Skip to main content

Cyanobacteria: Multiple Stresses, Desiccation-Tolerant Photosynthesis and Di-nitrogen Fixation

  • Chapter
  • First Online:
Plant Desiccation Tolerance

Part of the book series: Ecological Studies ((ECOLSTUD,volume 215))

Abstract

Cyanobacteria are gram-negative photoautotrophic prokaryotes. Their traditional name, i.e., blue green algae, alludes to an aquatic life. Indeed, many cyanobacteria are bound to a submerged life. However, cyanobacteria are ubiquitous on our planet (Whitton and Potts 2000), and as shown in Chap. 2 cyanobacteria also have very successfully conquered habitats outside the water all over the world ranging from the occupation of all kinds of surfaces including rocks of high elevation mountains, rocks in the tropics as well as the Antarctic, soil crusts in deserts and man-made structures from concrete buildings to plastic garbage bins. Terrestrial cyanobacteria are also symbionts in lichens (Chaps. 5–7). In their terrestrial habitats, cyanobacteria are subject to a multitude of stress factors or stressors, such as high light intensities including ultraviolet radiation, high and low temperatures including freezing, osmotic stress, salinity and drought including desiccation (Allakhverdiev et al. 2000; Singh et al. 2002; Lin et al. 2004; Potts et al. 2005; Büdel et al. 2008). In-depth studies of ecophysiological adaptations of cyanobacteria to a plethora of stresses are increasingly facilitated by the accumulation of sequence data, available e.g., for Prochlorococcus, Nostoc punctiforme, Gloeobacter and Synechococcus. Complete genomic sequences have been obtained for the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 and the filamentous, heterocyst-forming Anabaena sp. strain PCC 7120 (see Introduction of Singh et al. (2002) with references).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adam Z, Clarke AK (2002) Cutting edge of chloroplast proteolysis. Trends Plant Sci 7:451–456

    Article  PubMed  CAS  Google Scholar 

  • Adhikary SP (2003) Heat shock proteins in the terrestrial epilithic cyanobacterium Tolypothrix byssoidea. Biol Plant 47:125–128

    Article  CAS  Google Scholar 

  • Albrecht M, Steiger S, Sandmann G (2001) Expression of a ketolase gene mediates the synthesis of canthaxanthin in Synechococcus leading to tolerance against photoinhibition, pigment degradation and UV-B sensitivity of photosynthesis. Photochem Photobiol 73:551–555

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol 125:1842–1853

    Article  PubMed  CAS  Google Scholar 

  • Belnap J (2001) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecol Stud 150. Springer, Berlin, Heidelberg, pp 241–261

    Chapter  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Article  Google Scholar 

  • Büdel B (1999) Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur J Phycol 34:361–370

    Google Scholar 

  • Büdel B, Becker U, Porembski S, Barthlott W (1997a) Cyanobacteria and cyanobacteria lichens from inselbergs of the Ivory Coast, Africa. Bot Acta 110:458–465

    Google Scholar 

  • Büdel B, Karsten U, Garcia-Pichel F (1997b) Ultraviolet-absorbing scytonemin and mycosporine-like amino acid derivatives in exposed, rock inhabiting cyanobacterial lichens. Oecologia 112:165–172

    Article  Google Scholar 

  • Büdel B, Bendix J, Bicker FR, Green TGA (2008) Dewfall as a water source frequently activates the endolithic cyanobacterial communities in the granites of Taylor Valley, Antarctica. J Phycol 44:1415–1424

    Article  Google Scholar 

  • Cameron RE (1962) Species of Nostoc vaucher occurring in the Sonoran desert in Arizona. Trans Am Microsc Soc 81:379–384

    Article  Google Scholar 

  • Campbell D, Hurry V, Clarke AK, Gustafsson P, Öquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62:667–683

    PubMed  CAS  Google Scholar 

  • Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW, Czygan F-C, Schreiber U, Lange OL (1990) Differences in the capacity for radiation less energy dissipation in the photochemical apparatus of green and blue-green algal lichens associated with differences in carotenoid composition. Planta 180:582–589

    Article  CAS  Google Scholar 

  • Dojani S, Lakatos M, Rascher U, Wanek W, Lüttge U, Büdel B (2007) Nitrogen input by cyanobacterial biofilms of an inselberg into a tropical rainforest in French Guiana. Flora 202:521–529

    Google Scholar 

  • Evans RD, Ehleringer JR (1993) A break in the nitrogen cycle in arid lands? Evidence from δ15N of soils. Oecologia 94:314–317

    Article  Google Scholar 

  • Fukuda S-Y, Yamakawa R, Hirai M, Khashino Y, Koike H, Satoh K (2008) Mechanisms to avoid photoinhibition in a desiccation-tolerant cyanobacterium, Nostoc commune. Plant Cell Physiol 49:488–492

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27:395–409

    Article  CAS  Google Scholar 

  • Gombos Z, Wada H, Murata N (1994) The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: a mechanism of chilling tolerance. Proc Natl Acad Sci USA 91:8787–8791

    Article  PubMed  CAS  Google Scholar 

  • Gombos Z, Kanervo E, Tsvetkova N, Sakamoto T, Aro E-M, Murata N (1997) Genetic enhancement of the ability to tolerate photoinhibition by introduction of unsaturated bonds into membrane glycerolipids. Plant Physiol 115:551–559

    PubMed  CAS  Google Scholar 

  • Han D, Hu Z (2007) Mutations stabilize small subunit ribosomal RNA in desiccation-tolerant cyanobacteria Nostoc. Curr Microb 54:254–259

    Article  CAS  Google Scholar 

  • Harel Y, Ohad I, Kaplan A (2004) Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crusts. Plant Physiol 136:3070–3097

    Article  PubMed  CAS  Google Scholar 

  • Hershkovitz N, Oren A, Cohen Y (1991) Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. Appl Environ Microbiol 57:645–648

    PubMed  CAS  Google Scholar 

  • Higo A, Katoh H, Ohmori K, Ikeuchi M, Ohmori M (2006) The role of a gene cluster for trehalose metabolism in dehydration tolerance of the filamentous cyanobacterium Anabaena sp. PCC 7120. Microbiology 152:979–987

    Article  PubMed  CAS  Google Scholar 

  • Hill DR, Hladun SL, Scherer S, Potts M (1994) Water stress proteins of Nostoc commune. DRH-1. J Bacteriol 182:974–982

    Google Scholar 

  • Hincha DK, Hagemann M (2004) Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem J 383:277–283

    Article  PubMed  CAS  Google Scholar 

  • Hirai MH, Yamakawa R, Nishio J, Yamaji T, Kashino Y, Koike H, Satoh K (2004) Deactivation of photosynthetic activities is triggered by loss of a small amount of water in a desiccation-tolerant cyanobacterium, Nostoc commune. Plant Cell Physiol 45:872–878

    Article  PubMed  CAS  Google Scholar 

  • Hottinger T, de Virgilio C, Hall MN, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem 219:187–193

    Article  Google Scholar 

  • Issa OM, Stal LJ, Défarge C, Couté A, Trichet J (2001) Nitrogen fixation by microbial crusts from desiccated Sahelian soils (Niger). Soil Biol Biochem 33:1425–1428

    Article  Google Scholar 

  • Kanervo E, Mäenpää P, Aro E-M (1993) D1 protein degradation and psbA transcript levels in Synechocystis PCC 6803 during photoinhibition in vivo. J Plant Physiol 142:669–675

    CAS  Google Scholar 

  • Katoh H, Asthana RK, Ohmori M (2004) Gene expression in the cyanobacterium Anabaena sp. PCC 7120 under desiccation. Microb Ecol 47:164–174

    Article  PubMed  CAS  Google Scholar 

  • Lakatos M, Bilger W, Büdel B (2001) Carotenoid composition of terrestrial cyanobacteria: response to natural light conditions in open rock habitats in Venezuela. Eur J Phycol 36:367–375

    Article  Google Scholar 

  • Lange OL (2001) Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecol Stud 150. Springer, Berlin, Heidelberg, pp 217–240

    Google Scholar 

  • Lin Y, Hirai M, Kashino Y, Koike H, Tuzi S, Satoh K (2004) Tolerance to freezing stress in cyanobacteria, Nostoc commune and some cyanobacteria with various tolerances to drying stress. Polar Biosci 17:56–68

    Google Scholar 

  • Lüttge U (2008) Physiological ecology of tropical plants. Springer, Berlin, Heidelberg

    Google Scholar 

  • Lüttge U, Büdel B, Ball E, Strube F, Weber P (1995) Photosynthesis of terrestrial cyanobacteria under light and desiccation stress as expressed by chlorophyll fluorescence and gas exchange. J Exp Bot 46:309–319

    Article  Google Scholar 

  • Masamoto K, Furukawa K-I (1997) Accumulation of zeaxanthin in cells of the cyanobacterium Synechococcus sp. strain PCC 7942 grown under high irradiance. J Plant Physiol 151:257–261

    CAS  Google Scholar 

  • Masamoto K, Zsiros O, Gombos Z (1999) Accumulation of zeaxanthin in cytoplasmic membranes of the cyanobacterium Synechococcus sp. strain PCC 7942 grown under high light condition. J Plant Physiol 155:136–138

    CAS  Google Scholar 

  • Meunier PC, Colón-López MS, Sherman LA (1997) Temporal changes in state transitions and photosystem organization in the unicellular diazotrophic cyanobacterium Cyanothece sp. ATCC 51142. Plant Physiol 115:991–1000

    PubMed  CAS  Google Scholar 

  • Nixon PJ, Michoux F, Jianfeng Y, Boehm M, Komenda J (2010) Recent advances in understanding the assembly and repair of photosystem II. Ann Bot 106:1–16

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou GC (1996) The photosynthesis of cyanobacteria (blue bacteria) from the perspective of signal analysis of chlorophyll a fluorescence. J Sci Ind Res 55:596–617

    CAS  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryote. Microbiol Mol Biol Rev 58:755–805

    CAS  Google Scholar 

  • Potts M (1999) Mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol 34:319–328

    Article  Google Scholar 

  • Potts M (2001) Desiccation tolerance: a simple process? Trends Microbiol 9:553–559

    Article  PubMed  CAS  Google Scholar 

  • Potts M, Slaughter SM, Hunneke F-U, Garst JF, Helm RF (2005) Desiccation tolerance of prokaryotes: application of principles to human cells. Integr Comp Biol 45:800–809

    Article  PubMed  CAS  Google Scholar 

  • Qiu BS, Zhang AH, Liu ZL, Gao KS (2004) Studies on the photosynthesis of the terrestrial cyanobacterium Nostoc flagelliforme subjected to desiccation and subsequent rehydration. Phycologia 43:521–528

    Article  Google Scholar 

  • Rascher U, Lakatos M, Büdel B, Lüttge U (2003) Photosynthetic field capacity of cyanobacteria of a tropical inselberg of the Guiana Highlands. Eur J Phycol 38:247–256

    Article  Google Scholar 

  • Raven JA, Samuelsson G (1986) Repair of photoinhibitory damage in Anacystis nidulans 625 (Synechococcus 6301): relation to catalytic capacity for, and energy supply to, protein synthesis, and implications for μ max and the efficiency for light-limited growth. New Phytol 103:625–643

    Article  CAS  Google Scholar 

  • Russow R, Veste M, Böhme F (2005) A natural 15N approach to determine the biological fixation of atmospheric nitrogen by biological soil crusts of the Negev desert. Rapid Commun Mass Spectrom 19:3451–3456

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson G, Lönneborg A, Rosenquist E, Gustafsson P, Öquist G (1985) Photoinhibition and reactivation of photosynthesis in the cyanobacterium Anacystis nidulans. Plant Physiol 79:992–995

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson G, Lönneborg A, Gustafsson P, Öquist G (1987) The susceptibility of photosynthesis to photoinhibition and the capacity of recovery in high and low light grown cyanobacteria, Anacystis nidulans. Plant Physiol 83:438–441

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Hirai M, Nishio J, Yamaji T, Kashino Y, Koike H (2002) Recovery of photosynthetic systems during rewetting is quite rapid in a terrestrial cyanobacterium, Nostoc commune. Plant Cell Physiol 43:170–176

    Article  PubMed  CAS  Google Scholar 

  • Scherer S, Potts M (1989) Novel water stress protein from a desiccation-tolerant cyanobacterium. Purification and partial characterization. J Biol Chem 264:12546–12553

    PubMed  CAS  Google Scholar 

  • Scherer S, Zhong ZP (1991) Desiccation independence of terrestrial Nostoc commune ecotypes (cyanobacteria). Microb Ecol 22:271–283

    Article  Google Scholar 

  • Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648

    Article  PubMed  CAS  Google Scholar 

  • Singh SC, Sinha RP, Häder D-P (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool 41:297–308

    CAS  Google Scholar 

  • Sinha RP, Klisch M, Gröninger A, Häder D-P (1998) Ultraviolet absorbing/screening substances in cyanobacteria, phytoplankton and macroalgae. J Photochem Photobiol B 47:83–94

    Article  CAS  Google Scholar 

  • Sinha RP, Klisch M, Häder D-P (1999a) Induction of a mycosporine-like amino acid (MMA) in the rice-field cyanobacterium Anabaena sp. by UV radiation. J Photochem Photobiol B 52:59–64

    Article  CAS  Google Scholar 

  • Sinha RP, Klisch M, Vaishampayan A, Häder D-P (1999b) Biochemical and spectroscopic characterization of the cyanobacterium Lyngbya sp. inhabiting mango (Mangifera indica) trees: presence of an ultraviolet-absorbing pigment, scytonemin. Acta Protozool 38:291–298

    CAS  Google Scholar 

  • Sinha RP, Klisch M, Hebling EW, Häder D-P (2001) Induction of mycosporine-like amino acids (MMAs) in cyanobacteria by solar ultraviolet-B radiation. J Photochem Photobiol B 60:129–135

    Article  PubMed  CAS  Google Scholar 

  • Skleryk RS, Tyrell PN, Espie GS (1997) Photosynthesis and inorganic carbon acquisition in the cyanobacterium Chlorogloeopsis sp. ATCC 27193. Physiol Plant 99:81–88

    Article  CAS  Google Scholar 

  • Stewart WDP (1963) Liberation of extracellular nitrogen by two nitrogen-fixing blue-green algae. Nature 200:1020–1021

    Article  PubMed  CAS  Google Scholar 

  • Stewart WDP (1980) Some aspects of structure and function in N2-fixing cyanobacteria. Annu Rev Microbiol 34:497–536

    Article  PubMed  CAS  Google Scholar 

  • Stewart WDP, Sampaio MJ, Isichei AO, Sylvester Bradley R (1977) Nitrogen fixation by soil algae of temperate and tropical soils. In: Döbereiner J, Burris RH, Hollaender H (eds) Limitations and potentialities for biological nitrogen fixation in the tropics. Plenum, New York, pp 41–63

    Google Scholar 

  • Sültemeyer D, Klughammer B, Ludwig M, Badger MR, Price GD (1997) Random mutagenesis used in the generation of mutants of the marine cyanobacterium Synechococcus sp. strain PCC 7002 with an impaired CO2 concentrating mechanism. Aust J Plant Physiol 24:317–327

    Article  Google Scholar 

  • Tirkey J, Adhikary SP (2005) Cyanobacteria in biological soil crusts of India. Curr Sci 89:515–521

    Google Scholar 

  • Vavilin D, Vermaas W (2007) Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp PCC 6803. Biochim Biophys Acta 1767:920–929

    Article  PubMed  CAS  Google Scholar 

  • Vavilin D, Brune DC, Vermaas W (2005) N-15-labeling to determine chlorophyll synthesis and degradation in Synechocystis sp PCC 6803 strains lacking one of both photosystems. Biochim Biophys Acta 1708:91–101

    Article  PubMed  CAS  Google Scholar 

  • Whitton BA, Potts M (2000) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic, Dordrecht

    Google Scholar 

  • Wright DJ (2004) Molecular biology of desiccation tolerance in the cyanobacterium Nostoc commune. Thesis Master of Science, Virginia Tech, Blacksburg, Virginia

    Google Scholar 

  • Ziegler H, Lüttge U (1998) Carbon isotope discrimination in cyanobacteria of rocks of inselbergs and soils of savannas in the neotropics. Bot Acta 111:212–215

    CAS  Google Scholar 

Download references

Acknowledgement

I thank Burkhard Büdel for cooperation with much stimulating exchange and the identification of cyanobacteria samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Lüttge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lüttge, U. (2011). Cyanobacteria: Multiple Stresses, Desiccation-Tolerant Photosynthesis and Di-nitrogen Fixation. In: Lüttge, U., Beck, E., Bartels, D. (eds) Plant Desiccation Tolerance. Ecological Studies, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19106-0_3

Download citation

Publish with us

Policies and ethics