Skip to main content
Log in

Predictive value of diffusion-weighted magnetic resonance imaging during chemoradiotherapy for head and neck squamous cell carcinoma

  • Head and Neck
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate diffusion-weighted (DWI) magnetic resonance imaging (MRI) for treatment prediction during chemoradiotherapy (CRT) of head and neck squamous cell carcinoma (HNC).

Methods

Thirty patients with HNC underwent echo-planar DWI and anatomical MRI before and 2 and 4 weeks into CRT. Patient follow-up lasted 2 years post-CRT. Tumour ADC (ΔADC) and volume changes (ΔV) between baseline, and 2 and 4 weeks’ follow-up were compared for lesions with recurrence versus complete remission (CR) using a Mann-Whitney U test. The predictive value of the ΔADC and ΔV for locoregional control (LRC) was examined with the Kaplan-Meier method. The study was approved by the local ethics committee. All patients gave written informed consent.

Results

The ΔADC in primary tumours and nodal metastases, 2 and 4 weeks after the start of CRT, was significantly lower in lesions with post-CRT recurrence than in lesions with CR (ΔADC2 weeks and ΔADC4 weeks for primary tumours, relative to nodal metastases: p < 0.0001). The ΔV only showed a significant difference for primary tumours at 2 weeks (ΔV2 weeks: p = 0.03). The ΔADC correlated significantly with 2-year LRC (p < 0.001); the ΔV did not (p > 0.05).

Conclusion

DWI during CRT for HNC allows more accurate response prediction than anatomical imaging, correlating significantly with 2-year LRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ang KK, Harris J, Garden AS et al (2005) Concomitant boost radiation plus concurrent cisplatinum for advanced head and neck carcinomas: Radiation Therapy Oncology Group phase II trial 99-14. J Clin Oncol 23:3008–3015

    Article  CAS  PubMed  Google Scholar 

  2. Nuyts S, Dirix P, Clement P et al (2009) Impact of adding concomitant chemotherapy to hyperfractionated accelerated radiotherapy for advanced head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 15:1088–1095

    Google Scholar 

  3. Pignon JP, Bourhis, Domenge C et al (2000) Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC collaborative group. Meta analysis of chemotherapy on head and neck cancer. Lancet 18:949–955

    Google Scholar 

  4. Gregoire V, De Neve W, Eisbruch A et al (2007) Intensity-modulated radiation therapy for head and neck carcinoma. Oncologist 12:555–564

    Article  PubMed  Google Scholar 

  5. Klug C, Keszthelyi D, Ploder O et al (2004) Neoadjuvant chemoradiotherapy of oral cavity and oropharyngeal: evaluation of tumor response by CT differs from histopathologic response assessment in a significant fraction of patients. Head Neck 26:224–231

    Article  PubMed  Google Scholar 

  6. Denys D, Kumar P, Wong FS et al (1997) The predictive value of tumor regression rates during chemoradiation therapy in patients with advanced head and neck squamous cell carcinoma. Am J Surg 174:561–564

    Article  CAS  PubMed  Google Scholar 

  7. Jaulerry C, Dubray B, Brunin F et al (1995) Prognostic value of tumor regression during radiotherapy for head and neck cancer: a prospective study. Int J Radiat Oncol Biol Phys 33:271–279

    CAS  PubMed  Google Scholar 

  8. Kostakoglu L, Goldsmith SJ (2004) PET in the assessment of therapy response in patients with carcinoma of the head and neck and of the esophagus. J Nucl Med 45:56–68

    PubMed  Google Scholar 

  9. Geets X, Tomsej M, Lee JA et al (2007) Adaptive biological image-guided IMRT with anatomic and functional imaging in pharyngo-laryngeal tumors: impact on target volume delineation and dose distribution using helical tomotherapy. Radiother Oncol 85:105–115

    Article  PubMed  Google Scholar 

  10. Madani I, Duthoy W, Derie C et al (2007) Positron emission tomography-guided, focal-dose escalation using intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 68:126–135

    PubMed  Google Scholar 

  11. Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    PubMed  Google Scholar 

  12. Bammer R (2003) Basic principles of diffusion-weighted MRI. Eur J Radiol 45:169–184

    Article  PubMed  Google Scholar 

  13. Ross BD, Moffat A, Lawrence TS et al (2003) Evaluation of cancer therapy using diffusion magnetic resonance imaging. Mol Cancer Ther 2:581–587

    CAS  PubMed  Google Scholar 

  14. Thoeny HC, De Keyzer F (2007) Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur Radiol 17:1385–1393

    Article  PubMed  Google Scholar 

  15. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol 188:1622–1635

    Article  Google Scholar 

  16. Vandecaveye V, De Keyzer F, Nuyts S et al (2007) Detection of head and neck squamous cell carcinoma with diffusion weighted MRI after (chemo)radiotherapy: correlation between radiologic and histopathologic findings. Int J Radiat Oncol Biol Phys 67:960–971

    PubMed  Google Scholar 

  17. Hamstra DA, Lee KC, Moffat BA et al (2008) Diffusion magnetic resonance imaging: an imaging treatment response biomarker to chemoradiotherapy in a mouse model of squamous cell cancer of the head and neck. Transl Oncol 1:187–194

    PubMed  Google Scholar 

  18. Vandecaveye V, De Keyzer F, Hermans R (2008) Diffusion-weighted magnetic resonance imaging in neck lymph adenopathy. Cancer Imaging 30:173–180

    Article  Google Scholar 

  19. Robbins KT, Medina JE, Wolfe GT et al (1991) Standardizing neck dissection terminology. Official report of the Academy’s Committee for Head and Neck Surgery and Oncology. Arch Otolaryngol Head Neck Surg 117:601–605

    CAS  PubMed  Google Scholar 

  20. Padhani AR, Ollivier L (2001) The RECIST (response evaluation criteria in solid tumors): implications for diagnostic radiologists. Br J Radiol 74:983–986

    CAS  PubMed  Google Scholar 

  21. Citrin D, Mansueti J, Likhacheva A et al (2009) Long-term outcomes and toxicity of concurrent paclitaxel and radiotherapy for locally advanced head-and-neck cancer. Int J Radiat Oncol Biol Phys 74:1040–1046

    PubMed  Google Scholar 

  22. Rapidis AD, Vermorken JB, Bourhis J (2008) Targeted therapies in head and neck cancer: past, present and future. Rev Recent Clin Trials 3:156–166

    Article  CAS  PubMed  Google Scholar 

  23. Yankeelov TE, Lepage M, Chakravarthy A et al (2007) Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results. Magn Reson Imaging 25:1–13

    Article  PubMed  Google Scholar 

  24. Moffat BA, Chenevert TL, Meyer CR et al (2006) The functional diffusion map: an imaging biomarker for the early prediction of cancer treatment outcome. Neoplasia 8:259–267

    Article  CAS  PubMed  Google Scholar 

  25. Patterson DM, Padhani AR, Collins DJ (2008) Technology insight: water diffusion MRI—a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol 5:220–233

    Article  PubMed  Google Scholar 

  26. Kim H, Morgan DE, Zeng H et al (2008) Breast tumor xenografts: diffusion-weighted MR imaging to assess early therapy with novel apoptosis-inducing anti-DR5 antibody. Radiology 248:844–851

    Article  PubMed  Google Scholar 

  27. Seierstad T, Røe K, Olsen DR (2007) Noninvasive monitoring of radiation-induced treatment response using proton magnetic resonance spectroscopy and diffusion-weighted magnetic resonance imaging in a colorectal tumor model. Radiother Oncol 85:187–194

    Article  PubMed  Google Scholar 

  28. Moffat BA, Chenevert TL, Lawrence TS et al (2005) Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci USA 102:5524–5529

    Article  CAS  PubMed  Google Scholar 

  29. Kim S, Loevner L, Quon H et al (2009) Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res 15:986–994

    Article  CAS  PubMed  Google Scholar 

  30. Harry VN, Semple SI, Gilbert FJ et al (2008) Diffusion-weighted magnetic resonance imaging in the early detection of response to chemoradiation in cervical cancer. Gynecol Oncol 111:213–220

    Article  PubMed  Google Scholar 

  31. Mardor Y, Pfeffer R, Spiegelmann R et al (2003) Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J Clin Oncol 21:1094–1100

    Article  PubMed  Google Scholar 

  32. Hamstra DA, Galbán CJ, Meyer CR et al (2008) Functional diffusion map as an early imaging biomarker for high-grade glioma: correlation with conventional radiologic response and overall survival. J Clin Oncol 26:3387–3394

    Article  PubMed  Google Scholar 

  33. Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125

    CAS  PubMed  Google Scholar 

  34. Thoeny HC, De Keyzer F, Vandecaveye V et al (2005) Effect of vascular targeting agent in rat tumor model: dynamic contrast-enhanced versus diffusion-weighted MR imaging. Radiology 237:492–499

    Article  PubMed  Google Scholar 

  35. Abdel Razek AA, Kandeel AY, Soliman N et al (2007) Role of diffusion-weighted echo-planar MR imaging in differentiation of residual or recurrent head and neck tumors and posttreatment changes. AJNR Am J Neuroradiol 28:1146–1152

    Article  CAS  PubMed  Google Scholar 

  36. Vandecaveye V, De Keyzer F, Hermans R (2008) Diffusion-weighted imaging in neck lymph adenopathy. Cancer Imaging 30:173–180

    Article  Google Scholar 

  37. King AD, Ahuja AT, Yeung DK et al (2007) Malignant cervical lymphadenopathy: diagnostic accuracy of diffusion-weighted MR imaging. Radiology 245:806–813

    Article  PubMed  Google Scholar 

  38. Tozer DJ, Davies GR, Altmann DR et al (2006) Principal component and linear discriminant analysis of T1 histograms of white and gray matter in multiple sclerosis. Magn Reson Imaging 24:793–800

    Article  PubMed  Google Scholar 

  39. Brun E, Kjellén E, Tennvall J et al (2002) FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck 24(2):127–135

    Article  PubMed  Google Scholar 

  40. Dirix P, Vandecaveye V, De Keyzer F, et al (2009) Diffusion-weighted MRI for nodal staging of head and neck squamous cell carcinoma: impact on radiotherapy planning. Int J Radiat Oncol Biol Phys 251:134-146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Vandecaveye.

Additional information

This work was partly financially supported by the research grant “Prof. em. A.L. Baert, Siemens Medical Solutions”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandecaveye, V., Dirix, P., De Keyzer, F. et al. Predictive value of diffusion-weighted magnetic resonance imaging during chemoradiotherapy for head and neck squamous cell carcinoma. Eur Radiol 20, 1703–1714 (2010). https://doi.org/10.1007/s00330-010-1734-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-1734-6

Keywords

Navigation