Skip to main content

Kryokonservierung

  • Chapter
  • First Online:
Reproduktionsmedizin

Part of the book series: Springer Reference Medizin ((SRM))

  • 4560 Accesses

Zusammenfassung

Die Kryokonservierung ist ein wesentlicher Baustein heutiger klinischer Infertilitätsbehandlung. Hierbei findet insbesondere die Vitrifikation eine weitverbreitete routinemäßige Anwendung. Ihre Etablierung erlaubt heute eine Maximierung der Wahrscheinlickeit einer Konzeption eines jeden einzelnen IVF-Zyklus durch die Kryokonservierung von nicht transferrierten Embryonen. Dies führt zu einer maximalen Nutzung aller gewonnenen Eizellen und erzeugten Embryonen. Darüber hinaus erlaubt die Technologie der Vitrifikation die Möglichkeit, einen frischen Embryotransfer, wie in Fällen von nicht optimaler uterinärer Vorbereitung, Fertilitätskonservierung, Präimplantationsdiagnose oder Notfällen wie Problemen in der Spermagewinnung, abzusagen. In diesem Kapitel wird die Anwendung der Vitrifikation von Eizellen bis hin zur Blastozyste beschrieben. Die vorgestellten Resultate unterstreichen einmal mehr die Robustheit der Vitrifikation für die Krykonservierung von menschlichen Gameten und Embryonen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 289.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Al-Hasani S, Ozmen B, Koutlaki N, Schoepper B, Diedrich K, Schultze-Mosgau A (2007) Three years of routine vitrification of human zygotes: is it still fair to advocate slow-rate freezing? Reprod Biomed Online 14:288–293

    Article  PubMed  Google Scholar 

  • Ali J, Shelton JN (1993) Vitrification of preimplantation stages of mouse embryos. J Reprod Fertil 98:459–465

    Article  CAS  PubMed  Google Scholar 

  • Ata B, Chian RC, Tan SL (2010) Cryopreservation of oocytes and embryos for fertility preservation for female cancer patients. Best Pract Res Clin Obstet Gynaecol 24:101–212

    Article  PubMed  Google Scholar 

  • Balaban B, Urman B, Ata B, Isiklar A, Larman MG, Hamilton R, Gardner DK (2008) A randomized controlled study of human Day 3 embryo cryopreservation by slow freezing or vitrification: vitrification is associated with higher survival, metabolism and blastocyst formation. Hum Reprod 23:1976–1982

    Article  CAS  PubMed  Google Scholar 

  • Bianchi V, Coticchio G, Fava L, Flamigni C, Borini A (2005) Meiotic spindle imaging in human oocytes frozen with a slow freezing procedure involving high sucrose concentration. Hum Reprod 20:1078–1083

    Article  CAS  PubMed  Google Scholar 

  • Bianchi V, Coticchio G, Distratis V, Di Giusto N, Flamigni C, Borini A (2007) Differential sucrose concentration during dehydration (0,2 mol/l) and rehydration (0,3 mol/l) increases the implantation rate of frozen human oocytes. Reprod Biomed Online 14:64–71

    Article  CAS  PubMed  Google Scholar 

  • Bielanski A, Nadin-Davis S, Sapp T, Lutze-Wallace C (2000) Viral contamination of embryos cryopreserved in liquid nitrogen. Cryobiology 40:110–116

    Article  CAS  PubMed  Google Scholar 

  • Bielanski A, Bergeron H, Lau PC, Devenish J (2003) Microbial contamination of embryos and semen during long term banking in liquid nitrogen. Cryobiology 46:146–152

    Article  CAS  PubMed  Google Scholar 

  • Boldt J, Cline D, McLaughlin D (2003) Human oocyte cryopreservation as an adjunct to IVF-embryo transfer cycles. Hum Reprod 18:1250–1255

    Article  PubMed  Google Scholar 

  • Boldt J, Tidswell N, Sayers A, Kilani R, Cline D (2006) Human oocyte cryopreservation: 5-year experience with a sodium-depleted slow freezing method. Reprod Biomed Online 13:96–100

    Article  CAS  PubMed  Google Scholar 

  • Braude P, Bolton V, Moore S (1988) Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332:459–461

    Article  CAS  PubMed  Google Scholar 

  • Chen C (1986) Pregnancy after human oocyte cryopreservation. Lancet 1:884–886

    Article  CAS  PubMed  Google Scholar 

  • Chen CK, Wang CW, Tsai WJ, Hsieh LL, Wang HS, Soong YK (2004) Evaluation of meiotic spindles in thawed oocytes after vitrification using polarized light microscopy. Fertil Steril 82:666–672

    Article  PubMed  Google Scholar 

  • Chian RC, Gilbert L, Huang JY, Demirtas E, Holzer H, Benjamin A, Buckett WM, Tulandi T, Tan SL (2009) Live birth after vitrification of in-vitro matured human oocytes. Fertil Steril 91:372–376

    Article  CAS  PubMed  Google Scholar 

  • Cobo A, Rubio C, Gerli S, Ruiz A, Pellicer A, Remohi J (2001) Use of fluorescence in situ hybridisation to assess the chromosomal status of embryos obtained from cryopreserved oocytes. Fertil Steril 75:354–360

    Article  CAS  PubMed  Google Scholar 

  • Cobo A, Domingo J, Pérez S, Crespo J, Remohí J, Pellicer A (2008) Vitrification: an effective new approach to oocyte banking and preserving fertility in cancer patients. Clin Transl Oncol 10:268–273

    Article  CAS  PubMed  Google Scholar 

  • Conaghan J, Vaccari S (2015) Development and hatching of human blastocysts after vitrification and warming, Chapter 20. In: Tucker MJ, Liebermann J (Hrsg) Vitrification in assisted reproduction, 2. Aufl. Informa Healthcare, London, S 175–184

    Google Scholar 

  • De Santis L, Cino I, Rabellotti E, Papaleo E, Calzi F, Fusi FM, Brigante C, Ferrari A (2007) Oocyte cryopreservation: clinical outcome of slow-cooling protocols differing in sucrose concentration. Reprod Biomed Online 14:57–63

    Article  PubMed  Google Scholar 

  • Desai N, Blackmon H, Szeptycki J, Goldfarb J (2007) Cryoloop vitrification of human day 3 cleavage-stage embryos: post-vitrification development, pregnancy outcomes and live births. Reprod Biomed Online 14:208–213

    Article  PubMed  Google Scholar 

  • El-Danasouri HA, Selman I (2001) Successful pregnancies and deliveries after a simple vitrification protocol for day 3 human embryos. Fertil Steril 76:400–402

    Article  CAS  PubMed  Google Scholar 

  • Fabbri R, Porcu E, Marsella T, Rocchetta G, Venturoli S, Flamigni C (2001) Human oocyte cryopreservation: new perspectives regarding oocyte survival. Hum Reprod 16:411–416

    Article  CAS  PubMed  Google Scholar 

  • Fahy (1986) Vitrification: a new approach to organ cryopreservation. In: Merryman HT (Hrsg) Transplantation: approaches to graft rejection. Alan R Liss, New York, S 305–335

    Google Scholar 

  • Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:407–426

    Article  CAS  PubMed  Google Scholar 

  • Fountain D, Ralston M, Higgins N, Gorlin JB, Uhl L, Wheeler C, Antin JH, Churchill WH, Benjamin RJ (1997) Liquid nitrogen freezer: a potential source of microbial contamination of hematopoietic stem cell components. Transfusion 37:585–591

    Article  CAS  PubMed  Google Scholar 

  • Gardner DK, Lane M, Stevens J, Schoolcraft WB (2003) Changing the start temperature and cooling rate in a slow-freezing protocol increases human blastocyst viability. Fertil Steril 79:407–410

    Article  PubMed  Google Scholar 

  • Gook DA, Edgar DH (1999) Cryopreservation of the human female gamete: current and future issues. Hum Reprod 14:2938–2940

    Article  CAS  PubMed  Google Scholar 

  • Gook DA, Edgar DH (2007) Human oocyte cryopreservation. Hum Reprod Update 13:591–605

    Article  PubMed  Google Scholar 

  • Gook DA, Schiewe MC, Osborn SM, Asch RH, Jansen RP, Johnston WI (1995) Intracytoplasmic sperm injection and embryo development of human oocytes cryopreserved using 1,2-propanediol. Hum Reprod 10:2637–2641

    Article  CAS  PubMed  Google Scholar 

  • Hiraoka K, Hiraoka K, Kinutani M, Kinutani K (2004) Blastocoele collapse by micropipetting prior to vitrification gives excellent survival and pregnancy outcomes for human day 5 and 6 expanded blastocysts. Hum Reprod 19:2884–2888

    Article  PubMed  Google Scholar 

  • Hur YS, Park JH, Ryu EK, Yoon HJ, Yoon SH, Hur CY, Lee WD (2011) Lim JH Effect of artificial shrinkage on clinical outcome in fresh blastocyst transfer cycle. Clin Exp Reprod Med 38:87–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwayama H, Hochi S, Yamashita M (2011) In vitro and in vivo viability of human blastocysts collapsed by laser pulse or osmotic shocks prior to vitrification. J Assist Reprod Genet 28:355–361

    Article  PubMed  Google Scholar 

  • Jelinkova L, Selman HA, Arav A, Strehler E, Reeka N, Sterzik K (2002) Twin pregnancy after vitrification of 2-pronuclei human embryos. Fertil Steril 77:412–414

    Article  PubMed  Google Scholar 

  • Jericho H, Wilton L, Gook DA, Edgar DH (2003) A modified cryopreservation method increases the survival of human biopsied cleavage stage embryos. Hum Reprod 18:568–571

    Article  CAS  PubMed  Google Scholar 

  • Jeruss JS, Woodruff TK (2009) Preservation of fertility in patients with cancer. N Engl J Med 360:902–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson JOM, Eroglu A, Toth TL, Cravalho EG, Toner M (1996) Fertilization and development of mouse oocytes cryopreserved using a theoretically optimized protocol. Hum Reprod 11:1296–1305

    Article  CAS  PubMed  Google Scholar 

  • Kuleshova L, Gianaroli L, Magli C, Ferraretti A, Trounson A (1999) Birth following vitrification of a small number of human oocytes: case report. Hum Reprod 14:3077–3079

    Article  CAS  PubMed  Google Scholar 

  • Kuwayama M (2007) Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology 67:73–80

    Article  CAS  PubMed  Google Scholar 

  • Kuwayama M, Vajta G, Ieda S, Kato O (2005) Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod Biomed Online 11:608–614

    Article  PubMed  Google Scholar 

  • Larman MG, Sheehan CB (2006) Gardner DK Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction 131:53–61

    Article  CAS  PubMed  Google Scholar 

  • Larman MG, Minasi MG, Rienzi L, Gardner DK (2007) Maintenance of the meiotic spindle during vitrification in human and mouse oocytes. Reprod Biomed Online 15:692–700

    Article  CAS  PubMed  Google Scholar 

  • Leibo SP (1980) Water permeability and its activation energy of fertilized and unfertilized mouse ova. J Membr Biol 53:179–188

    Article  CAS  PubMed  Google Scholar 

  • Letur-Könirsch H, Collin G, Sifer C, Devaux A, Kuttenn F, Madelenat P, Brun-Vezinet F, Feldmann G, Benifla JL (2003) Safety of cryopreservation straws for human gametes or embryos: a study with human immunodeficiency virus-1 under cryopreservation conditions. Hum Reprod 18:140–144

    Article  PubMed  Google Scholar 

  • Li YB, Zhou CG, Yang GF, Wang O, Li Y, Chen ZJ, Yang HJ, Zhong WX, Ma SY, Li M (2007) Comparison of vitrification and slow-freezing of human day 3 cleavage stage embryos: post-vitrification development and pregnancy outcomes. Zhonghua Fu Chan Ke Za Zhi 42:753–755

    PubMed  Google Scholar 

  • Liebermann J (2009) Vitrification of human blastocysts: an update. Reprod Biomed Online 19(Suppl 4):4328

    PubMed  Google Scholar 

  • Liebermann J (2011) More than six years of blastocyst vitrification – what is the verdict? US Obstet Gynecol 5:14–17

    Google Scholar 

  • Liebermann J (2015) Vitrification of human blastocysts: clinical realities and neonatal outcomes, Chapter 19. In: Tucker MJ, Liebermann J (Hrsg) Vitrification in assisted reproduction, 2. Aufl. Informa Healthcare, London, S 163–173

    Google Scholar 

  • Liebermann J, Conaghan J (2013) Artificial collapse prior blastocyst vitrification: improvement of clinical outcome. J Clin Embryol 16:1

    Google Scholar 

  • Liebermann J, Tucker MJ (2002) Effect of carrier system on the yield of human oocytes and embryos as assessed by survival and developmental potential after vitrification. Reproduction 124:483–489

    Article  CAS  PubMed  Google Scholar 

  • Liebermann J, Tucker MJ (2004) Vitrifying and warming of human oocytes, embryos, and blastocysts: vitrification procedures as an alternative to conventional cryopreservation methods. Mol Biol 254:345–364

    Google Scholar 

  • Liebermann J, Tucker MJ (2006) Comparison of vitrification versus conventional cryopreservation of day 5 and day 6 blastocysts during clinical application. Fertil Steril 86:20–26

    Article  PubMed  Google Scholar 

  • Liebermann J, Nawroth F, Isachenko V, Isachenko E, Rahimi G, Tucker MJ (2002a) Potential importance of vitrification in reproductive medicine. Biol Reprod 67:1671–1680

    Article  CAS  PubMed  Google Scholar 

  • Liebermann J, Tucker MJ, Graham JR, Han T, Davis A, Levy MJ (2002b) Blastocyst development after vitrification of multipronucleate zygotes using the flexipet denuding pipette (FDP). Reprod Biomed Online 4:146–150

    Article  CAS  PubMed  Google Scholar 

  • Liebermann J, Dietl J, Vanderzwalmen P, Tucker MJ (2003) Recent developments in human oocyte, embryo and blastocyst vitrification: where are we now? Reprod Biomed Online 7:623–633

    Article  PubMed  Google Scholar 

  • Loutradi KE, Kolibianakis EM, Venetis CA, Papanikolaou EG, Pados G, Bontis I, Tarlatzis BC (2008) Cryopreservation of human embryos by vitrification or slow freezing: a systematic review and meta-analysis. Fertil Steril 90:186–193

    Article  PubMed  Google Scholar 

  • Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 47:347–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazur P (1990) Equilibrium, quasi-equilibrium, and non-equilibrium freezing of mammalian embryos. Cell Biophys 17:53–92

    Article  CAS  PubMed  Google Scholar 

  • Mazur P, Schneider U (1986) Osmotic response of preimplantation mouse and bovine embryos and their cryobiological implications. Cell Biophys 8:259–285

    Article  CAS  PubMed  Google Scholar 

  • Mazur P, Seki S (2011) Survival of mouse oocytes after being cooled in a vitrification solution to −196 °C at 95° to 70.000 °C/min and warmed at 610° to 118.000 °C/min: a new paradigm for cryopreservation by vitrification. Cryobiology 62:1–7

    Article  CAS  PubMed  Google Scholar 

  • Mazur P, Schneider U, Mahowald AP (1992) Characteristics and kinetics of subzero chilling injury in Drosophila embryos. Cryobiology 29:39–68

    Article  CAS  PubMed  Google Scholar 

  • Mukaida T, Wada S, Takahashi K, Pedro PB, An TZ, Kasai M (1998) Vitrification of human embryos based on the assessment of suitable conditions for 8-cell mouse embryos. Hum Reprod 13:2874–2879

    Article  CAS  PubMed  Google Scholar 

  • Mukaida T, Nakamura S, Tomiyama T, Wada S, Kasai M, Takahashi K (2001) Successful birth after transfer of vitrified human blastocysts with use of a Cryoloop containerless technique. Fertil Steril 76:618–623

    Article  CAS  PubMed  Google Scholar 

  • Mukaida T, Takahashi K, Kasai M (2003a) Blastocyst cryopreservation: ultrarapid vitrification using Cryoloop technique. Reprod Biomed Online 6:221–215

    Article  PubMed  Google Scholar 

  • Mukaida T, Nakamura S, Tomiyama T, Wada S, Oka C, Kasai M, Takahashi K (2003b) Vitrification of human blastocysts using Cryoloops: clinical outcome of 223 cycles. Hum Reprod 18:384–3891

    Article  CAS  PubMed  Google Scholar 

  • Mukaida T, Oka C, Goto T, Takahashi K (2006) Artificial shrinkage of blastocoeles using either a microneedle or a laser pulse prior to the cooling steps of vitrification improves survival rate and pregnancy outcome of vitrified human blastocysts. Hum Reprod 21:3246–3252

    Article  CAS  PubMed  Google Scholar 

  • Noyes N, Porcu E, Borini A (2009) Over 900 oocyte cryopreservation babies born with no apparent increase in congenital anomalies. Reprod Biomed Online 18:769–776

    Article  CAS  PubMed  Google Scholar 

  • Park SP, Kim EY, Oh JH, Nam HK, Lee KS, Park SY, Park EM, Yoon SH, Chung KS, Lim JH (2000) Ultra-rapid freezing of human multipronuclear zygotes using electron microscope grids. Hum Reprod 15:1787–1790

    Article  CAS  PubMed  Google Scholar 

  • Pinborg A, Henningsen AA, Loft A et al (2014) Large baby syndrome in singleton born after frozen embryo transfers (FET): is it due the maternal factors or the cryotechnique? Hum Reprod 29:618–627

    Article  CAS  PubMed  Google Scholar 

  • Porcu E, Fabbri R, Seracchioli R, Ciotti PM, Magrini O, Flamigni C (1997) Birth of a healthy female after intracytoplasmic sperm injection of cryopreserved human oocytes. Fertil Steril 68:724–726

    Article  CAS  PubMed  Google Scholar 

  • Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature 313:573–575

    Article  CAS  PubMed  Google Scholar 

  • Rama Raju GA, Haranath GB, Krishna KM, Prakash GJ, Madan K (2005) Vitrification of human 8-cell embryos, a modified protocol for better pregnancy rates. Reprod Biomed Online 11:434–437

    Article  PubMed  Google Scholar 

  • Rama Raju GA, Jaya Prakash G, Murali Krishna K, Madan K (2009) Neonatal outcome after vitrified day 3 embryo transfers: a preliminary study. Fertil Steril 92:143–148

    Article  PubMed  Google Scholar 

  • Seki S, Mazur P (2009) The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology 59:75–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Selman HA, El-Danasouri I (2002) Pregnancies derived from vitrified human zygotes. Fertil Steril 77:422–423

    Article  PubMed  Google Scholar 

  • Son WY, Yoon SH, Yoon HJ, Lee SM, Lim JH (2003) Pregnancy outcome following transfer of human blastocysts vitrified on electron microscopy grids after induced collapse of the blastocoele. Hum Reprod 18:137–139

    Article  CAS  PubMed  Google Scholar 

  • Surrey E, Keller J, Stevens J, Gustofson R, Minjarez D, Schoolcraft W (2010) Freeze-all: enhanced outcomes with cryopreservation at the blastocyst stage versus pronuclear stage using slow-freeze techniques. Reprod Biomed Online 21:411–417

    Article  PubMed  Google Scholar 

  • Takahashi K, Mukaida T, Goto T, Oka C (2005) Perinatal outcome of blastocyst transfer with vitrification using cryoloop: a 4-year follow-up study. Fertil Steril 84:88–92

    Article  PubMed  Google Scholar 

  • Tedder RS, Zuckerman MA, Goldstone AH, Hawkins AE, Fielding A, Briggs EM, Irwin D, Blair S, Gorman AM, Patterson KG et al (1995) Hepatitis-B transmission from contaminated cryopreservation tank. Lancet 346:137–140

    Article  CAS  PubMed  Google Scholar 

  • Trapphoff T (2015) Vitrification of oocytes: imprinting and disturbance in spindle formation and chromosome segregation, Chapter 12. In: Tucker MJ, Liebermann J (Hrsg) Vitrification in assisted reproduction, 2. Aufl. Informa Healthcare, London, S 105–116

    Google Scholar 

  • Trapphoff T, El Hajj N, Zechner U, Haaf T, Eichenlaub-Ritter U (2010) DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles. Hum Reprod 25:3025–3042

    Article  CAS  PubMed  Google Scholar 

  • Trounson A, Mohr L (1983) Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 305:707–709

    Article  CAS  PubMed  Google Scholar 

  • Tucker MJ (2003) Cryopreservation protocols. In: Patrizio P, Guelman V, Tucker MJ (Hrsg) Color atlas of human assisted reproduction: laboratory and clinical insights. Lippincott Williams & Wilkins, Philadelphia, S 257–276

    Google Scholar 

  • Tucker M, Wright G, Morton P, Shanguo L, Massey J, Kort H (1996) Preliminary experience with human oocyte cryopreservation using 1,2-propanediol and sucrose. Hum Reprod 11:1513–1515

    Article  CAS  PubMed  Google Scholar 

  • Vajta G, Holm P, Kuwayama M, Booth PJ, Jacobsen H, Greve T, Callesen H (1998) Open pulled straws (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev 51:53–85

    Article  CAS  PubMed  Google Scholar 

  • Vajta G, Kuwayama M, Vanderzwalmen P (2007) Disadvantages and benefits of vitrification. In: Tucker MJ, Liebermann J (Hrsg) Vitrification in assisted reproduction A user’s manual and troubleshooting guide. Informa UK, London, S 33–44

    Chapter  Google Scholar 

  • Van den Abbeel E, Camus M, Verheyen G, Van Waesberghe L, Devroey P, Van Steirteghem A (2005) Slow controlled-rate freezing of sequentially cultured human blastocysts: an evaluation of two freezing strategies. Hum Reprod 10:2939–2945

    Article  Google Scholar 

  • Vanderzwalmen P, Bertin G, Ch D, Standaert V, van Roosendaal E, Vandervorst M, Bollen N, Zech H, Mukaida T, Takahashi K, Schoysman R (2002) Births after vitrification at morula and blastocyst stages: effect of artificial reduction of the blastocoelic cavity before vitrification. Hum Reprod 17:744–451

    Article  PubMed  Google Scholar 

  • Vanderzwalmen P, Bertin G, Ch D, Standaert V, Bollen N, van Roosendaal E, Vandervorst M, Schoysman R, Zech N (2003) Vitrification of human blastocysts with the hemistraw carrier: application of assisted hatching after thawing. Hum Reprod 18:1501–1511

    Article  Google Scholar 

  • Vanderzwalmen P, Connan D, Grobet L et al (2013) Lower intracellular concentration of cryoprotectants aftervitrification than after slow freezing despite exposure to higher concentration of cryoprotectant solutions. Hum Reprod 28:2101–2110

    Article  CAS  PubMed  Google Scholar 

  • Walker DL, Tummon IS, Hammitt DG, Session DR, Dumesic DA, Thornhill AR (2004) Vitrification versus programmable rate freezing of late stage murine embryos: a randomized comparison prior to application in clinical IVF. Reprod Biomed Online 8:558–568

    Article  PubMed  Google Scholar 

  • Wennerholm UB, Soderstrom-Anttila V, Bergh C, Aittomäki K, Hazekamp J, Nygren KG, Selbing A, Loft A (2009) Children born after cryopreservation of embryos or oocytes: a systematic review of outcome data. Hum Reprod 24:2158–2172

    Article  PubMed  Google Scholar 

  • Whittingham DG (1977) Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at −196 °C. J Reprod Fertil 49:89–94

    Article  CAS  PubMed  Google Scholar 

  • Whittingham DG, Leibo SP, Mazur P (1972) Survival of mouse embryos frozen to −196° and −289 °C. Science 178:411–414

    Article  CAS  PubMed  Google Scholar 

  • Yoon TK, Chung HM, Lim JM, Han SY, Ko JJ, Cha KY (2000) Pregnancy and delivery of healthy infants developed from vitrified oocytes in a stimulated in vitro fertilization-embryo transfer program [letter]. Fertil Steril 74:180–181

    Article  CAS  PubMed  Google Scholar 

  • Youssry M, Ozmen B, Zohni K, Diedrich K, Al-Hasani S (2008) Current aspects of blastocyst cryopreservation. Reprod Biomed Online 16:311–320

    Article  CAS  PubMed  Google Scholar 

  • Zeilmaker GH, Alberda AT, van Gent I, Rijkmans CM, Drogendijk AC (1984) Two pregnancies following transfer of intact frozen-thawed embryos. Fertil Steril 42:293–296

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Liebermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liebermann, J. (2020). Kryokonservierung. In: Diedrich, K., Ludwig, M., Griesinger, G. (eds) Reproduktionsmedizin. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57636-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57636-6_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57635-9

  • Online ISBN: 978-3-662-57636-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics