Skip to main content

Role of Functional MRI in the Management of Liver Metastases

  • Chapter
  • First Online:
Functional Imaging in Oncology

Abstract

Liver metastases are among the most common malignant liver lesions. Treatment options for liver metastases vary widely and depend mainly on imaging findings. Liver imaging in patients with liver metastases involves detection, characterization, staging, pretreatment evaluation, and assessment of response to treatment of metastases. In this chapter, we will discuss the role of MRI with special emphasis on functional techniques (diffusion-weighted imaging and dynamic contrast-enhanced imaging) for the diagnosis and management of liver metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

AUC:

Area under the curve

CRC:

Colorectal cancer

DCE:

Dynamic contrast enhancement

DWI:

Diffusion-weighted imaging

FSE:

Fast spin echo

GBCA:

Gadolinium-based contrast agent

HCC:

Hepatocellular carcinoma

HPI:

Hepatic perfusion index

IVIM:

Intravoxel incoherent motion

MRI:

Magnetic resonance imaging

RECIST:

Response Evaluation Criteria in Solid Tumors

RT-DWI:

Respiratory-triggered DWI

SI:

Signal intensity

SNR:

Signal-to-noise ratio

SPIO:

Superparamagnetic iron oxide

T1WI:

T1-weighted image

T2WI:

T2-weighted image

TTP:

Time to peak

References

  1. Price JB, et al. Operative hemodynamic studies in portal hypertension significance and limitations. Arch Surg. 1967;95:843–52.

    Article  PubMed  Google Scholar 

  2. Ternberg JL, Butcher HR. Blood-flow relation between hepatic artery and portal vein. Science. 1965;150:1030–1.

    Article  CAS  PubMed  Google Scholar 

  3. Robinson P. Imaging liver metastases: current limitations and future prospects. Br J Radiol. 2000;73:234–41.

    CAS  PubMed  Google Scholar 

  4. Kasper HU, et al. Lebermetastasen: Inzidenz und histogenetische Einordnung. Z Gastroenterol. 2005;43:1149–57.

    Article  PubMed  Google Scholar 

  5. Baker ME, Pelley R. Hepatic metastases: basic principles and implications for radiologists. Radiology. 1995;197:329–37.

    CAS  PubMed  Google Scholar 

  6. Ruers T, Bleichrodt RP. Treatment of liver metastases, an update on the possibilities and results. Eur J Cancer. 2002;38:1023–33.

    Article  CAS  PubMed  Google Scholar 

  7. Sharma U, et al. Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. NMR Biomed. 2009;22:104–13.

    Article  PubMed  Google Scholar 

  8. Ravikumar TS, Steele Jr GD. Hepatic cryosurgery. Surg Clin North Am. 1989;69:433–40.

    CAS  PubMed  Google Scholar 

  9. Elsayes KM, et al. Focal hepatic lesions: diagnostic value of enhancement pattern approach with contrast-enhanced 3D gradient-echo MR imaging. Radiographics. 2005;25:1299–320.

    Article  PubMed  Google Scholar 

  10. Quillin SP, et al. Characterization of focal hepatic masses by dynamic contrast-enhanced MR imaging: findings in 311 lesions. Magn Reson Imaging. 1997;15:275–85.

    Article  CAS  PubMed  Google Scholar 

  11. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288–92.

    Article  CAS  Google Scholar 

  12. Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.

    PubMed  Google Scholar 

  13. Pagani E, et al. Basic concepts of advanced MRI techniques. Neurol Sci. 2008;29:290–5.

    Article  PubMed  Google Scholar 

  14. Qayyum A. Diffusion-weighted imaging in the abdomen and pelvis: concepts and applications. Radiographics. 2009;29:1797–810.

    Article  PubMed  Google Scholar 

  15. Taouli B, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology. 2003;226:71–8.

    Article  PubMed  Google Scholar 

  16. Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology. 2010;254:47–66.

    Article  PubMed  Google Scholar 

  17. Le Bihan D. Intravoxel incoherent motion imaging using steady-state free precession. Magn Reson Med. 1988;7:346–51.

    Article  PubMed  Google Scholar 

  18. Luciani A, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging–pilot study. Radiology. 2008;249:891–9.

    Article  PubMed  Google Scholar 

  19. Patel J, et al. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging. 2010;31:589–600.

    Article  PubMed  Google Scholar 

  20. Guiu B, et al. Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0-T MR study. Radiology. 2012;265:96–103.

    Article  PubMed  Google Scholar 

  21. Dyvorne HA, et al. Diffusion-weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters – a pilot study. Radiology. 2013;266:920–9.

    Article  PubMed  Google Scholar 

  22. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188:1622–35.

    Article  PubMed  Google Scholar 

  23. Taouli B, et al. Diffusion-weighted imaging of the liver: comparison of navigator triggered and breathhold acquisitions. J Magn Reson Imaging. 2009;30:561–8.

    Article  PubMed  Google Scholar 

  24. Kandpal H, et al. Respiratory-triggered versus breath-hold diffusion-weighted MRI of liver lesions: comparison of image quality and apparent diffusion coefficient values. AJR Am J Roentgenol. 2009;192:915–22.

    Article  PubMed  Google Scholar 

  25. Parikh T, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology. 2008;246:812–22.

    Article  PubMed  Google Scholar 

  26. Dietrich O, et al. Noise correction for the exact determination of apparent diffusion coefficients at low SNR. Magn Reson Med. 2001;45:448–53.

    Article  CAS  PubMed  Google Scholar 

  27. Nasu K, et al. Hepatic pseudo-anisotropy: a specific artifact in hepatic diffusion-weighted images obtained with respiratory triggering. MAGMA. 2007;20:205–11.

    Article  PubMed  Google Scholar 

  28. Nasu K, et al. Hepatic metastases: diffusion-weighted sensitivity-encoding versus SPIO-enhanced MR imaging. Radiology. 2006;239:122–30.

    Article  PubMed  Google Scholar 

  29. Bittencourt LK, et al. Diffusion-weighted magnetic resonance imaging in the upper abdomen: technical issues and clinical applications. Magn Reson Imaging Clin N Am. 2011;19:111.

    Article  PubMed  Google Scholar 

  30. Taouli B, et al. Parallel imaging and diffusion tensor imaging for diffusion-weighted MRI of the liver: preliminary experience in healthy volunteers. AJR Am J Roentgenol. 2004;183:677–80.

    Article  PubMed  Google Scholar 

  31. Bruegel M, et al. Diagnosis of hepatic metastasis: comparison of respiration-triggered diffusion-weighted echo-planar MRI and five t2-weighted turbo spin-echo sequences. AJR Am J Roentgenol. 2008;191:1421–9.

    Article  PubMed  Google Scholar 

  32. Coenegrachts K, et al. Evaluation of true diffusion, perfusion factor, and apparent diffusion coefficient in non-necrotic liver metastases and uncomplicated liver hemangiomas using black-blood echo planar imaging. Eur J Radiol. 2009;69:131–8.

    Article  PubMed  Google Scholar 

  33. Low RN, Gurney J. Diffusion-weighted MRI (DWI) in the oncology patient: value of breathhold DWI compared to unenhanced and gadolinium-enhanced MRI. J Magn Reson Imaging. 2007;25:848–58.

    Article  PubMed  Google Scholar 

  34. Moteki T, Sekine T. Echo planar MR imaging of the liver: comparison of images with and without motion probing gradients. J Magn Reson Imaging. 2004;19:82–90.

    Article  PubMed  Google Scholar 

  35. Okada Y, et al. Breath-hold T2-weighted MRI of hepatic tumors: value of echo planar imaging with diffusion-sensitizing gradient. J Comput Assist Tomogr. 1998;22:364–71.

    Article  CAS  PubMed  Google Scholar 

  36. Zech CJ, et al. Black-blood diffusion-weighted EPI acquisition of the liver with parallel imaging: comparison with a standard T2-weighted sequence for detection of focal liver lesions. Invest Radiol. 2008;43:261–6.

    Article  PubMed  Google Scholar 

  37. Hussain SM, et al. Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study. J Magn Reson Imaging. 2005;21:219–29.

    Article  PubMed  Google Scholar 

  38. Coenegrachts K, et al. Improved focal liver lesion detection: comparison of single-shot diffusion-weighted echoplanar and single-shot T2 weighted turbo spin echo techniques. Br J Radiol. 2007;80:524–31.

    Article  CAS  PubMed  Google Scholar 

  39. Nasu K, et al. The effect of simultaneous use of respiratory triggering in diffusion-weighted imaging of the liver. Magn Reson Med Sci. 2006;5:129–36.

    Article  PubMed  Google Scholar 

  40. Koh DM, et al. Detection of colorectal hepatic metastases using MnDPDP MR imaging and diffusion-weighted imaging (DWI) alone and in combination. Eur Radiol. 2008;18:903–10.

    Article  CAS  PubMed  Google Scholar 

  41. Hardie AD, et al. Diagnosis of liver metastases: value of diffusion-weighted MRI compared with gadolinium-enhanced MRI. Eur Radiol. 2010;20:1431–41.

    Article  PubMed  Google Scholar 

  42. Löwenthal D, et al. Detection and characterisation of focal liver lesions in colorectal carcinoma patients: comparison of diffusion-weighted and Gd-EOB-DTPA enhanced MR imaging. Eur Radiol. 2011;21:832–40.

    Article  PubMed  Google Scholar 

  43. Shimada K, et al. Comparison of gadolinium-EOB-DTPA-enhanced and diffusion-weighted liver MRI for detection of small hepatic metastases. Eur Radiol. 2010;20:2690–8.

    Article  PubMed  Google Scholar 

  44. Holzapfel K, et al. Characterization of small (</=10mm) focal liver lesions: Value of respiratory-triggered echo-planar diffusion-weighted MR imaging. Eur J Radiol. 2010;76:89–95.

    Article  PubMed  Google Scholar 

  45. Ichikawa T, et al. Characterization of hepatic lesions by perfusion-weighted MR imaging with an echoplanar sequence. AJR Am J Roentgenol. 1998;170:1029–34.

    Article  CAS  PubMed  Google Scholar 

  46. Chandarana H, Taouli B. Diffusion-weighted MRI and liver metastases. Magn Reson Imaging Clin N Am. 2010;18:451.

    Article  PubMed  Google Scholar 

  47. Kim T, et al. Diffusion-weighted single-shot echoplanar MR imaging for liver disease. AJR Am J Roentgenol. 1999;173:393–8.

    Article  CAS  PubMed  Google Scholar 

  48. Namimoto T, et al. Focal liver masses: characterization with diffusion-weighted echo-planar MR imaging. Radiology. 1997;204:739–44.

    CAS  PubMed  Google Scholar 

  49. Bruegel M, et al. Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol. 2008;18:477–85.

    Article  PubMed  Google Scholar 

  50. Coenegrachts K, et al. Focal liver lesion detection and characterization: comparison of non-contrast enhanced and SPIO-enhanced diffusion-weighted single-shot spin echo echo planar and turbo spin echo T2-weighted imaging. Eur J Radiol. 2008;72:432–9.

    Article  PubMed  Google Scholar 

  51. Goshima S, et al. Diffusion-weighted imaging of the liver: optimizing b value for the detection and characterization of benign and malignant hepatic lesions. J Magn Reson Imaging. 2008;28:691–7.

    Article  PubMed  Google Scholar 

  52. Gourtsoyianni S, et al. Respiratory gated diffusion-weighted imaging of the liver: value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions. Eur Radiol. 2008;18:486–92.

    Article  PubMed  Google Scholar 

  53. Agnello F, et al. High-b-value diffusion-weighted MR imaging of benign hepatocellular lesions: quantitative and qualitative analysis. Radiology. 2012;262:511–9.

    Article  PubMed  Google Scholar 

  54. Yamada I, et al. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology. 1999;210:617–23.

    Article  CAS  PubMed  Google Scholar 

  55. Eisenhauer E, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    Article  CAS  PubMed  Google Scholar 

  56. Moffat BA, et al. The functional diffusion map: an imaging biomarker for the early prediction of cancer treatment outcome. Neoplasia. 2006;8:259.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Hamstra DA, et al. Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol. 2007;25:4104–9.

    Article  PubMed  Google Scholar 

  58. Cui Y, et al. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology. 2008;248:894–900.

    Article  PubMed  Google Scholar 

  59. Koh DM, et al. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol. 2007;188:1001–8.

    Article  PubMed  Google Scholar 

  60. Theilmann RJ, et al. Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy. Neoplasia. 2004;6:831–7.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Do RK, et al. Dynamic contrast-enhanced MR imaging of the liver: current status and future directions. Magn Reson Imaging Clin N Am. 2009;17:339–49.

    Article  PubMed  Google Scholar 

  62. Alberts SR, Wagman LD. Chemotherapy for colorectal cancer liver metastases. Oncologist. 2008;6:6.

    Google Scholar 

  63. Hagiwara M, et al. Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging – initial experience. Radiology. 2008;246:926–34.

    Article  PubMed  Google Scholar 

  64. Ivancevic MK, et al. Inflow effect in first-pass cardiac and renal MRI. J Magn Reson Imaging. 2003;18:372–6.

    Article  PubMed  Google Scholar 

  65. Koh TS, et al. Hepatic metastases: in vivo assessment of perfusion parameters at dynamic contrast-enhanced MR imaging with dual-input two-compartment tracer kinetics model. Radiology. 2008;249:307–20.

    Article  PubMed  Google Scholar 

  66. Morgan B, et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol. 2003;21:3955–64.

    Article  CAS  PubMed  Google Scholar 

  67. van Laarhoven HW, et al. Method for quantitation of dynamic MRI contrast agent uptake in colorectal liver metastases. J Magn Reson Imaging. 2003;18:315–20.

    Article  PubMed  Google Scholar 

  68. Miyazaki K, et al. Quantitative mapping of hepatic perfusion index using MR imaging: a potential reproducible tool for assessing tumour response to treatment with the antiangiogenic compound BIBF 1120, a potent triple angiokinase inhibitor. Eur Radiol. 2008;18:1414–21.

    Article  PubMed  Google Scholar 

  69. Totman JJ, et al. Comparison of the hepatic perfusion index measured with gadolinium-enhanced volumetric MRI in controls and in patients with colorectal cancer. Br J Radiol. 2005;78:105–9.

    Article  CAS  PubMed  Google Scholar 

  70. Miyazaki K, et al. Neuroendocrine tumor liver metastases: use of dynamic contrast-enhanced MR imaging to monitor and predict radiolabeled octreotide therapy response. Radiology. 2012;263:139–48.

    Article  PubMed  Google Scholar 

  71. Abdullah SS, et al. Characterization of hepatocellular carcinoma and colorectal liver metastasis by means of perfusion MRI. J Magn Reson Imaging. 2008;28:390–5.

    Article  PubMed  Google Scholar 

  72. Taouli B, Koh D. Diffusion-weighted MR Imaging of the liver. Radiology. 2010;254:47–66.

    Article  PubMed  Google Scholar 

  73. Luna A, Luna L. DWI of the liver. In: Luna A et al., editors. Diffusion MRI outside the brain. Berlin: Springer; 2012.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Kayat Bittencourt MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bittencourt, L.K., de Oliveira, R.V., Taouli, B. (2014). Role of Functional MRI in the Management of Liver Metastases. In: Luna, A., Vilanova, J., Hygino Da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40582-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40582-2_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40581-5

  • Online ISBN: 978-3-642-40582-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics