Skip to main content

Cyanobacteria: Habitats and Species

  • Chapter
  • First Online:
Plant Desiccation Tolerance

Part of the book series: Ecological Studies ((ECOLSTUD,volume 215))

Abstract

Cyanobacteria were most probably the first group of organisms performing an oxygen releasing photosynthesis. Their possible fossil origin (“look-alikes”) from Apex chert of north-western West Australia dates back to about 3.46 billion years (Schopf 2000). However, the oldest unambiguous fossil cyanobacteria were found in tidal-flat sedimentary rocks and are about 2 billion years old (Hofmann 1976). With the onset of oxygenic photosynthesis between 2.45 and 2.32 billion years ago (Rasmussen et al. 2008), the ancient Earth’s oxygen-free atmosphere experienced a deep impact with the sharp rise of oxygen. Before the evolution of respiration, the oxygen was highly toxic to life, and as a consequence, the first global catastrophe for most of the organisms living on earth to that date followed. Today, cyanobacteria are found in almost all habitats and biomes present on earth (Whitton and Potts 2000). However, to successfully colonize terrestrial habitats does also mean to be able to resist extreme desiccation. Air-drying does severely harm membrane structure, proteins, and nucleic acids and is lethal to the majority of organisms on Earth (Billi and Potts 2002). During their long evolutionary history, cyanobacteria developed the ability of their cells to undergo nearly absolute dehydration during air-drying without being killed, a phenomenon known as anhydrobiosis. This is also referred to as “desiccation tolerance” and is one mechanism of drought tolerance (Alpert 2005). Consequently, cyanobacteria colonized more and more of the available terrestrial habitats. Dehydration in air can lead to a removal of all but 0.1 g water/g dry weight (Billi and Potts 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpert P (2005) The limits and frontiers of desiccation-tolerant life. Integr Comp Biol 45:685–695

    Article  PubMed  Google Scholar 

  • Belnap J (1993) Recovery rates of cryptobiotic crusts: inoculant use and assessment methods. Great Basin Nat 53:89–95

    Google Scholar 

  • Belnap J, Lange OL (2001) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 1–503

    Book  Google Scholar 

  • Billi D (2009) Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays. Extremophiles 13:49–57

    Article  PubMed  CAS  Google Scholar 

  • Billi D, Potts M (2000) Life without water: responses of prokaryotes to desiccation. In: Storey KB, Storey JM (eds) Environmental stressors and gene responses. Elsevier, Amsterdam, pp 181–192

    Chapter  Google Scholar 

  • Billi D, Potts M (2002) Life and death of dried prokaryotes. Res Microbiol 153:7–12

    Article  PubMed  CAS  Google Scholar 

  • Boison G, Mergel A, Jolkver H, Bothe H (2004) Bacterial life and dinitrogen fixation at a gypsum rock. Appl Environ Microbiol 70:7070–7077

    Article  PubMed  CAS  Google Scholar 

  • Broady PA (1981) The ecology of chasmolithic algae at coastal locations of Antarctica. Phycologia 20:259–272

    Article  Google Scholar 

  • Buckley CE, Hougthon JA (1976) A study of the effects of near UV radiation on the pigmentation of the blue-green alga Gloeocapsa alpicola. Arch Microbiol 107:93–97

    Article  PubMed  CAS  Google Scholar 

  • Büdel B (1999) Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur J Phycol 34:361–370

    Google Scholar 

  • Büdel B (2011) Chroococcidiopsis. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Heidelberg

    Google Scholar 

  • Büdel B, Lange OL (1991) Water status of green and blue-green phycobionts in lichen thalli after hydration by water vapor uptake: do they become turgid? Bot Acta 104:361–366

    Google Scholar 

  • Büdel B, Wessels DCJ (1991) Rock inhabiting blue-green algae/cyanobacteria from hot arid regions. Algol Stud 64:385–398

    Google Scholar 

  • Büdel B, Lüttge U, Stelzer R, Huber O, Medina E (1994) Cyanobacteria of rocks and soils of the Orinoco lowlands and the Guayana uplands, Venezuela. Bot Acta 107:422–431

    Google Scholar 

  • Büdel B, Becker U, Follmann G, Sterflinger K (2000) Algae, fungi, and lichens on Inselbergs. In: Porembski S, Barthlott W (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, Berlin, pp 68–90

    Google Scholar 

  • Büdel B, Bendix J, Bicker FR, Green TGA (2008) Dewfall as a water source frequently activates the endoltihic cyanobacteria communities in the granites of Taylor Valley, Antarctica. J Phycol 44:1415–1424

    Article  Google Scholar 

  • Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern african biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247

    Article  PubMed  Google Scholar 

  • Diels L (1914) Die Algen-Vegetation der Südtiroler Dolomitriffe. Ein Beitrag zur Ökologie der Lithophyten. Ber Dtsch Bot Ges 32:502–526

    Google Scholar 

  • Eggert A, Häubner N, Klausch S, Karsten U, Schumann R (2006) Quantification of algal biofilms colonising building material: chlorophyll a measured by PAM-fluorometry as a biomass parameter. Biofouling 22:79–90

    Article  PubMed  CAS  Google Scholar 

  • Fewer D, Friedl T, Büdel B (2002) Chroococcidiopsis and heterocyst-differentiating cyanobacteria are each others’s closest living relatives. Mol Phylogenet Evol 41:498–506

    Google Scholar 

  • Fleming ED, Castenholz RW (2007) Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environ Microbiol 9:1448–1455

    Article  PubMed  CAS  Google Scholar 

  • Freiberg E (1998) Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a Costa Rican premontane rain forest. Oecologia 17:9–18

    Article  Google Scholar 

  • Friedmann EI (1980) Endolithic microbial life in hot and cold deserts. Orig Life Evol Biosph 10:223–235

    Article  CAS  Google Scholar 

  • Friedmann EI, Ocampo-Friedmann R (1976) Endolithic blue-green algae in the dry valleys: primary producers in the antarctic desert ecosystem. Science 193:1257–1249

    Google Scholar 

  • Friedmann EI, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–200

    Article  Google Scholar 

  • Friedmann EI, Hua MS, Ocampo-Friedmann R (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Ber Polarforsch 58:251–259

    CAS  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27:395–409

    Article  CAS  Google Scholar 

  • Golubic S (1967) Die Algenvegetation an Sandsteinfelsen Ost-Venezuelas (Cumaná). Int Rev Hydrobiol 52:5–693

    Google Scholar 

  • Green TGA, Lange OL (1995) Photosynthesis in poikilohydric plants: a comparison of lichens and bryophytes. In: Schultze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 319–341

    Google Scholar 

  • Grilli Caiola M, Billi D (2007) Chroococcidiopsis from desert to Mars. Cellular origin, life in extreme habitats and astrobiology, vol 11. Springer, Berlin, pp 555–568

    Google Scholar 

  • Grilli Caiola M, Ocampo-Friedmann R, Friedmann EI (1993) Cytology of long-term desiccation in the desert cyanobacterium Chroococcidiopsis (Chroococcales). Phycologia 32:315–322

    Article  Google Scholar 

  • Grilli Caiola M, Billi D, Friedmann EI (1996) Effect of desiccation on envelopes of the cyanobacterium Chroococcidiopsis sp. (Chroococcales). Eur J Phycol 31:97–105

    Article  Google Scholar 

  • Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J Palaeontol 50:1040–1073

    Google Scholar 

  • Horath T, Bachofen R (2009) Moelcular characterization of an endolithic microbial community in dolomite rock in the Central Alps (Switzerland). Microb Ecol. doi:10.1007/s00248-008-9483-7:

    PubMed  Google Scholar 

  • Jaag O (1945) Untersuchungen über die Vegetation und Biologie der Algen des nackten Gesteins in den Alpen, im Jura und im schweizerischen Mittelland. Beiträge zur Kryptogamenflora der Schweiz 9. Kommissionsverlag Buchdruckerei Büchler & Co., Bern, pp 1–560 + 21 plates

    Google Scholar 

  • Karsten U, Schumann R, Mostaert AS (2007) Aeroterrestrial algae growing on man-made surfaces: what are the secrets of their ecological success? In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 585–597

    Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1. Teil Chroococcales. Gustav Fischer Verlag, Jena, pp 1–548

    Google Scholar 

  • Kraus G (1911) Boden und Klima auf kleinstem Raum Versuch einer exakten Behandlung des Standorts auf dem Wellenkalk. Gustav Fischer Verlag, Jena, pp 1–184

    Google Scholar 

  • Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110

    Article  Google Scholar 

  • Lange OL, Meyer A, Büdel B (1994) Net-photosynthesis of a desiccated cyanobacterium without liquid water in high air humidity alone. Experiments with Microcoelus sociatus isolated from a desert soil crust. Funct Ecol 8:52–57

    Article  Google Scholar 

  • Lüttge U (1997) Cyanobacterial Tintenstrich communities and their ecology. Naturwissenschaften 84:526–534

    Article  Google Scholar 

  • Neustupa J, Škaloud P (2008) Diversity of subaerial algae and cyanobacteria on tree bark in tropical mountain habitats. Biologia 63:806–812

    Article  Google Scholar 

  • Novis PM, Smissen RD (2006) Two genetic and ecological groups of Nostoc commune in Victoria Land, Antarctia, revealed by AFLP analysis. Antarct Sci 18:573–581

    Article  Google Scholar 

  • Omelon CR, Pollard WH, Ferris FG (2006) Chemical and ultrastructural characterization of high Arctic cryptoendolithic habitats. Geomicrobiol J 23:189–200

    Article  CAS  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    Article  PubMed  CAS  Google Scholar 

  • Sarthou C, Thérézien Y, Couté A (1995) Cyanophycées de l’inselberg des Nouragues (Guyane française). Nova Hedwig 61:85–109

    Google Scholar 

  • Schade A (1917) Über den jährlichen Wärmegenuss von Webera nutans (Schreb.) Hedw. und Leptoscyphus Taylori (Hook.) Mitt. im Elbsandsteingebirge. Ber Deutsch Bot Ges 35:490–505

    Google Scholar 

  • Schopf JW (2000) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 13–65

    Google Scholar 

  • Shirkey B, McMaster NJ, Smith SC, Wright DJ, Rodriguez H, Jaruga P, Birincioglu M, Helm RF, Potts M (2003) Genomic DNA of Nostoc commune (Cyanobacteria) becomes covalently modified during long term (decades) desiccation but is protected from oxidative damage and degradation. Nucleic Acids Res 31:2995–3005

    Article  PubMed  CAS  Google Scholar 

  • Siegesmund MA, Johansen JR, Karsten U, Friedl T (2008) Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol 44:1572–1585

    Article  Google Scholar 

  • Tirkey J, Adhikary SP (2005) Cyanobacteria in biological soil crusts of India. Curr Sci 89:515–521

    Google Scholar 

  • Weber B, Wessels DCJ, Büdel B (1996) Biology and ecology of cryptoendolithic cyanobacteria of a sandstone outcrop in the Northern Province, South Africa. Algol Stud 83:565–579

    Google Scholar 

  • Wessels DCJ, Büdel B (1995) Epilithic and cryptoendolithic cyanobacteria of Clarens sandstone cliffs in the Golden Gate Highlands National Park, South Africa. Bot Acta 108:220–226

    Google Scholar 

  • Whitton BA, Potts M (2000) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 1–704

    Google Scholar 

  • Wright DJ, Smith SC, Jordar V, Scherer S, Jervis J, Warren A, Helm RF, Potts M (2005) UV Irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria). J Biol Chem 280:40271–40281

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to express my sincere thanks to U. Lüttge and E. Beck for offering me the opportunity to write this review and for many inspiring discussions. The German Research Foundation (DFG) is thanked for continuous financial support of my work. R. Honegger (Zürich) is thanked for preparation, thin sectioning and electron microscopy of dry Chroococcidiopsis cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Büdel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Büdel, B. (2011). Cyanobacteria: Habitats and Species. In: Lüttge, U., Beck, E., Bartels, D. (eds) Plant Desiccation Tolerance. Ecological Studies, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19106-0_2

Download citation

Publish with us

Policies and ethics