R, Howe CJ (2016) Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochem Biophys Acta 1857:247–255

    CAS  PubMed  Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Pantazidou A (1969) On the euendolithic genus Solentia Ercegovic (Cyanophyta/Cyanobacteria). Algological Studies 83:107–127

    Google Scholar 

  • Li M, Calteau A, Semchonok DA, Witt TA, Nguyen JT, Sassoon N, Boekema EJ, Whitelegge J, Gugger M, Bruce BD (2019a) Physiological and evolutionary implications of tetrameric photosystem I in cyanobacteria. Nat Plants 5: 1309–1319

    Google Scholar 

  • Li W, Ding J, Li F, Wang T, Yang Y, Li Y, Campbell DA et al. (2019b) Functional responses of smaller and larger diatoms to gradual CO2 rise. Sci Total Environ 680:79–90

    Google Scholar 

  • Liberton M, Austin JR, Berg RH, Pakrasi HB (2011) Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography. Plant Physol 155:1656–1666

    Article  CAS  Google Scholar 

  • Liu H, Zhang H, Niedzwiedzki DM, Prado M, He G, Gross ML, Blankenship RE (2013) Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science 342:1104–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomolino MV, Riddle BR, Whittaker RJ (2016) Biogeography 5th edn. Sinauer Associates, Inc., Sunderland, 730 p

    Google Scholar 

  • Lücking R, Lawrey JD, Sikaroodi M, Gillevet PM, Chaves JL, Sipman HJM, Bungartz F (2009) Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. Am J Bot 96(8):1409–1418

    Article  PubMed  Google Scholar 

  • Lüttge U (2011) Cyanobacteria: multiple stresses, desiccation-tolerant photosynthesis and di-nitrogen fixation. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Springer-Verlag, Berlin Heidelberg, pp 23–43

    Chapter  Google Scholar 

  • Mackintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264:187–192

    Article  CAS  PubMed  Google Scholar 

  • Mager DM, Hui C (2012) A first record of biological soil crusts in the Cape Floristic Region. S Afr J Sci 108(7/8):1–4

    Article  Google Scholar 

  • Magnabosco C, Moore KR, Wolfe JM, Fournier GP (2018) Dating phototrophic microbial lineages with reticulate gene histories. Geobiology 16(2):179–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnusson SH, Fine M, Kühl M (2007) Light microclimate of endolithic phototrophs in the scleractinian corals Montipora monasteriata and Porites cylindrical. Mar Ecol Prog Ser 332:119–128

    Article  Google Scholar 

  • Makhalanyane TP, Valverde A, Velázquez D, Gunnigle E, Van Goethem MW, Quesada A, Cowan DA (2015) Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. Biodivers Conserv 24:819–840

    Article  Google Scholar 

  • Maldener I, Summers ML, Sukenik A (2014) Cellular differentiation in filamentous cyanobacteria. In: Flores E, Herrero A (eds) The cell biology of cyanobacteria. Caister Academic Press, Norfolk, pp 263–291

    Google Scholar 

  • Mareš J, Strunecký O, Bučinská L, Wiedermanová J (2019) Evolutionary patterns of thylakoid architecture in cyanobacteria. Front Microbiol 10:277. https://doi.org/10.3389/fmicb.2019.00277

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariscal V, Herrero A, Flores E (2007) Continuous periplasm in a filamentous heterocyst-forming cyanobacterium. Mol Microbiol 65:1139–1145

    Article  CAS  PubMed  Google Scholar 

  • Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Øvreås L, Reysenbach A-L, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4(2):102–112

    Article  CAS  PubMed  Google Scholar 

  • Mateo P, Muňoz-Martín MA, Berrendero E, Perona E, Whitton BA (2020) Influence of phosphate on Nostochopsis-like morphology (Cyanobacteria). Phycologia. https://doi.org/10.1080/00318884.2020.1809898

    Article  Google Scholar 

  • Mazor G, Kidron G, Vonshak A, Abeliovich A (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol Ecol 21:121–130. https://doi.org/10.1016/0168-6496(96)00050-5

    Article  CAS  Google Scholar 

  • McFadden GI (2014) Origin and evolution of plastids and photosynthesis in eukaryotes. In: Keeling PJ, Koonin EV (eds) Perspectives on the origin and evolution of eukaryotes. Cold Spring Harbour Perspectives in Biology, pp 1–9

    Google Scholar 

  • McGregor GB, Stewart I, Sendall BC, Sadler R, Reardon K, Carter S, Wruck D, Wickramasinghe W (2012) First report of a toxic Nodularia spumigena (Nostocales/Cyanobacteria) bloom in sub-tropical Australia. I. Phycological and public health investigations. Int J Environ Res Public Health 9. https://doi.org/10.3390/ijerph9072396

  • Merežkovsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biologisches Centralblatt 25:593–604

    Google Scholar 

  • Mergelov N, Mueller CW, Prater I, Shorkunov I, Dolgikh A, Zazovskaya E, Shishkov V, Krupskaya V, Abrosimov K, Cherkinsky A, Goryachkin S (2018) Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth. Sci Rep 8:3367. https://doi.org/10.1038/s41598-018-21682-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meslier V, Casero MC, Dailey M, Wierzchos J, Ascaso C, Artieda O, McCullough PR, DiRuggiero J (2018) Fundamental drivers for endolithic microbial community assemblies in the hyper arid Atacama. Environ Microbiol 20(5):1765–1781

    Article  PubMed  Google Scholar 

  • Metcalf JS, Codd GA (2009) Cyanobacteria, neurotoxins and water resources: are there implications for human neurodegenerative disease? Amyotroph Lateral Scler 10:74–78

    Article  CAS  PubMed  Google Scholar 

  • Miyagishima S, Wolk PC, Osteryoung KW (2005) Identification of cyanobacterial cell division genes by comparative and mutational analyses. Mol Microbiol 51(1):126–143

    Article  Google Scholar 

  • Miyashita H, Ohkubo S, Komatsu H, Sorimachi Y, Fukayama D, Fujinuma D, Akutsu S, Kobayashi M (2014) Discovery of chlorophyll d in Acaryochloris marina and chlorophyll f in a unicellular cyanobacterium, strain KC1 isolated from Lake Biwa. Phys Chem Biophys 4(4). https://doi.org/10.4172/2161-0398.1000149

  • Mollenhauer D (1985a) Blaualgen der Gattung Nostoc- ihre Rolle in Forschung und Wissenschaftsgeschichte I. Nat Mus 115:305–319

    Google Scholar 

  • Mollenhauer D (1985b) Blaualgen der Gattung Nostoc- ihre Rolle in Forschung und Wissenschaftsgeschichte II. Nat Mus 115:396–379

    Google Scholar 

  • Mollenhauer D (1986a) Blaualgen der Gattung Nostoc- ihre Rolle in Forschung und Wissenschaftsgeschichte III. Nat Mus 116:43–59

    Google Scholar 

  • Mollenhauer D (1986b) Blaualgen der Gattung Nostoc- ihre Rolle in Forschung und Wissenschaftsgeschichte IV. Nat Mus 116:104–120

    Google Scholar 

  • Moreira C, Vasconcelos V, Antunes A (2013) Phylogeny and biogeography of Cyanobacteria and their produced toxins. Mar Drugs 11:4350–4369

    Article  PubMed  PubMed Central  Google Scholar 

  • Mugnai G, Rossi F, Felde VJMNL, Colesie C, Büdel B, Peth S, Kaplan A, De Philippis R (2018) The potential of the cyanobacterium Leptolyngbya ohadii as inoculum for stabilizing bare sandy substrates. Soil Biol Biochem 127:318–328

    Article  CAS  Google Scholar 

  • Mullineaux CW, Mariscal V, Nenninger A, Khanum H, Herrero A, Flores E, Adams DG (2008) Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. EMBO J 27:1299–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabout JC, da Silva Rocha B, Carneiro FM, Sant’Anna CL (2013) How many species of Cyanobacteria are there? Using a discovery curve to predict the species number. Biodivers Conserv 22: 2907–2918

    Google Scholar 

  • Nagarajan A, Pakrasi HB (2016) Membrane-bound protein complexes for photosynthesis and respiration in cyanobacteria. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd, Chichester. https://doi.org/10.1002/9780470015902.a0001670.pub2

  • Nelson C, Giraldo-Silva A, Garcia-Pichel F (2020) A symbiotic exchange within the cyanosphere microbiome of the biocrust cyanobacterium, Microcoleus vaginatus. ISME J 1–11. https://doi.org/10.1038/s41396-020-00781-1

  • Neustupa J, Škaloud P (2010) Diversity of subaerial algae and cyanobacteria growing on bark and wood in the lowland tropical forests of Singapore. Plant Ecol Evol 143(1):51–62

    Article  Google Scholar 

  • Neustupa J (2015a) Division chlorophyta pascher. In: Frey W (ed) Part 2/1: photoautotrophic eukaryotic Algae. Syllabus of plant families: a engler's syllabus der Pflanzenfamilien. Schweizerbart Science Publishers, Stuttgart, Germany, pp 191–281

    Google Scholar 

  • Neustupa J (2015b) Division streptophyta T. Cavalier-Smith. In: Frey W (ed) Part 2/1: photoautotrophic eukaryotic Algae. Syllabus of plant families: a engler‘s syllabus der Pflanzenfamilien. Schweizerbart Science Publishers, Stuttgart, Germany, pp 282–300

    Google Scholar 

  • Nienow JA, McKay CP, Friedmann EI (1988) The cryptoendolithic environment in the Ross Desert of Antarctica: light in the photosynthetically active region. Microb Ecol 16:271–289

    Article  PubMed  Google Scholar 

  • Nieves-Morión M, Mullineaux CW, Flores E (2017) Molecular diffusion through cyanobacterial septal junctions. mBio 8:e01756–16. https://doi.org/10.1128/mBio.01756-16

  • Nocek B, Kochinyan S, Proudfoot M, Brown G, Evdokimova E, Osipiuk J, Edwards AM, Savchenko A, Joachimiak A, Yakunin AF (2008) Polyphosphate dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria. Proc Natl Acad Sci USA 105:17730–17735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nürnberg DJ, Mariscal V, Parker J, Mastroianni G, Flores E, Mullineaux CW (2014) Branching and intercellular communication in the section V cyanobacterium Mastigocladus laminosus, a complex multicellular prokaryote. Mol Microbiol 91(5):935–949

    Article  PubMed  Google Scholar 

  • Nürnberg DJ, Morton J, Santabarbara S, Telfer A, Joliot P, Antonaru LA, Ruban AV, Cardona T, Krausz E, Boussac A, Fantuzzi A, Rutherford AW (2018) Photochemistry beyond the red limit in chlorophyll f-containing photosystems. Science 360:1210–1213

    Article  PubMed  Google Scholar 

  • O’Malley MA (2008) ‘Everything is everywhere: but the environment selects’: ubiquitous distribution and ecological determinism in microbial biogeography. Stud Hist Philos Biol Biomed Sci 39:314–325

    Article  PubMed  Google Scholar 

  • O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change, Harmfull Algae 14:313–334

    Google Scholar 

  • Olson JM, Pierson BK (1987) Origin and evolution of photosynthetic reaction centres. Origin of Life 17(3–4):419–430

    CAS  Google Scholar 

  • Oren N, Raanan H, Kedem I, Turjeman A, Bronstein M, Kaplan A, Murik O (2019) Desert cyanobacteria prepare in advance for dehydration and rewetting: the role of light and temperature sensing. Mol Ecol 1–16. https://doi.org/10.1111/mec.15074

  • Osorio-Santos K, Pietrasiak N, Bohunická M, Miscoe LH, Kováčik L, Martin MP, Johansen JR (2014) Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. Eur J Phycol 49(4):450–470

    Article  Google Scholar 

  • Paerl HW, Huisman J (2008) Climate. Blooms like it hot. Sci 320(5872):57–58

    Google Scholar 

  • Parfrey LW, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci 108:13624–13629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak J, Rajsneesh HA, Singh SP, Häder D-P (2019) Genetic regulation of scytonemin and mycosporine-like amino acids (MAAs) biosynthesis in cyanobacteria. Plant Gene 17:100172. https://doi.org/10.1016/j.plgene.2019.100172

    Article  CAS  Google Scholar 

  • Pearl HW (2012) Marine plankton. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer Science+Business Media, pp 127–153

    Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Fereira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  CAS  PubMed  Google Scholar 

  • Pessi IS, Pushkaeva E, Lara Y, Borderie F, Wilmotte A, Elster J (2018) Marked succession of cyanobacterial communities following glacier retreat in the high Arctic. Microb Ecol. https://doi.org/10.1007/s00248-018-1203-3

    Article  PubMed  Google Scholar 

  • Pietrasiak N, Osorio-Santos K, Shalygin S, Martin MP, Johansen JR (2019) When is a lineage a species? A case study in Myxacoris gen. nov. (Synechococcales: Cyanobacteria) with the description of two new species from the Americas. J Phycol 55:976–996

    Article  CAS  PubMed  Google Scholar 

  • Ponce-Toledo RI, Deschamps P, López-Garcia P, Zivanivic Y, Benzerara K, Moreira D (2017) An early-branching freshwater cyanobacterium at the origin of plastids. Curr Biol 27:386–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popa R, Weber PK, Pett-Ridge J, Finzi JA, Fallon SJ, Hutcheon ID, Nealson KH, Capone DG (2007) Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J 1:354–360

    Article  CAS  PubMed  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59(7):1441–1461

    Article  CAS  PubMed  Google Scholar 

  • Proteau PJ, Gerwick WH, Garcia-Pichel F, Castenholz R (1993) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49:825–829

    Article  CAS  PubMed  Google Scholar 

  • Puente-Sánchez F, Arce-Rodríguez A, Oggerin M, Garcia-Villadangos M, Moreno-Paz M, Blanco Y, Rodríguez N, Bird L, Lincoln SA, Tornos F, Prieto-Ballesteros O, Freeman KH, Pieper DH, Timmis KN, Amils R, Parro V (2018) Viable cyanobacteria in the deep continental subsurface. Proc Natl Acad Sci USA 115(42):10702–10707

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajeev L, Nunes da Rocha U, Klitgord N, Luning EG, Fortney J, Axen SD, Shih PM, Bouskill NJ, Bowen BP, Kerfeld CA, Garcia-Pichel F, Brodie EL, Northen TR, Mukhopadhyay A (2013) Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J 7(11):2178–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Reinat EL, Garcia-Pichel F (2012) Characterization of a marine cyanobacterium that bores into carbonates and the redescription of the genus Mastigocoleus. J Phycology 48:740–749

    Google Scholar 

  • Rantala A, Fewer D, Hisburges M, Rouhiainen L, Vaitomaa J, Börner T (2004) Phylogenetic evidence for the early evolution of the microcystin synthesis. Proc Natl Acad Sci USA 101:568–573

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro KF, Duarte L, Crossetti LO (2018) Everything is not everywhere: a tale on the biogeography of cyanobacteria. Hydrobiologia 1–26

    Google Scholar 

  • Richardson K, Berdall J, Raven JA (1983) Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol 93:157–191

    Article  Google Scholar 

  • Riding R (2006) Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and proterozoic–cambrian changes in atmospheric composition. Geobiol 4:299–316

    Google Scholar 

  • Rigonato J, Alvarenga DO, Andreote FD, Dias ACF, Melo IS, Kent A, Fiore MF (2012) Cyanobacterial diversity in the phyllosphere of a mangrove forest. FEMS Microbiol Ecol 80(2):312–322

    Article  CAS  PubMed  Google Scholar 

  • Rigonato J, Gama WA, Alvarenga DO, Zanini Branco LH, Brandini FP, Genuária DB, Fiore MF (2016a) Aliterella atlantica gen. nov., sp. nov., and Aliterella antarctica sp. nov., novel members of coccoid Cyanobacteria. Int J Syst Evol Microbiol 66:2853–2861

    Article  CAS  PubMed  Google Scholar 

  • Rigonato J, Gonçalves N, Andreote APD, Lambais MR, Fiore MF (2016a) Estimating genetic structure and diversity of cyanobacterial communities in Atlantic forest phyllosphere. Can J Microbiol 62(11):953–960. https://doi.org/10.1139/cjm-2016-0229

  • Riley KW, Gonzalez A, Risser DD (2018) A partner-switching regulatory system controls hormogonium development in the filamentous cyanobacterium Nostoc punctiforme. Mol Microbiol 109(4):555–569

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Robinson WB, Mealor AE, Stevens SE, Ospeck M (2007) Measuring the force production of the hormogonia of Mastigocladus laminosus. Biophys J 93:699–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodgers KJ, Main BJ, Samardzic K (2018) Cyanobacterial neurotoxins: their occurrence and mechanisms of toxicity. Neurotox Res 33:168–177

    Article  CAS  PubMed  Google Scholar 

  • Rögner M, Mühlenhoff U, Boekema EJ, Witt HT (1990) Mono-, di- and trimeric PS I reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus sp. size, shape and activity. Biochimica Et Biophysica Acta Bioenergetics J 1015:415–424

    Article  Google Scholar 

  • Sarthou C, Thérézien Y, Couté A (1995) Cyanophycées de l’inselberg des Nouragues (Guyane française). Nova Hedwigia 61(1–2):85–109

    Google Scholar 

  • Satoh S, Mimuro M, Tanaka A (2013) Construction of a phylogenetic tree of photosynthetic prokaryotes based on average similarities of whole genome sequences. PLoS ONE 8(7):e70290. https://doi.org/10.1371/journal.pone.0070290

  • Saw JHW, Schatz M, Brown MV, Kunkel DD, Foster JS, Shick H, Christensen S, Hou S, Wan X, Donachie SP (2013) Cultivation and Complete Genome Sequencing of Gloeobacter kilaueensis sp. nov., from a Lava Cave in Kīlauea Caldera, Hawai'i. PLoS ONE 8(10):e76376. https://doi.org/10.1371/journal.pone.0076376

  • Schimper AFW (1883) Über die Entwickelung der Chlorophyllkörner und Farbkörper. Botanische Zeitschrift 41:105–113, 121–131, 137–146, 153–162

    Google Scholar 

  • Schirrmeister BE, Antonelli A, Bagheri HC (2011) The origin of multicellularity in cyanobacteria. BMC Evol Biol 11:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Schirrmeister BE, Gugger M, Donoghue PCJ (2015) Cyanobacteria and the great oxidation event: evidence from genes and fossils. Palaeontology 58(5):769–785. https://doi.org/10.1111/pala.12178

    Article  PubMed  PubMed Central  Google Scholar 

  • Schirrmeister BE, Sanchez-Barcaldo P, Wacey D (2016) Cyanobacterial evolution during the Precambrian. Int J Astrobiol 15(3):187–204. https://doi.org/10.1017/S1473550415000579

    Article  Google Scholar 

  • Schmetterer G (1994) Cyanobacterial respiration. In: Bryant DA (eds) The molecular biology of cyanobacteria. Advances in photosynthesis, vol 1. Springer, Dordrecht, pp 409–435

    Google Scholar 

  • Schopf JW (1999) Cradle of life, the discovery of earth’s earliest fossils. Princeton University Press, Princeton, New Jersey, p 387

    Book  Google Scholar 

  • Schopf JW (2014) Geological evidence of oxygenic photosynthesis and the biotic response to the 2400–2200 ma “great oxidation event.” Biochem Mosc 79(3):165–177. https://doi.org/10.1134/S0006297914030018

    Article  CAS  Google Scholar 

  • Semchonok DA, Mondal J, Cooper CJ, Schlum K, Li M, Amin M, Soranzo COS, Ramírez-Aportela E, Kastritis PL, Boekema EJ, Guskov A, Bruce BD (2021) Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium. Plant Commun. https://doi.org/10.1016/j.xplc.2021.100248

    Article  PubMed  PubMed Central  Google Scholar 

  • Shalygin S, Shalygina R, Johansen JR, Pietrasiak N, Gómez EB, Bohunická M, Mareš J, Sheil CA (2017) Cyanomargarita gen. nov. (Nostocales, Cyanobacteria): convergent evolution resulting in a cryptic genus. J Phycol 53:762–777

    Article  CAS  PubMed  Google Scholar 

  • Shalygin S, Huang I.S, Allen EH, Burkholder JM, Zimba PV (2019) Odorella benthonica gen. & sp. nov. (Pleurocapsales, Cyanpobactera): an odor and prolific toxin producer isolated from a California Aqueduct. J Phycol. https://doi.org/10.1111/jpy.12834

  • Sharma NK, Rai AK, Singh S, Brown RM Jr (2007) Airborne algae: their present status and relevance. J Phycol 43(4):615–627

    Article  Google Scholar 

  • Shih PM, Ward WM, Fischer WW (2017a) Evolution of the 3-hydroxypropionate bicycle and recent transfer of anoxygenic photosynthesis into the Chloroflexi. PNAS 114(40):10749–10754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih PM, Hemp J, Ward LM, Matzke NJ, Fischer WW (2017b) Crown group Oxyphotobacteria postdate the rise of oxygen. Geobiology 15:19–29

    Article  CAS  PubMed  Google Scholar 

  • Šmarda J, Šmajs D, Komrska J, Krzyžánek C (2002) S-layers on cell walls of cyanobacteria. Micron 33:257–277

    Article  PubMed  Google Scholar 

  • Smith JE, Sowerby J (1849) English botany. Coloured figs of British plants, vol 4, supplement. [Publisher unknown], London, UK

    Google Scholar 

  • Sleytr UB, Messner P, Pum D, Sára M (1996) Crystalline bacterial cell surface proteins. Academic Press, San Diego, 248

    Google Scholar 

  • Soares F, Ramos V, Trovão J, Cardosos SM, Tiago I, Portugal A (2020) Parakomarekiella sesnandensis gen. et spec. nov. (Nostocales, Cyanobacteria) isolated from the Old Cathedral of Coimbra, Portugal (UNESCO World Heritage). Eur J Phycol 1–15. https://doi.org/10.1080/09670262.2020.1817568

  • Soo RM, Skennerton CT, Sekiguchi Y, Imelfort M, Paech SJ, Dennis PG, Steen JA, Parks DH, Tyson GW, Hugenholtz P (2014) An expanded genomic representation of the phylum Cyanobacteria. Genome Biol Evol 6:1031–1045

    Article  PubMed  PubMed Central  Google Scholar 

  • Soo RM, Hemp J, Parks DH, Fischer WW, Hugenholtz P (2017) On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355:1436–1440

    Article  CAS  PubMed  Google Scholar 

  • Soo RM, Hemp J, Hugenholtz P (2019) Evolution of photosynthesis and aerobic respiration in the cyanobacteria. Free Radical Biol Med 140:200–205

    Article  CAS  Google Scholar 

  • Stal L (2017) The effect of oxygen concentration and temperature on nitrogenase activity in the heterocystous cyanobacterium Fischerella sp. Sci Rep 7:5402. https://doi.org/10.1038/s41598-017-05715-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stal L (2012) Cyanobacterial mats and stromatolites. In: Whitton BE (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer Science and Business Media B.V., pp 65–125

    Google Scholar 

  • Stanier RY, Sistrom WR, Hansen TA, Whitton BA, Castenholz RW, Pfennig N, Gorlenko VN, Kondratieva EN, Eimhjellen KE, Whittenbury R, Gherna RL, Trueper HB (1978) Proposal to place the nomenclature of the cyanobacteria (blue-green algae) under the rules of the international code of nomenclature of bacteria. Int J Syst Bacteriol 28:335–336

    Article  Google Scholar 

  • Strunecký O, Komárek J, Johansen JR, Lukešová A, Elster J (2013) Molecular and morphological criteria for revision of the genus Microcoleus (Oscillatoriales, Cyanobacteria). J Phycol 49:1167–1180

    Article  PubMed  Google Scholar 

  • Sukenik A, Beardall J, Hadas O (2007) Photosynthetic characterization of developing and mature akinetes of Aphanizomenon ovalisporum (Cyanoprokaryota). J Phycology 43:780–788

    Google Scholar 

  • Svirčev Z, Dulić T, Obreht I, Codd GA, Lehmkuhl F, Marković SB, Hambach U, Meriluoto J (2019) Cyanobacteria and loess—an underestimated interaction. Plant Soil. https://doi.org/10.1007/s11104-019-04048-3

  • Teodorescu EC (1901) Sur le Gomontiella, nouveau genre de Schizophycée. Verhandlungen Der Zoologisch-Botanischen Gesellschaft Wien 51:757–760

    Google Scholar 

  • Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA 103(14):5442–5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Train S, Rodrigues LC (1997) Temporal fluctuations of the phytoplankton community of the Baía River, in the upper Paraná River floodplain, Mato Grosso do Sul, Brazil. Hydrobiologia 361:125–134

    Article  Google Scholar 

  • Urrejola C, Alcorta J, Salas L, Vásquez M, Polz MF, Vicuňa R, Díez B (2019) Genomic features for desiccation tolerance and sugar biosynthesis in the extremophile Gloeocapsopsis sp. UTEX B3054. Front Microbiol 10:950. https://doi.org/10.3389/fmicb.2019.00950

  • Urrejola C, von Dassow P, van den Engh G, Mullineaux CW, Vicuňa R, Sánchez-Baracaldo P (2020) Loss of filamentous multicellularity in Cyanobacteria—the extremophile Gloeocapsopsis sp. UTEX B3054 retained multicellular features at the genomic and behavioral level. J Bacteriol 202(12):e00514–19. https://doi.org/10.1128/JB.00514-19

  • Villanueva CD, Hašler P, Dvořák P, Poulíčková A, Casamatta DA (2018) Brasilonema lichenoides sp. nov. and Chroococcidiopsis lichenoides sp. nov. (Cyanobacteria): two novel cyanobacterial constituents isolated from a tripartite lichen of headstones. J Phycol 54(2): 224–233

    Google Scholar 

  • Vinogradova O, Mikhailyuk T, Glaser K, Holzinger A, Karsten U (2017) New species of Oculatella (Synechococcales, Cyanobacteria) from terrestrial habitats of Ukraine. Ukrain Bot J 74(6):509–520. https://doi.org/10.15407/ukrbotj

    Article  Google Scholar 

  • Vítek P, Ascaso C, Artieda O, Casero MC, Wierzchos J (2017) Discovery of carotenoid red-shift in endolithic cyanobacteria from the Atacama Desert. Sci Rep 1:11116. https://doi.org/10.1038/s41598-017-11581-7

    Article  CAS  Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter JM, Coutinho FH, Dutilh BE, Swings J, Thompson FL, Thompson CC (2017) Ecogenomics and taxonomy of cyanobacteria phylum. Front Microbiol 8:2132. https://doi.org/10.3389/fmicb.2017.02132

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cai F, Jia N, Li R (2019) Description of a novel coccoid cyanobacterial genus and species Sinocapsa zengkensis gen. nov. sp. nov. (Sinocapsaceae, incertae sedis), with taxonomic notes on genera in Chroococcidiopsidales. Phytotaxa 409(3): 146–160

    Google Scholar 

  • Ward DM, Bateson MM, Ferris MJ, Kühl M, Wieland A, Koeppel A, Cohan FM (2006) Cyanobacterial ecotypes in the microbial mat community of Mushroom Spring (Yellowstone National Park, Wyoming) as species-like units linking microbial community composition, structure and function. Philos Trans Roy Soc Lond B 361:1997–2008

    Article  Google Scholar 

  • Ward DM, Castenholz RW, Miller SR (2012) Cyanobacteria in geothermal habitats. In: Whitton BA (ed) Ecology of cyanobacteria II: Their diversity in space and time. Springer Science and Business Media, pp 39–63

    Google Scholar 

  • Waterbury JB, Stanier RY (1978) Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol Rev 42(1):2–44

    Google Scholar 

  • Weber B, Wessels DCJ, Büdel B (1996) Biology and ecology of crypto-endolithic cyanobacteria of a sandstone plateau in North-Transvaal, South Africa. Algol Stud 83:565–579

    Google Scholar 

  • Weber B, Wessels DCJ, Deutschewitz K, Dojani S, Reichenberger H, Büdel B (2013) Ecological characterization of soil-inhabiting and hypolithic soil crusts within the Knersvlakte, South Africa. Ecol Process 2:8

    Article  Google Scholar 

  • Welsh EA, Liberton M, Stöckel J, Loh T, Elvitigala T, Wang C, Wollam A, Fulton RS, Clifton SW, Jacobs JM, Aurora R, Ghosh BK, Sherman LA, Smith RD, Wilson RK, Pakrasi HB (2008) The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle. Proc Natl Acad Sci USA 105(39):15094–15099

    Article  PubMed  PubMed Central  Google Scholar 

  • Welwitsch FMJ (1868) The pedras negras of pundo andongo in angola. J Travel Nat Hist 1:22–36

    Google Scholar 

  • Wessels DCJ, Büdel B (1995) Epilithic and cryptoendolithic cyanobacteria of Clarens sandstone cliffs in the Golden Gate Highlands National Park, South Africa. Botanica Acta 108:220–226

    Article  Google Scholar 

  • Whitton BE, Mateo P (2012) Rivulariaceae. In: Whitton BE (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer Science and Business Media B.V., pp 561–591

    Google Scholar 

  • Whitton BE (2012) Ecology of cyanobacteria II: their diversity in space and time. Springer Science and Business Media B.V., 760 p

    Google Scholar 

  • Wierzchos J, DiRuggiero J, Vítek P, Artieda O, Souza-Egipsy V, Škaloud P, Tisza M, Davila AF, Vílchez C, Garbayo I, Ascaso C (2015) Adaptation strategies of endolithic chlorotrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front Microbiol 6:934. https://doi.org/10.3389/fmicb.2015.00934

    Article  PubMed  PubMed Central  Google Scholar 

  • Wierzchos J, Casero C, Artieda O, Ascaso C (2018) Endolithic microbial habitats as refuges for life in polyextreme environment of the Atacama Desert. Curr Opin Microbiol 43:124–131

    Article  PubMed  Google Scholar 

  • Wiśniewska KA, Śliwińska-Wilczewska S, Lewandowska AU (2020) The first characterization of airborne cyanobacteria and microalgae in the Adriatic Sea region. PLoS ONE 15(9):e0238808

    Google Scholar 

  • Wilmotte A (1994) Molecular evolution and taxonomy of cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 1–25

    Google Scholar 

  • Wolk CP, Austin SM, Botins J, Galonsky A (1974) Autoradiographic localization of 13N after fixation of 13N-labelled nitrogen gas by a heterocyst-forming blue-green alga. J Cell Biol 61:440–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeates TO, Jorda J, Bobik TA (2013) The shells of BMC-type microcompartment organelles in bacteria. J Mol Microbiol Biotechnol 23:290–299

    CAS  PubMed  Google Scholar 

  • Yoon HS, Golden JW (1998) Heterocyst pattern formation controlled by a diffusible peptide. Science 282:935–938

    Article  CAS  PubMed  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  CAS  PubMed  Google Scholar 

  • Zammit G, Billi D, Albertano P (2012) The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) gen. et sp. nov.: a cytomorphological and molecular description. Eur J Phycol 47(4):341–354

    Google Scholar 

  • Zhang P, Eisenhut M, Brandt AM, Carmel D, Silen HM, Vass I, Allahverdiyeva Y, Salminen TA, Aro EM (2012) Operon flv4-flv2 provides cyanobacterial photosystem II with flexibility of electron transfer. Plant Cell 24:1952–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Piilo SR, Amesbury MJ, Charman DC, Gallego-Sala AV, Väliranta MM (2018) The role of climate change in regulating Arctic permafrost peatland hydrological and vegetation change over the last millennium. Quatern Sci Rev 182:121–130

    Article  Google Scholar 

  • Zhang J, Zhang YM, Downing A, Cheng JH, Zhou XB, Zhang BC (2009a) The influence of biological soil crusts on dew deposition in Gurbantunggut Desert, Northwest China. J Hydrol 379:220–228

    Google Scholar 

  • Zhang P, Allahverdiyeva Y, Eisenhut M, Aro EM (2009b) Flavodiiron proteins in oxygenic photosynthetic organisms: photoprotection of photosystem II by Flv2 and Flv4 in Synechocystis sp. PCC 6803. PLoS One 4:e5331

    Google Scholar 

  • Zhu C, Guo G, Ma Q, Zhang F, Ma F, Liu J, Xiao D, Yang X, Sun M (2017) Diversity in S-layers. Prog Biophys Mol Biol 123:1–15

    Article  PubMed  Google Scholar 

  • Zilliges Y (2014) Glycogen, a dynamic cellular sink and reservoir for carbon. In: Flores E, Herrero A (eds) The cell biology of cyanobacteria. Caister Academic Press, Norfolk, pp 189–210

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Büdel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Büdel, B. (2024). Cyanobacteria/Blue-Green Algae. In: Büdel, B., Friedl, T., Beyschlag, W. (eds) Biology of Algae, Lichens and Bryophytes. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65712-6_3

Download citation

Publish with us

Policies and ethics