Skip to main content
Log in

Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos

  • Published:
Cell Biophysics Aims and scope Submit manuscript

Abstract

The first successful freezing of early embryos to −196°C in 1972 required that they be cooled slowly at ∼1°C/min to about −70°C. Subsequent observations and physical/chemical analyses indicate that embryos cooled at that rate dehydrate sufficiently to maintain the chemical potential of their intracellular water close to that of the water in the partly frozen extracellular solution. Consequently, such slow freezing is referred to as equilibrium freezing. In 1972 and since, a number of investigators have studied the responses of embryos to departures from equilibrium freezing. When disequilibrium is achieved by the use of higher constant cooling rates to −70°C, the result is usually intracellular ice formation and embryo death. That result is quantitatively in accord with the predictions of the physical/chemical analysis of the kinetics of water loss as a function of cooling rate. However, other procedures involving rapid nonequilibrium cooling do not result in high mortality. One common element in these other nonequilibrium procedures is that, before the temperature has dropped to a level that permits intracellular ice formation, the embryo water content is reduced to the point at which the subsequent rapid nonequilibrium cooling results in either the formation of small innocuous intracellular ice crystals or the conversion of the intracellular solution into a glass. In both cases, high survival requires that subsequent warming be rapid, to prevent recrystallization or devitrification. The physical/ chemical analysis developed for initially nondehydrated cells appears generally applicable to these other nonequilibrium procedures as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mazur, P. (1977),Cryobiology 14, 251–272.

    Article  PubMed  CAS  Google Scholar 

  2. Mazur, P. (1966),Cryobiology, Meryman, H. T., ed., Academic, London, pp. 213–315.

    Google Scholar 

  3. Mazur, P. (1963),J. Gen. Physiol. 47, 347–369.

    Article  PubMed  CAS  Google Scholar 

  4. Mazur, P., Rall, W. F. and Leibo, S. P. (1984),Cell Biophys. 6, 197–213.

    PubMed  CAS  Google Scholar 

  5. Scheiwe, M. W. and Körber, C. (1983),Cryobiology 20, 257–273.

    Article  PubMed  CAS  Google Scholar 

  6. Armitage, W. J. (1986),J. Physiol. 374, 375–385.

    PubMed  CAS  Google Scholar 

  7. Shabana, M. and McGrath, J. J. (1988),Cryobiology 25, 338–354.

    Article  PubMed  CAS  Google Scholar 

  8. Rule, G. S., Law, P., Kruuv, J. and Lepock, J. R. (1980),J. Cell. Physiol. 103, 407–416.

    Article  PubMed  CAS  Google Scholar 

  9. Hempling, H. G. and White, S. (1984),Cryobiology 21, 133–143.

    Article  PubMed  CAS  Google Scholar 

  10. Papanek, T. H. (1978), PhD Thesis, MIT.

  11. Leibo, S. P. (1980),J. Membr. Biol. 53, 179–188.

    Article  PubMed  CAS  Google Scholar 

  12. Aggarwal, S. J., Diller, K. R. and Baxter, C. R. (1988),Cryobiology 25, 203–211.

    Article  PubMed  CAS  Google Scholar 

  13. Scatchard, G., Hamer, W. J. and Wood, S. E. (1938),J. Amer. Chem. Soc. 60, 3061–3070.

    Article  CAS  Google Scholar 

  14. Abramczuk, J. and Sawicki, W. (1974),J. Exp. Zool. 188, 25–34.

    Article  PubMed  CAS  Google Scholar 

  15. Rall, W. F., Mazur, P. and McGrath, J. J. (1983),Biophys. J. 41, 1–12.

    Article  PubMed  CAS  Google Scholar 

  16. Leibo, S. P., McGrath, J. J. and Cravalho, E. G. (1978),Cryobiology 15, 257–271.

    Article  PubMed  CAS  Google Scholar 

  17. Leibo, S. P. (1986),Genetic Engineering of Animals. An Agricultural Prospective. Evans, J. W. and Hollaender, A., eds., Plenum, New York, pp. 251–272.

    Google Scholar 

  18. Mazur, P. and Schneider, U. (1986),Cell Biophys. 8, 259–284.

    PubMed  CAS  Google Scholar 

  19. Ostashko, F. I., Bezugly, N. D., and Pevedera, K. B. (1984),10th International Congress on Animal Reproduction and Artificial Insemination, June 1984, University of Illinois, p. 210.

  20. Leibo, S. P. (1977),Cryoimmunologie. Simatos, D., Strong, D.M., and Turc, J.-M., eds., INSERM, Paris, pp. 311–334.

    Google Scholar 

  21. Pitt, R. E. and Steponkus, P. L. (1989),Cryobiology 26, 44–63.

    Article  PubMed  CAS  Google Scholar 

  22. Mazur, P. (1984),Am. J. Physiol. 247, C125-C142.

    PubMed  CAS  Google Scholar 

  23. Whittingham, D. G., Leibo, S. P. and Mazur, P. (1972),Science 178, 411–414.

    Article  PubMed  CAS  Google Scholar 

  24. Wilmut, I. (1972),Life Sci. 11, 1071–1079.

    Article  CAS  Google Scholar 

  25. Leibo, S. P., Mazur, P. and Jackowski, S. C. (1974),Exp. Cell Res. 89, 79–88.

    Article  PubMed  CAS  Google Scholar 

  26. Whittingham, D. G., Wood, M., Farrant, J., Lee, H. and Halsey, J. A. (1979),J. Reprod. Fertil. 56, 11–21.

    PubMed  CAS  Google Scholar 

  27. Miyamoto, H. and Ishibashi, T. (1983),J. Exp. Zool. 226, 123–127.

    Article  PubMed  CAS  Google Scholar 

  28. Rall, W. F. and Polge, C. (1984),J. Reprod. Fertil. 70, 285–292.

    PubMed  CAS  Google Scholar 

  29. Bank, H. (1973),Cryobiology 10, 157–170.

    Article  PubMed  CAS  Google Scholar 

  30. Rall, W. F. (1981),Frozen Storage of Laboratory Animals, Zeilmaker, G. H., ed., Gustav Fischer Verlag, Stuttgart, pp. 33–44.

    Google Scholar 

  31. Rall, W. F., Reid, D. S. and Polge, C. (1984),Cryobiology 21, 106–121.

    Article  PubMed  CAS  Google Scholar 

  32. Fahy, G. M. (1987),The Biophysics of Organ Cryopreservation, Pegg, D. E. and Karow, A. M. Jr., eds., Plenum, New York, pp. 265–297.

    Google Scholar 

  33. Leibo, S. P. and Mazur, P. (1978),Methods in Mammalian Reproduction, Daniel, J. C. Jr., ed., Academic, New York. pp. 179–201.

    Google Scholar 

  34. Takeda, T., Elsden, R. P. and Seidel, G. E., Jr. (1984),Theriogenology 21, 266.

    Article  Google Scholar 

  35. Williams, T. J. and Johnson, S. E. (1986),Theriogenology 26, 125–133.

    Article  PubMed  CAS  Google Scholar 

  36. Széll, A. and Shelton, J. N. (1986),J. Reprod. Fertil. 76, 401–408.

    PubMed  Google Scholar 

  37. Daniels, F., Mathews, J. H., Williams, J. W., Bender, P. and Alberty, R. A. (1956),Experimental Physical Chemistry, 5th ed., McGraw Hill, New York, p. 90.

    Google Scholar 

  38. Mazur, P., Leibo, S. P. and Miller, R. H. (1974),J. Membr. Biol. 15, 107–136.

    Article  PubMed  CAS  Google Scholar 

  39. Mazur, P., Rigopoulos, N., Jackowski, S. C. and Leibo, S. P. (1976),Biophys. J. 16, 232a.

    Google Scholar 

  40. Jackowski, S., Leibo, S. P. and Mazur, P. (1980),J. Exp. Zool. 212, 329–341.

    Article  CAS  PubMed  Google Scholar 

  41. Stein, W. D. (1967),The Movement of Molecules Across Cell Membranes, Academic, New York, p. 48.

    Google Scholar 

  42. Kedem, O. and Katchalsky, A. (1958),Biochim. Biophys. Acta 27, 229–246.

    Article  PubMed  CAS  Google Scholar 

  43. Rall, W. F. (1987),Cryobiology 24, 387–402.

    Article  PubMed  CAS  Google Scholar 

  44. Rall, W. F. and Fahy, G. M. (1985),Nature 313, 573–575.

    Article  PubMed  CAS  Google Scholar 

  45. Shimada, K. (1977),Contrib. Inst. Low Temp. Sci. Ser.B 19, 49–69.

    CAS  Google Scholar 

  46. Széll, A. and Shelton, J. N. (1986),J. Reprod. Fertil. 78, 699–703.

    PubMed  Google Scholar 

  47. Trounson, A., Peura, A., Freemann, L. and Kirby, C. (1988),Fertil. Steril. 49, 822–826.

    PubMed  CAS  Google Scholar 

  48. Miyamoto, H. and Ishibashi, T. (1986),J. Reprod. Fertil. 78, 471–478.

    PubMed  CAS  Google Scholar 

  49. Kasai, M., Niwa, K. and Iritani, A. (1981),J. Reprod. Fertil. 63, 175–180.

    PubMed  CAS  Google Scholar 

  50. Wood, M. J. and Farrant, J. (1980),Cryobiology 17, 178–180.

    Article  PubMed  CAS  Google Scholar 

  51. Kasai, M., Niwa, K. and Iritani, A. (1980),J. Reprod. Fertil. 59, 51–56.

    PubMed  CAS  Google Scholar 

  52. Renard, J.-P., Nguyen, Bui-Xuan and Garnier, V. (1984),J. Reprod. Fertil. 71, 573–580.

    Article  PubMed  CAS  Google Scholar 

  53. Canham, P. B. (1970),J. Cell. Physiol. 74, 203–212.

    Article  Google Scholar 

  54. Evans, E. A. and Parsegian, V. A. (1983),Annals NY Acad. Sci. 416, 13–33.

    Article  CAS  Google Scholar 

  55. Jackowski, S. and Dumont, J. N. (1979),Biol. Reprod. 20, 150–161.

    Article  PubMed  CAS  Google Scholar 

  56. Steponkus, P. L. and Wiest, S. C. (1979),The Role of the Membrane, Lyons, J. M., Graham, D. and Raison, J. K., eds., Academic, New York, pp. 231–254.

    Google Scholar 

  57. Essner, E., Lin, W.-L. and Gordon, S. (1986),Cell Tissue Res. 245, 431–437.

    Article  PubMed  CAS  Google Scholar 

  58. Armitage, W. J. and Mazur, P. (1984),Amer. J. Physiol. 247 (Cell Physiol. 16):C373-C381.

    PubMed  CAS  Google Scholar 

  59. Lehtonen, E. (1980),J. Embryol. Exp. Morphol. 58, 231–249.

    PubMed  CAS  Google Scholar 

  60. Myers, S. P., Lin, T.-T., Pitt, R. E. and Steponkus, P. L. (1987),Cryo. Lett. 8, 260–275.

    Google Scholar 

  61. Lehn-Jensen, H. and Rall, W. F. (1983),Theriogenology 19, 263–277.

    Article  PubMed  CAS  Google Scholar 

  62. Leibo, S. P., Dowgert, M. F. and Steponkus, P. L. (1984),Cryobiology 21, 711.

    Google Scholar 

  63. Rassmussen, D. H. and MacKenzie, A. P. (1972),Water Structure at the Water-Polymer Interface, Jellinek, H. H. G., ed., Plenum, New York, pp. 126–145.

    Google Scholar 

  64. Luyet, B. J. (1966),Cryobiology., Meryman, H. T., ed., Academic, London, pp. 115–138.

    Google Scholar 

  65. Fahy, G. M., MacFarlane, D. R., Angell, C. A. and Meryman, H. T. (1984),Cryobiology 21, 407–426.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazur, P. Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos. Cell Biophysics 17, 53–92 (1990). https://doi.org/10.1007/BF02989804

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02989804

Index Entries

Navigation