Skip to main content

Advertisement

Log in

Genotypic and Phenotypic Diversity of Cyanobacteria in Biological Soil Crusts of the Succulent Karoo and Nama Karoo of Southern Africa

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Biological soil crusts (BSCs) are communities of cryptogamic organisms, occurring in arid and semiarid regions all over the world. Based on both morphological identification and genetic analyses, we established a first cyanobacterial inventory using the biphasic approach for BSCs within two major biomes of southern Africa. The samples were collected at two different sites in the Succulent Karoo and one in the Nama Karoo. After cultivation and morphological identification, the 16S rRNA gene was sequenced from the cyanobacterial cultures. From the soil samples, the DNA was extracted, and the 16S rRNA gene sequenced. All the sequences of the clone libraries from soil and cultures were compared with those of the public databases. Forty-five different species were morphologically identified in the samples of the Succulent Karoo (observatories of Soebatsfontein and Goedehoop). Based on the genetic analyses, 60 operational taxonomic units (OTUs) were identified for the Succulent Karoo and 43 for the Nama Karoo (based on 95 % sequence similarity). The cloned sequences corresponded well with the morphologically described taxa in cultures and sequences in the public databases. Besides known species of typical crust-forming cyanobacterial genera (Microcoleus, Phormidium, Tolypothrix and Scytonema), we found sequences of so far undescribed species of the genera Leptolyngbya, Pseudanabaena, Phormidium, Oscillatoria, Schizothrix and Microcoleus. Most OTUs were restricted to distinct sites. Grazed soils showed lower taxa numbers than undisturbed soils, implying the presence of early successional crust types and reduced soil surface protection. Our combined approach of morphological identification and genetic analyses allowed both a taxa inventory and the analysis of species occurring under specific habitat conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  2. Belnap J, Gardner JS (1993) Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. Great Basin Nat 53:40–47

    Google Scholar 

  3. Belnap J, Gillette DA (1998) Vulnerability of desert biological soil crusts to wind erosion: the influence of crust development, soil texture, and disturbance. J Arid Environ 39:133–142

    Article  Google Scholar 

  4. Belnap J, Harper KT, Warren SD (1994) Surface disturbance of cryptobiotic soil crusts: nitrogenase activity, chlorophyll content, and chlorophyll degradation. Arid Soil Res Rehabil 8:1–8

    CAS  Google Scholar 

  5. Belnap J, Büdel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management, Vol. 150. Springer, Berlin, Hamburg, pp 3–30

    Chapter  Google Scholar 

  6. Belnap J, Prasse R, Harper KT (2001) Influence of biological soil crusts on soil environments and vascular plants. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management, Vol. 150. Springer, Berlin, Hamburg, pp 281–300

    Chapter  Google Scholar 

  7. Bischoff HW, Bold HC (1963) Some algae from enchanted rock and related species. Phycological studies IV. Univ Texas Publ 631:1–95

    Google Scholar 

  8. Boenigk J, Pfandl K, Stadler P, Chatzlnotas A (2005) High diversity of the “Spumella-like” flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ Microbiol 7:685–697

    Article  CAS  PubMed  Google Scholar 

  9. Boyer S, Johansen JR, Flechtner VR, Howard GL (2002) Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S-23S ITS region. J Phycol 38:1222–1235

    Article  CAS  Google Scholar 

  10. Brotherson JD, Rushford SR (1983) Influence of cryptogamic crusts on moisture relationships of soils in Navajo National Monument, Arizona. Great Basin Nat 43:73–78

    Google Scholar 

  11. Büdel B (2000) Symbiosis. Cellular origin and life in extreme habitats cellular origin and life in extreme habitats. In: Seckbach J (ed) Journey to diverse microbial worlds: adaptation to exotic environments. Kluwer, Dordrecht, pp 141–152

    Google Scholar 

  12. Büdel B (2002) Diversity and ecology of biological crusts. Prog Bot 63:387–404

    Google Scholar 

  13. Büdel B, Deutschewitz K, Dojani S, Friedl T, Darienko T, Mohr KI, Weber B (2010) Biological soil crusts along the BIOTA Southern Africa transects. In: Schmiedel U, Jürgens N (eds) Biodiversity in southern Africa, vol. 2. Klaus Hess, Göttingen, pp 93–99

    Google Scholar 

  14. Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr K, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247

    Article  PubMed  Google Scholar 

  15. Casamatta DA, Johansen JR, Vis ML, Broadwater ST (2005) Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J Phycol 41:421–438

    Article  CAS  Google Scholar 

  16. Castenholz RW (1992) Species usage, concept, and evolution in the cyanobacteria (blue–green algae). J Phycol 28:737–745

    Article  Google Scholar 

  17. Castenholz RW, Garcia-Pichel F (2000) Cyanobacterial responses to UV-radiation. In: Whitton BA, Potts M (eds) Ecology of cyanobacteria: their diversity in time and space. Kluwer, Dordrecht, pp 591–611

    Google Scholar 

  18. Dojani S, Büdel B, Deutschewitz K, Weber B (2011) Rapid succession of biological soil crusts after experimental disturbance in the Succulent Karoo, South Africa. Appl Soil Ecol 48:263–269

    Article  Google Scholar 

  19. Dojani S, Lakatos M, Rascher U, Wanek W, Lüttge U, Büdel B (2007) Nitrogen input by cyanobacterial biofilms of an inselberg into a tropical rainforest in French Guiana. Flora 202:521–529

    Article  Google Scholar 

  20. Dvornyk V (2006) Subfamilies of cpmA, a gene involved in circardian output, have different evolutionary histories in cyanobacteria. Microbiology 152:75–84

    Article  CAS  PubMed  Google Scholar 

  21. Dyhrman ST, Haley ST (2006) Phosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii. Appl Environ Microbiol 72:1452–1458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Impact of cryptogamic covers on the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    Article  CAS  Google Scholar 

  23. Evans RD, Lange OL (2003) Biological soil crusts and ecosystem nitrogen and carbon dynamics. In: Belnap J, Lange OL (eds) Ecological studies, vol. 150. Springer, Berlin, pp 263–279

    Google Scholar 

  24. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. J Mol Evol 39:783–791

    Google Scholar 

  25. Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  26. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

  27. Flechtner VR, Boyer SL, Johansen JR, DeNoble ML (2002) Spirirestis rafaelensis gen. et sp. nov. (Cyanophyceae), a new cyanobacterial genus from arid soils. Nova Hedwigia 74:1–24

    Article  Google Scholar 

  28. Garcia-Pichel F, Lopez-Cortes A, Nübel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67:1902–1910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Geitler L (1932) Cyanophyceae von Europa unter berücksichtigung der anderen kontinente. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  30. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  CAS  PubMed  Google Scholar 

  31. Haarmeyer DH, Luther-Mosebach J, Dengler J et al (2010) The BIOTA observatories. In: Jürgens N, Haarmeyer DH, Luther-Mosebach J, Dengler J, Finckh M, Schmiedel U (eds) Biodiversity in southern Africa, vol. 1. Klaus Hess, Göttingen, pp 6–801

    Google Scholar 

  32. Harper KT, Marple JR (1988) A role for nonvascular plants in management of arid and semiarid rangelands. In: Tueller PT (ed) Vegetation science applications for rangeland analysis and management. Kluwer, Dordrecht, pp 136–169

    Google Scholar 

  33. Harper KT, Pendleton RL (1993) Cyanobacteria and cyanolichens: can they enhance availability of essential minerals for higher plants? Great Basin Nat 53:89–95

    Google Scholar 

  34. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  PubMed  Google Scholar 

  35. Jürgens N, Haarmeyer DH, Luther-Mosebach J, Dengler J, Finckh M, Schmiedel U (eds.) (2010) Biodiversity in southern Africa. Volume 1. Klaus Hess, Göttingen

  36. Katz LA, Snoeyenbos-West O, Doerder FP (2006) Patterns of protein evolution in Tetrahymena thermophila: implications for estimates of effective population size. Mol Biol Evol 23:608–614

    Article  CAS  PubMed  Google Scholar 

  37. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Article  CAS  PubMed  Google Scholar 

  38. Klubek B, Skujins J (1980) Heterotrophic nitrogen fixation in arid soil crusts. Soil Biol Biochem 12:229–236

    Article  CAS  Google Scholar 

  39. Komárek J (2005) The modern classification of cyanoprokaryotes (cyanobacteria). Oceanological and Hydrobiological Studies 34:5–17

    Google Scholar 

  40. Komárek J, Anagnostidis K (1989) Modern approach to the classification system of cyanophytes. 4- Nostocales. Arch Hydrobiol Suppl 82. Algological Studies 56:247–345

    Google Scholar 

  41. Komárek J, Anagnostidis K (1998) Cyanoprokaryota part 1: Chroococcales. Gustav Fischer, Jena

    Google Scholar 

  42. Komárek J, Anagnostidis K (2005) Cyanoprokaryota part 2: Oscillatoriales. Elsevier, München

    Google Scholar 

  43. Kunz NS, Hoffman MT, Weber B (2012) Effects of heuweltjies and utilization on vegetation patterns in the Succulent Karoo, South Africa. J Arid Environ 87:198–205

    Article  Google Scholar 

  44. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M, Neumaier J, Bachleitner M, Schleifer KH (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568

    Article  CAS  PubMed  Google Scholar 

  45. Mareš J, Hrouzek P, Kaňa R, Ventura S, Strunecký O et al (2013) The primitive thylakoid-less cyanobacterium Gloeobacter is a common rock-dwelling organism. PLoS ONE 8(6):e66323

    Article  PubMed Central  PubMed  Google Scholar 

  46. Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, Catroux G (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354–2359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Morin N, Vallaeys T, Hendrickx NL, Wilmotte A (2010) An efficient DNA isolation protocol for filamentous cyanobacteria of the genus Arthrospira. J Microbiol Meth 80(2):148–154

    Article  CAS  Google Scholar 

  48. Nübel U, Garcia-Pichel F, Kühl M, Muyzer G (1999) Spatial scale and the diversity of benthic cyanobacteria and diatoms in a salina. Hydrobiologia 401:199–206

    Article  Google Scholar 

  49. Payne MC (2001) Taxonomic resolution of Leptoylngbya utilizing the 16S rRNA gene sequence. Dissertation, John Carroll University, Heights, OH

  50. Pearson JE, Kinsbury JM (1966) Culturally induced variation in four morphologically diverse blue-green algae. Am J Bot 53:192–200

    Article  Google Scholar 

  51. Premanandh J, Priya B, Teneva I, Dzhambazov B, Probaharan D, Uma L (2006) Molecular characterization of marine cyanobacteria from the Indian subcontinent deduced from sequence analysis of the phycocyanin operon (cpcB-IGS-cpcA) and 16S-23S ITS region. J Microbiol 44:607–616

    CAS  PubMed  Google Scholar 

  52. Rehakova K, Johansen JR, Casamatta DA, Xuesong L, Vincent J (2007) Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia 46:481–502

    Article  Google Scholar 

  53. Rikkinen J, Oksanen I, Lohtander K (2002) Lichen guilds share related cyanobacterial symbionts. Science 297:357

    Article  CAS  PubMed  Google Scholar 

  54. Rodriguez F, Derelle E, Guillou L, Le Gall F, Vaulot D, Moreau H (2005) Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae). Environ Microbiol 7:853–859

    Article  CAS  PubMed  Google Scholar 

  55. Schlösser UG (1994) SAG-Sammlung von Algenkulturen at the University of Göttingen. Catalog of strains. Bot Acta 107:111–186

    Article  Google Scholar 

  56. Schloss PD, Westcott S, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Singh SP, Rastogi RP, Häder D-P, Sinha RP (2011) An improved method for genomic DNA extraction from cyanobacteria. World J Microbiol Biotechnol 27(5):1225–1230

    Article  CAS  Google Scholar 

  58. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44(4):846–849

    Article  CAS  Google Scholar 

  59. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiology Today 33(4):152–155

    Google Scholar 

  60. Stal LJ (2000) Cyanobacterial mats and stromatolites. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 61–120

    Google Scholar 

  61. Starks TL, Shubert LE, Trainor FR (1981) Ecology of soil algae: a review. Phycologia 20:65–80

    Article  Google Scholar 

  62. Svenning MM, Eriksson T, Rasmussen U (2005) Phylogeny of symbiotic cyanobacteria within the genus Nostoc based on 16S rDNA sequence analyses. Arch Microbiol 183:19–26

    Article  CAS  PubMed  Google Scholar 

  63. Swofford DL (1998) PAUP*. Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4. Sinauer Associates: Sunderland, Massachusetts

  64. Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Taton A, Grubisic S, Ertz DM et al (2006) Polyphasic study of Antarctic cyanobacterial strains. J Phycol 42:1257–1270

    Article  CAS  Google Scholar 

  66. Thomas AD, Dougill AJ (2006) Distribution and characteristics of cyanobacterial soil crusts in the Molopo Basin, South Africa. J Arid Environ 64:270–283

    Article  Google Scholar 

  67. Ullmann I, Büdel B (2001) Biological soil crusts of Africa. In: Belnap J, Lange OL (eds) Ecological Studies, vol. 150. Springer, Berlin, pp 107–108

    Google Scholar 

  68. Vogel S (1955) Niedere “fensterpflanzen” in der südafrikanischen Wüste. Eine ökologische schilderung. – Beiträge zur Biologie der Pflanzen 31:45–135

  69. Waterbury JB, Stanier RY (1978) Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol Rev 42:2–44

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Weber B, Friedl T, Büdel B (2010) Biological soil crusts. In: Jürgens N, Haarmeyer DH, Luther-Mosebach J, Dengler J, Finckh M, Schmiedel U (eds) Biodiversity in Southern Africa, Vol. 1. Klaus Hess Publishers, Göttingen, pp 27–28

    Google Scholar 

  71. Whitton BA (1992) Diversity, ecology, and taxonomy of the cyanobacteria. In: Mann NH, Carr NG (eds) Photosynthetic prokaryotes. Plenum, New York, pp 1–52

    Chapter  Google Scholar 

  72. Wilmotte A, Van der Auwera G, De Wachter R (1993) Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (‘Mastigocladus laminosus HTF’) strain PCC7518, and phylogenetic analysis. FEBS Lett 317:96–100

    Article  CAS  PubMed  Google Scholar 

  73. Wisch U, Petersen A, Gröngröft A, Mager D (2010) Soils. In: Jürgens N, Haarmeyer DH, Luther-Mosebach J, Dengler J, Finckh M, Schmiedel U (eds.) Biodiversity in Southern Africa, Vol. 1, Klaus Hess, Göttingen, pp 354–356, 620–622, 686–688

  74. Yeager CM, Kornosky JL, Morgan R, Cain E, Belnap J, Kuske CR (2007) Three distinct clades of cultured heterocystous cyanobacteria comprise the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS Microbiol Ecol 60:85–97

    Article  CAS  PubMed  Google Scholar 

  75. Zehnder A (1953) Beiträge zur Kenntnis von Miroklima und Algenvegetation des nackten Gesteins in den Tropen. Berichte der Schweizerischen Botanischen Gesellschaft 63:5–26

    Google Scholar 

Download references

Acknowledgments

We thank the German Ministry of Education and Research for sponsoring the BIOTA Africa project (Biodiversity Monitoring Transect Analysis in Southern Africa) and our German, South African and Namibian partners for the valuable contributions to the development, design and implementation of the BIOTA biodiversity observatories. Thomas Friedl (University of Göttingen, Germany) and Kathrin Mohr are thanked for the field support and assistance during laboratory work and data management. We also thank Antje Donner (University of Kaiserslautern, Germany) for assistance with the alignment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Dojani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(File: ESM_1) Abbreviations, accessions numbers and sequence length of own cultures. Compiled sequences are marked with *. All other sequences are based on sequencing with primer PCR 1 (after Wilmotte et al. 1993). (PDF 87.8 kb)

Online Resource 2

(File: ESM_2) Accession numbers of reference strains from GenBank. (PDF 93.2 kb)

Online Resource 3

(File ESM_3) Neighbour-joining tree including all sequences used for the study, bootstrap values are given above the lines. Taxa are coded by site and origin of the sequence as follows: Soebatsfontein: clones: dark blue, pure cultures: light blue; Goedehoop: clones violet, pure cultures: pink; Duruchaus: ungrazed: dark green, grazed: yellow-green; pure cultures originating from different sites: black; reference sequences (GenBank): red. The sequences can be found in GenBank under the accession numbers KC463059 to KC463696. (PDF 2.85 mb)

Online Resource 4

(File ESM_4) List of all OTUs and the corresponding sequences. (PDF 71.7 kb)

Online Resource 5

(File ESM_5) Detailed description and comparison of the results of the neighbour-joining tree and the OTUs composition. (PDF 98.1 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dojani, S., Kauff, F., Weber, B. et al. Genotypic and Phenotypic Diversity of Cyanobacteria in Biological Soil Crusts of the Succulent Karoo and Nama Karoo of Southern Africa. Microb Ecol 67, 286–301 (2014). https://doi.org/10.1007/s00248-013-0301-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0301-5

Keywords

Navigation