Skip to main content

Diffusion-Weighted MR Imaging

  • Chapter
  • First Online:
Functional Imaging in Oncology

Abstract

MRI is an attractive imaging modality in oncology owing to its lack of ionising radiation and exquisite soft tissue contrast. While conventional MRI provides invaluable morphological information, it gives little functional information. Diffusion-weighted MRI (DW-MRI) derives its contrast from the movement of water molecules in the tissue microenvironment and thus provides an insight into tissue cellularity and architecture.

Einstein formalised the mathematical description of Brownian motion in 1905, but it was not until 1965 that water diffusion in nuclear magnetic resonance (NMR) was studied and described by Stejskal and Tanner. It took another 20 years for DW-MRI to be employed clinically. Among the first clinical application, DW-MRI was used to evaluate ischaemic stroke. Its utility soon broadened to include brain tumours, and the technological advances in the last decade have enabled its use in extracranial malignancies. DW-MRI is quick to perform and non-invasive and can be applied for lesion detection, disease characterisation and assessment of treatment response. Quantitative measurements derived from DW-MRI are potential imaging biomarkers to predict likelihood of treatment response and prognosis in oncology.

In this chapter, we will review the principles of DW-MR imaging, its technical considerations, image interpretation and its broad application in oncology. Discussions related to DW-MRI in specific diseases will be reviewed in subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

AP:

Anterior-posterior

CT:

Computed tomography

D :

Tissue diffusivity

D*:

Pseudodiffusion coefficient

DDC:

Distributed diffusion coefficient

DWIBS:

Diffusion weighted imaging with body signal suppression

DW-MRI:

Diffusion weighted MRI

EPI:

Echo-planar imaging

18F:

18Fluorine

FDG:

Fluoro-2-deoxy-d-glucose

fDM:

Functional diffusion map

f V :

Fractional volume of flowing water molecules within the capillaries

GRAPPA:

Generalized Autocalibrating Partially Parallel Acquisition

IR:

Inversion recovery

IVIM:

Intravoxel incoherent motion

MPG:

Motion probing gradients

PET:

Positron emission tomography

ROI:

Region of interest

SENSE:

Sensitivity encoding

SNR:

Signal-to-noise ratio

SPAIR:

Spectral attenuated inversion recovery

TR:

Repetition time

α :

Stretching parameter

References

  1. Einstein A. Investigations on the theory of the brownian movement. Mineola: Dover Publications Inc.; 2003.

    Google Scholar 

  2. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42(1):288–92.

    Article  CAS  Google Scholar 

  3. Le Bihan D, Breton E. Imagerie de diffusion in-vivo par résonance. C R Acad Sci. 1985;301(15):1109–12.

    Google Scholar 

  4. Le Bihan D, et al. Diffusion MR imaging: clinical applications. AJR Am J Roentgenol. 1992;159(3):591–9.

    Article  PubMed  Google Scholar 

  5. Provenzale JM, Sorensen AG. Diffusion-weighted MR imaging in acute stroke: theoretic considerations and clinical applications. AJR Am J Roentgenol. 1999;173(6):1459–67.

    Article  PubMed  CAS  Google Scholar 

  6. Le Bihan D, et al. Diffusion and perfusion magnetic resonance imaging in brain tumours. Top Magn Reson Imaging. 1993;5(1):25–31.

    PubMed  Google Scholar 

  7. Knopp MV, et al. Functional neuroimaging in the assessment of CNS neoplasms. Eur Radiol. 1997;7 Suppl 5:209–15.

    Article  PubMed  Google Scholar 

  8. Schaefer PW, et al. Diffusion-weighted MR imaging of the brain. Radiology. 2000;217(2):331–45.

    Article  PubMed  CAS  Google Scholar 

  9. Koh DM, Sohaib A. Diffusion-weighted imaging of the male pelvis. Radiol Clin North Am. 2012;50(6):1127–44.

    Article  PubMed  Google Scholar 

  10. Koyama T, Togashi K. Functional MR imaging of the female pelvis. J Magn Reson Imaging. 2007;25(6):1101–12.

    Article  PubMed  Google Scholar 

  11. Maeda M, Maier SE. Usefulness of diffusion-weighted imaging and the apparent diffusion coefficient in the assessment of head and neck tumours. J Neuroradiol. 2008;35(2):71–8.

    Article  PubMed  Google Scholar 

  12. Balci NC, et al. Diffusion-weighted magnetic resonance imaging of the pancreas. Top Magn Reson Imaging. 2009;20(1):43–7.

    Article  PubMed  Google Scholar 

  13. Sugita R, et al. Diffusion-weighted MRI in abdominal oncology: clinical applications. World J Gastroenterol. 2010;16(7):832–6.

    PubMed  PubMed Central  Google Scholar 

  14. Lin C, et al. Whole-body diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient mapping for staging patients with diffuse large B-cell lymphoma. Eur Radiol. 2010;20(8):2027–38.

    Article  PubMed  Google Scholar 

  15. Iacconi C. Diffusion and perfusion of the breast. Eur J Radiol. 2010;76(3):386–90.

    Article  PubMed  Google Scholar 

  16. Costa FM, et al. Diffusion-weighted magnetic resonance imaging for the evaluation of musculoskeletal tumours. Magn Reson Imaging Clin N Am. 2011;19(1):159–80.

    Article  PubMed  Google Scholar 

  17. Hahn EL. Spin echoes. Phys Rev. 1950;80(4):580–94.

    Article  Google Scholar 

  18. Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94(3):630–8.

    Article  CAS  Google Scholar 

  19. Torrey HC. Bloch equations with diffusion terms. Phys Rev. 1956;104(3):563–5.

    Article  Google Scholar 

  20. Larkman DJ, Nunes RG. Parallel magnetic resonance imaging. Phys Med Biol. 2007;52(7):R15–55.

    Article  PubMed  Google Scholar 

  21. Le Bihan D, et al. Artefacts and pitfalls in diffusion MRI. J Magn Reson Imaging. 2006;24(3):478–88.

    Article  PubMed  Google Scholar 

  22. Jindal M, et al. A systematic review of diffusion-weighted magnetic resonance imaging in the assessment of postoperative cholesteatoma. Otol Neurotol. 2011;32(8):1243–9.

    Article  PubMed  Google Scholar 

  23. Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7.

    PubMed  Google Scholar 

  24. Thoeny HC, et al. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology. 2005;235(3):911–7.

    Article  PubMed  Google Scholar 

  25. Thoeny HC, et al. Effect of vascular targeting agent in rat tumour model: dynamic contrast-enhanced versus diffusion-weighted MR imaging. Radiology. 2005;237(2):492–9.

    Article  PubMed  Google Scholar 

  26. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188(6):1622–35.

    Article  PubMed  Google Scholar 

  27. Le Bihan D. Intravoxel incoherent motion perfusion MR imaging: a wake-up call. Radiology. 2008;249(3):748–52.

    Article  PubMed  Google Scholar 

  28. Le Bihan D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168(2):497–505.

    PubMed  Google Scholar 

  29. Wirestam R, et al. Perfusion-related parameters in intravoxel incoherent motion MR imaging compared with CBV and CBF measured by dynamic susceptibility-contrast MR technique. Acta Radiol. 2001;42(2):123–8.

    Article  PubMed  CAS  Google Scholar 

  30. Powers TA, et al. Renal artery stenosis: in vivo perfusion MR imaging. Radiology. 1991;178(2):543–8.

    PubMed  CAS  Google Scholar 

  31. Yoshino N, et al. Salivary glands and lesions: evaluation of apparent diffusion coefficients with split-echo diffusion-weighted MR imaging – initial results. Radiology. 2001;221(3):837–42.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang L, et al. Functional evaluation with intravoxel incoherent motion echo-planar MRI in irradiated salivary glands: a correlative study with salivary gland scintigraphy. J Magn Reson Imaging. 2001;14(3):223–9.

    Article  PubMed  CAS  Google Scholar 

  33. Muller MF, et al. Can the IVIM model be used for renal perfusion imaging? Eur J Radiol. 1998;26(3):297–303.

    Article  PubMed  CAS  Google Scholar 

  34. Bennett KM, et al. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med. 2003;50(4):727–34.

    Article  PubMed  Google Scholar 

  35. Naganawa S, et al. Diffusion-weighted imaging of the liver: technical challenges and prospects for the future. Magn Reson Med Sci. 2005;4(4):175–86.

    Article  PubMed  Google Scholar 

  36. Bruegel M, et al. Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol. 2008;18(3):477–85.

    Article  PubMed  Google Scholar 

  37. Taouli B, et al. Diffusion-weighted imaging of the liver: comparison of navigator triggered and breathhold acquisitions. J Magn Reson Imaging. 2009;30(3):561–8.

    Article  PubMed  Google Scholar 

  38. Ivancevic MK, et al. Diffusion-weighted MR imaging of the liver at 3.0 Tesla using TRacking Only Navigator echo (TRON): a feasibility study. J Magn Reson Imaging. 2009;30(5):1027–33.

    Article  PubMed  Google Scholar 

  39. Takahara T, et al. Diffusion-weighted magnetic resonance imaging of the liver using tracking only navigator echo: feasibility study. Invest Radiol. 2010;45(2):57–63.

    Article  PubMed  Google Scholar 

  40. Kwee TC, et al. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver. J Magn Reson Imaging. 2008;28(5):1141–8.

    Article  PubMed  Google Scholar 

  41. Choi JS, et al. Comparison of breathhold, navigator-triggered, and free-breathing diffusion-weighted MRI for focal hepatic lesions. J Magn Reson Imaging. 2013;38(1):109–18.

    Article  PubMed  Google Scholar 

  42. Oto A, et al. Active Crohn’s disease in the small bowel: evaluation by diffusion weighted imaging and quantitative dynamic contrast enhanced MR imaging. J Magn Reson Imaging. 2011;33(3):615–24.

    Article  PubMed  Google Scholar 

  43. Yoshida S, et al. Female urethral diverticular abscess clearly depicted by diffusion-weighted magnetic resonance imaging. Int J Urol. 2008;15(5):460–1.

    Article  PubMed  Google Scholar 

  44. Braithwaite AC, et al. Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology. 2009;250(2):459–65.

    Article  PubMed  Google Scholar 

  45. Koh DM, et al. Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two-centre phase I clinical trial. Eur Radiol. 2009;19(11):2728–38.

    Article  PubMed  Google Scholar 

  46. Wang CL, et al. Effect of gadolinium chelate contrast agents on diffusion weighted MR imaging of the liver, spleen, pancreas and kidney at 3 T. Eur J Radiol. 2011;80(2):e1–7.

    Article  PubMed  Google Scholar 

  47. Parikh T, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology. 2008;246(3):812–22.

    Article  PubMed  Google Scholar 

  48. Muhi A, et al. High-b-value diffusion-weighted MR imaging of hepatocellular lesions: estimation of grade of malignancy of hepatocellular carcinoma. J Magn Reson Imaging. 2009;30(5):1005–11.

    Article  PubMed  Google Scholar 

  49. Guo Y, et al. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging. 2002;16(2):172–8.

    Article  PubMed  Google Scholar 

  50. Erdem G, et al. Diffusion-weighted images differentiate benign from malignant thyroid nodules. J Magn Reson Imaging. 2010;31(1):94–100.

    Article  PubMed  Google Scholar 

  51. Razek AA, et al. Role of apparent diffusion coefficient values in differentiation between malignant and benign solitary thyroid nodules. AJNR Am J Neuroradiol. 2008;29(3):563–8.

    Article  PubMed  Google Scholar 

  52. Razek AA, et al. Role of diffusion-weighted magnetic resonance imaging in characterization of renal tumours. J Comput Assist Tomogr. 2011;35(3):332–6.

    Article  PubMed  Google Scholar 

  53. Onur MR, et al. Role of the apparent diffusion coefficient in the differential diagnosis of gastric wall thickening. J Magn Reson Imaging. 2012;36(3):672–7.

    Article  PubMed  Google Scholar 

  54. Gourtsoyianni S, et al. Respiratory gated diffusion-weighted imaging of the liver: value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions. Eur Radiol. 2008;18(3):486–92.

    Article  PubMed  Google Scholar 

  55. Bruegel M, et al. Diagnosis of hepatic metastasis: comparison of respiration-triggered diffusion-weighted echo-planar MRI and five t2-weighted turbo spin-echo sequences. AJR Am J Roentgenol. 2008;191(5):1421–9.

    Article  PubMed  Google Scholar 

  56. Zech CJ, et al. Black-blood diffusion-weighted EPI acquisition of the liver with parallel imaging: comparison with a standard T2-weighted sequence for detection of focal liver lesions. Invest Radiol. 2008;43(4):261–6.

    Article  PubMed  Google Scholar 

  57. Nasu K, et al. Hepatic metastases: diffusion-weighted sensitivity-encoding versus SPIO-enhanced MR imaging. Radiology. 2006;239(1):122–30.

    Article  PubMed  Google Scholar 

  58. Coenegrachts K, et al. Focal liver lesion detection and characterization: comparison of non-contrast enhanced and SPIO-enhanced diffusion-weighted single-shot spin echo echo planar and turbo spin echo T2-weighted imaging. Eur J Radiol. 2009;72(3):432–9.

    Article  PubMed  Google Scholar 

  59. Koh DM, et al. Detection of colorectal hepatic metastases using MnDPDP MR imaging and diffusion-weighted imaging (DWI) alone and in combination. Eur Radiol. 2008;18(5):903–10.

    Article  PubMed  CAS  Google Scholar 

  60. Wu LM, et al. A pooled analysis of diffusion-weighted imaging in the diagnosis of hepatocellular carcinoma in chronic liver diseases. J Gastroenterol Hepatol. 2013;28(2):227–34.

    Article  PubMed  Google Scholar 

  61. Chi DS, et al. What is the optimal goal of primary cytoreductive surgery for bulky stage IIIC epithelial ovarian carcinoma (EOC)? Gynecol Oncol. 2006;103(2):559–64.

    Article  PubMed  CAS  Google Scholar 

  62. de Bree E, et al. Peritoneal carcinomatosis from colorectal or appendiceal origin: correlation of preoperative CT with intraoperative findings and evaluation of interobserver agreement. J Surg Oncol. 2004;86(2):64–73.

    Article  PubMed  Google Scholar 

  63. Fujii S, et al. Detection of peritoneal dissemination in gynecological malignancy: evaluation by diffusion-weighted MR imaging. Eur Radiol. 2008;18(1):18–23.

    Article  PubMed  Google Scholar 

  64. Soussan M, et al. Comparison of FDG-PET/CT and MR with diffusion-weighted imaging for assessing peritoneal carcinomatosis from gastrointestinal malignancy. Eur Radiol. 2012;22(7):1479–87.

    Article  PubMed  Google Scholar 

  65. Tan CH, et al. Diffusion-weighted MRI in the detection of prostate cancer: meta-analysis. AJR Am J Roentgenol. 2012;199(4):822–9.

    Article  PubMed  Google Scholar 

  66. Wu LM, et al. The clinical value of diffusion-weighted imaging in combination with T2-weighted imaging in diagnosing prostate carcinoma: a systematic review and meta-analysis. AJR Am J Roentgenol. 2012;199(1):103–10.

    Article  PubMed  Google Scholar 

  67. Yoshizako T, et al. Usefulness of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging in the diagnosis of prostate transition-zone cancer. Acta Radiol. 2008;49(10):1207–13.

    Article  PubMed  CAS  Google Scholar 

  68. Hoeks CM, et al. Transition zone prostate cancer: detection and localization with 3-T multiparametric MR imaging. Radiology. 2013;266(1):207–17.

    Article  PubMed  Google Scholar 

  69. Park BK, et al. Lesion localization in patients with a previous negative transrectal ultrasound biopsy and persistently elevated prostate specific antigen level using diffusion-weighted imaging at three Tesla before rebiopsy. Invest Radiol. 2008;43(11):789–93.

    Article  PubMed  Google Scholar 

  70. Portalez D, et al. Prospective comparison of T2w-MRI and dynamic-contrast-enhanced MRI, 3D-MR spectroscopic imaging or diffusion-weighted MRI in repeat TRUS-guided biopsies. Eur Radiol. 2010;20(12):2781–90.

    Article  PubMed  Google Scholar 

  71. Hambrock T, et al. Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. Eur Urol. 2012;61(1):177–84.

    Article  PubMed  Google Scholar 

  72. Eiber M, et al. Whole-body MRI including diffusion-weighted imaging (DWI) for patients with recurring prostate cancer: technical feasibility and assessment of lesion conspicuity in DWI. J Magn Reson Imaging. 2011;33(5):1160–70.

    Article  PubMed  Google Scholar 

  73. Gutzeit A, et al. Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skeletal Radiol. 2010;39(4):333–43.

    Article  PubMed  Google Scholar 

  74. Lecouvet FE, et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. 2012;62(1):68–75.

    Article  PubMed  Google Scholar 

  75. Taouli B, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology. 2003;226(1):71–8.

    Article  PubMed  Google Scholar 

  76. Sharma U, et al. Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumour response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. NMR Biomed. 2009;22(1):104–13.

    Article  PubMed  Google Scholar 

  77. Koh DM, et al. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol. 2007;188(4):1001–8.

    Article  PubMed  Google Scholar 

  78. Cui Y, et al. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology. 2008;248(3):894–900.

    Article  PubMed  Google Scholar 

  79. Song I, et al. Assessment of response to radiotherapy for prostate cancer: value of diffusion-weighted MRI at 3 T. AJR Am J Roentgenol. 2010;194(6):W477–82.

    Article  PubMed  Google Scholar 

  80. Reischauer C, et al. Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps – initial observations. Radiology. 2010;257(2):523–31.

    Article  PubMed  Google Scholar 

  81. Barrett T, et al. DCE and DW MRI in monitoring response to androgen deprivation therapy in patients with prostate cancer: a feasibility study. Magn Reson Med. 2012;67(3):778–85.

    Article  PubMed  CAS  Google Scholar 

  82. Foltz WD, et al. Changes in apparent diffusion coefficient and T(2) relaxation during radiotherapy for prostate cancer. J Magn Reson Imaging. 2013;37(4):909–16.

    Article  PubMed  Google Scholar 

  83. Harry VN, et al. Diffusion-weighted magnetic resonance imaging in the early detection of response to chemoradiation in cervical cancer. Gynecol Oncol. 2008;111(2):213–20.

    Article  PubMed  Google Scholar 

  84. Moffat BA, et al. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumour response. Proc Natl Acad Sci U S A. 2005;102(15):5524–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Vandecaveye V, et al. Predictive value of diffusion-weighted magnetic resonance imaging during chemoradiotherapy for head and neck squamous cell carcinoma. Eur Radiol. 2010;20(7):1703–14.

    Article  PubMed  Google Scholar 

  86. Niwa T, et al. Advanced pancreatic cancer: the use of the apparent diffusion coefficient to predict response to chemotherapy. Br J Radiol. 2009;82(973):28–34.

    Article  PubMed  CAS  Google Scholar 

  87. Takahara T, et al. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med. 2004;22(4):275–82.

    PubMed  Google Scholar 

  88. Kwee TC, et al. Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol. 2008;18(9):1937–52.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sommer G, et al. Preoperative staging of non-small-cell lung cancer: comparison of whole-body diffusion-weighted magnetic resonance imaging and 18F-fluorodeoxyglucose-positron emission tomography/computed tomography. Eur Radiol. 2012;22(12):2859–67.

    Article  PubMed  Google Scholar 

  90. Ohno Y, et al. Non-small cell lung cancer: whole-body MR examination for M-stage assessment – utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology. 2008;248(2):643–54.

    Article  PubMed  Google Scholar 

  91. Abdulqadhr G, et al. Whole-body diffusion-weighted imaging compared with FDG-PET/CT in staging of lymphoma patients. Acta Radiol. 2011;52(2):173–80.

    Article  PubMed  Google Scholar 

  92. van Ufford HM, et al. Newly diagnosed lymphoma: initial results with whole-body T1-weighted, STIR, and diffusion-weighted MRI compared with 18F-FDG PET/CT. AJR Am J Roentgenol. 2011;196(3):662–9.

    Article  PubMed  Google Scholar 

  93. Koh DM, Theony HC. Diffusion-weighted MR imaging. Berlin, Germany: Springer-Verlag; 2010.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. David J. Collins (Institute of Cancer Research, London) for his insight and helpful comments on the physics and technical aspect of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry H. Tam MBBS, BSc (Hons), FRCR .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tam, H.H., Koh, DM. (2014). Diffusion-Weighted MR Imaging. In: Luna, A., Vilanova, J., Hygino da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40412-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40412-2_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40411-5

  • Online ISBN: 978-3-642-40412-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics