Skip to main content
Log in

Osmotic responses of preimplantation mouse and bovine embryos and their cryobiological implications

  • Original Articles
  • Published:
Cell Biophysics Aims and scope Submit manuscript

Abstract

Cells subjected to the events occurring before, during, and after freezing and thawing are exposed to major changes in the osmotic pressure of the surrounding medium; i.e., the osmolalities can exceed 30. An important question in understanding the mechanisms of injury is whether cells respond as ideal osmometers to these strongly anisotonic solutions. Mouse and bovine embryos from eight-cell to blastocyst stage were used to investigate the question. They were found to behave as ideal osmometers at room temperature over a wide range of tonicities; i.e., from four times isotonic to almost 1/3 times isotonic, ideality being defined by a Boyle-van't Hoff equation. Embryo volumes increased from 40 to 200% of isotonic over this range and survivals of mouse embryos were unaffected. However, outside this range the membrane apparently becomes leaky and the survival of mouse embryos drops sharply. Osmolalities rise to high values during freezing and the paper develops the thermodynamic equations to show how computed cell volumes as a function of subzero temperature can be translated into the Boyle-van't Hoff format of cell volume as a function of the reciprocal of osmolality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mazur, P. (1963),J. Gen. Physiol. 47, 347.

    Article  PubMed  CAS  Google Scholar 

  2. Mazur, P. (1984),Am. J. Physiol. 247, (Cell Physiol. 16), C125.

    Google Scholar 

  3. Pegg, D. E. (1984),Cryobiology 21, 234.

    Article  PubMed  CAS  Google Scholar 

  4. Schneider, U., and Mazur, P. (1984),Theriogenology 21, 68.

    Article  CAS  Google Scholar 

  5. Leibo, S. P. (1980),J. Membrane Biol. 53, 179.

    Article  CAS  Google Scholar 

  6. Rall, W. F. (1980), Data published in Leibo, 1980.

  7. Schneider, U., and Mazur, P. (1986), inCurrent Theory in Theriogenology II, (D. Morrow, ed.), W. B. Saunders, Philadelphia (in press).

    Google Scholar 

  8. Schneider, U., and Hahn, J. (1979),Theriogenology,11, 108.

    Article  Google Scholar 

  9. nicolson, G. L., Yanagimachi, R., and Yanagimachi, H. (1975),J. Cell Biol. 66, 263.

    Article  PubMed  CAS  Google Scholar 

  10. Robinson, R. A., and Stokes, R. H. (1959), Electrolyte Solutions, Academic, London.

    Google Scholar 

  11. Armitage, W. J., and Mazur, P. (1984),Am. J. Physiol. 247 (Cell Physiol. 16), C373.

    PubMed  CAS  Google Scholar 

  12. Dainty, J. (1965),Symposia, Soc. Exper. Biol. No. 19, Academic, New York, p. 75.

    Google Scholar 

  13. Leibo, S. P. (1984),Cryobiology 21, 711.

    Google Scholar 

  14. Abramczuk, J., and Sawicki, W. (1974),J. Exp. Zool. 188, 25.

    Article  PubMed  CAS  Google Scholar 

  15. Lehtonen, E. (1980),J. Embryol. Exp. Morph. 58, 231.

    PubMed  CAS  Google Scholar 

  16. Mohr, L. R., and Trounson, A. O. (1982),J. Reprod. Fert. 66, 499.

    Article  CAS  Google Scholar 

  17. Bagge, U. (1970), Granulocyte Rheology, inBlood Cells 2, 481.

  18. Knutton, S., Jackson, D., Graham, J. M., Micklem, K. J., and Pasternak, C. A. (1976),Nature 262, 52.

    Article  PubMed  CAS  Google Scholar 

  19. Schmid-Schönbein, G. W., Shih, Y. Y., and Chein, S. (1980),Blood 56, 866.

    PubMed  Google Scholar 

  20. Ponder, E. (1948), inHemolysis and Related Phenomena Grune and Stratton, New York.

    Google Scholar 

  21. Dick, D. A. T. (1966)Cell Water, Butterworths, Washington.

    Google Scholar 

  22. Savitz, D., Sidel, V. W., and Solomon, A. K. (1964),J. Gen. Physiol. 48, 79.

    Article  PubMed  CAS  Google Scholar 

  23. Cook, J. S. (1967),J. Gen. Physiol. 50, 1311.

    Article  PubMed  CAS  Google Scholar 

  24. Gary-Bobo, C. M., and Solomon, A. K. (1968),J. Gen. Physiol. 52, 825.

    Article  PubMed  CAS  Google Scholar 

  25. Derbyshire, W. (1982), inWater, a Comprehensive Treatise, vol. 7,Water and Aqueous Solutions at Subzero Temperatures, Franks, F., ed.), Plenum, New York, p. 339.

    Google Scholar 

  26. Wood, T. H., and Rosenberg, A. M. (1957),Biochim. Biophys. Acta 25, 78.

    Article  PubMed  CAS  Google Scholar 

  27. Koga, S., Echigo, A., and Nunomura, K. (1966),Biophys. J. 6, 665.

    Article  PubMed  CAS  Google Scholar 

  28. Hladky, S. B., and Rink T. J. (1978),J. Physiol. 274, 437.

    PubMed  CAS  Google Scholar 

  29. Freedman, J. C., and Hoffman, J. F. (1979),J. Gen. Physiol. 74, 157.

    Article  PubMed  CAS  Google Scholar 

  30. Seeman, P., Sauks, T., Argent, W., and Kwant, W. O. (1969),Biochim. Biophys. Acta. 183, 476.

    Article  PubMed  CAS  Google Scholar 

  31. Mazur, P., and Miller, R. H. (1976),Cryobiology 13, 507.

    Article  PubMed  CAS  Google Scholar 

  32. Mazur, P., and Rigopoulos, N. (1983),Cryobiology 20, 274.

    Article  PubMed  CAS  Google Scholar 

  33. Mazur, P., Rall, W. F., and Leibo, S. P. (1984),Cell Biophysics 6, 197.

    PubMed  CAS  Google Scholar 

  34. Scatchard, G., Hamer, W. J., and Wood S. E. (1938),J. Amer. Chem. Soc. 60, 3061.

    Article  CAS  Google Scholar 

  35. Glasstone, S. (1946), Textbook of Physical Chemistry, 2nd Ed., D. van Nostrand, New York.

    Google Scholar 

  36. Leibo, S. P. (1977), inThe Freezing of Mammalian Embryos. Ciba Foundation Symposium 52 (New Series), Elsevier, Netherlands, p. 69.

    Google Scholar 

  37. Lehn-Jensen, H., and Rall, W. F. (1983),Theriogenology 19, 263.

    Article  PubMed  CAS  Google Scholar 

  38. Leibo, S. P. (1984),Theriogenology 21, 767.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazur, P., Schneider, U. Osmotic responses of preimplantation mouse and bovine embryos and their cryobiological implications. Cell Biophysics 8, 259–285 (1986). https://doi.org/10.1007/BF02788516

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788516

Index Entries

Navigation