Skip to main content

The Mathematical Analysis of Biological Aggregation and Dispersal: Progress, Problems and Perspectives

  • Chapter
  • First Online:
Dispersal, Individual Movement and Spatial Ecology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2071))

Abstract

Motile organisms alter their movement in response to signals in their environment for a variety of reasons, such as to find food or mates or to escape danger. In populations of individuals this often this leads to large-scale pattern formation in the form of coherent movement or localized aggregates of individuals, and an important question is how the individual-level decisions are translated into population-level behavior. Mathematical models are frequently developed for a population-level description, and while these are often phenomenological, it is important to understand how individual-level properties can be correctly embedded in the population-level models. We discuss several classes of models that are used to describe individual movement and indicate how they can be translated into population-level models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this section the weight w may be equivalent to the signal S used earlier, or some function of it.

  2. 2.

    These equations are the restriction of (54) to one-space dimension only when the speeds s  ±  are constant, and in that case the moment equations close at the second level for constant λ [73]. We consider the more general case for illustrative purposes.

  3. 3.

    In [41] this estimate appears with the L 2-norm squared, but it is clear from the proof that there should be no square.

References

  1. W. Alt, Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9, 147–177 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Applebaum, Lévy Processes and Stochastic Calculus, vol. 93 (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  3. R. Aris, Vectors, Tensors and the Basic Equations of Fluid Mechanics (Prentice-Hall, New York, 1962)

    MATH  Google Scholar 

  4. L. Arnold, Stochastic Differential Equations, Theory and applications (Wiley-Interscience, New York, 1974)

    MATH  Google Scholar 

  5. L. Bachelier, Théorie de la spéculation (Gauthier-Villars, Paris, 1900)

    Google Scholar 

  6. I.L. Bajec, F.H. Heppner, Organized flight in birds. Anim. Behav. 78(4), 777–789 (2009)

    Article  Google Scholar 

  7. M.N. Barber, B.W. Ninham, Random and Restricted Walks: Theory and Applications, vol. 10 (Gordon and Breach, New York, 1970)

    MATH  Google Scholar 

  8. H.C. Berg, D.A. Brown, Chemotaxis in esterichia coli analysed by three-dimensional tracking. Nature 239, 500–504 (1972)

    Article  Google Scholar 

  9. H.C. Berg, Random Walks in Biology (Princeton University Press, Princeton, 1983)

    Google Scholar 

  10. F. Binamé, G. Pawlak, P. Roux, U. Hibner, What makes cells move: requirements and obstacles for spontaneous cell motility. Mol. BioSystems 6(4), 648–661 (2010)

    Article  Google Scholar 

  11. L. Bocquet, J. Piasecki, Microscopic derivation of non-Markovian thermalization of a Brownian particle. J. Stat. Phys. 87(5), 1005–1035 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Born, H.S. Green, A general kinetic theory of liquids. I. the molecular distribution functions. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 188(1012), 10 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Capasso, D. Bakstein, An Introduction to Continuous-Time Stochastic Processes: Theory, Models, and Applications to Finance, Biology, and Medicine (Birkhauser, Basel, 2005)

    MATH  Google Scholar 

  14. V. Capasso, D. Morale, Asymptotic behavior of a system of stochastic particles subject to nonlocal interactions. Stoch. Anal. Appl. 27(3), 574–603 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. J.A. Carrillo, M. Fornasier, G. Toscani, F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, ed. by G. Naldi, L. Pareschi, G. Toscani. Modelling and Simulation in Science and Technology, Birkhauser (2010), pp. 297–336

    Google Scholar 

  16. C. Cercignani, Mathematical Methods in Kinetic Theory, 2nd edn. (Plenum, New York, 1969)

    MATH  Google Scholar 

  17. C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Dilute Gases (Springer, New York, 1994)

    MATH  Google Scholar 

  18. S. Chandrasekhar, Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 2–89 (1943)

    Article  Google Scholar 

  19. C.Y. Chung, S. Funamoto, R.A. Firtel, Signaling pathways controlling cell polarity and chemotaxis. Trends Biochem. Sci. 26(9), 557–566 (2001). Review

    Google Scholar 

  20. R.V. Churchill, Operational Mathematics (McGraw-Hill, New York, 1958)

    MATH  Google Scholar 

  21. E.A. Codling, M.J. Plank, S. Benhamou, Random walk models in biology. J. R. Soc. Interface 5(25), 813 (2008)

    Article  Google Scholar 

  22. F. Cucker, S. Smale, On the mathematical foundations of learning. Bull. Am. Math. Soc. 39(1), 1–49 (2001)

    Article  MathSciNet  Google Scholar 

  23. J.C. Dallon, H.G. Othmer, A continuum analysis of the chemotactic signal seen by Dictyostelium discoideum. J. Theor. Biol. 194(4), 461–483 (1998)

    Google Scholar 

  24. B. Davis, Reinforced random walks. Probab. Theory Relat. Fields 84(2), 203–229 (1990)

    Article  MATH  Google Scholar 

  25. W.R. DiLuzio, L. Turner, M. Mayer, P. Garstecki, D.B. Weibel, H.C. Berg, G.M. Whitesides, Escherichia coli swim on the right-hand side. Nature 435(7046), 1271–1274 (2005)

    Article  Google Scholar 

  26. A.M. Edwards, R.A. Phillips, N.W. Watkins, M.P. Freeman, E.J. Murphy, V. Afanasyev, S.V. Buldyrev, M.G.E. da Luz, E.P. Raposo, H.E. Stanley et al., Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449(7165), 1044–1048 (2007)

    Article  Google Scholar 

  27. A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Ann. der Physik 17, 549–560 (1905)

    Article  MATH  Google Scholar 

  28. R. Erban, H. Othmer, From signal transduction to spatial pattern formation in E. coli: a paradigm for multi-scale modeling in biology. Multiscale Model. Simul. 3(2), 362–394 (2005)

    Google Scholar 

  29. R. Erban, H.G. Othmer, From individual to collective behavior in bacterial chemotaxis. SIAM J. Appl. Math. 65(2), 361–391 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Erban, H.G. Othmer, Taxis equations for amoeboid cells. J. Math. Biol. 54, 847–885 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. W. Feller, An Introduction to Probability Theory (Wiley, New York, 1968)

    MATH  Google Scholar 

  32. R. Ford, D.A. Lauffenburger, A simple expression for quantifying bacterial chemotaxis using capillary assay data: application to the analysis of enhanced chemotactic responses from growth-limited cultures. Math. Biosci. 109(2), 127–150 (1992)

    Article  MATH  Google Scholar 

  33. M. Franceschetti, When a random walk of fixed length can lead uniformly anywhere inside a hypersphere. J. Stat. Phys. 127(4), 813–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. R. Fürth, Die Brownische Bewegung bei Berücksichtigung einer Persistenz der Bewegungsrichtung. Zeitsch. f. Physik 2, 244–256 (1920)

    Article  Google Scholar 

  35. J. Galle, M. Hoffmann, G. Aust, From single cells to tissue architecture-a bottom-up approach to modelling the spatio-temporal organisation of complex multi-cellular systems. J. Math. Biol. 58(1–2), 261–283 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. G.W. Gardiner, Handbook of Stochastic Processes for Physics, Chemistry and Natural Sciences, 2nd edn. (Springer, Berlin, 1985)

    Google Scholar 

  37. S. Goldstein, On diffusion by discontinuous movements, and on the telegraph equation. Quart. J. Mech. Appl. Math. VI, 129–156 (1951)

    Google Scholar 

  38. S.-Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic Relat. Model 1(3), 415–435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. R.L. Hall, Amoeboid movement as a correlated walk. J. Math. Biol. 4, 327–335 (1977)

    Article  MATH  Google Scholar 

  40. C.R. Heathcote, J.E. Moyal, The random walk [in continuous time] and its application to the theory of queues. Biometrika 46(3–4), 400 (1959)

    Google Scholar 

  41. T. Hillen, H.G. Othmer, The diffusion limit of transport equations derived from velocity jump processes. SIAM J. Appl. Math. 61, 751–775 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. T. Hillen, K.J. Painter, A users guide to PDE models for chemotaxis. J. Math. Biol. 58(1), 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. T. Höfer, J.A. Sherratt, P.K. Maini, Cellular pattern formation during dictyostelium aggregation. Physica D 85(3), 425–444 (1995)

    Article  MATH  Google Scholar 

  44. C. Hohenegger, M.J. Shelley, Stability of active suspensions. Phys. Rev. E 81(4), 046311 (2010)

    Article  MathSciNet  Google Scholar 

  45. D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I. Jahresbericht der DMV 105(3), 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  46. J.Hu, H.G. Othmer, A theoretical analysis of filament length fluctuations in actin and other polymers. J. Math. Biol. (2011, to appear)

    Google Scholar 

  47. J.M. Hutchinson, P.M. Waser, Use, misuse and extensions of “ideal gas” models of animal encounter. Biol. Rev.-Camb. 82(3), 335 (2007)

    Google Scholar 

  48. J.O. Irwin, The frequency distribution of the difference between two independent variates following the same Poisson distribution. J. R. Stat. Soc. 100(3), 415–416 (1937)

    Article  Google Scholar 

  49. M. Kac, Some Stochastic Problems in Physics and Mathematics (Field Research Laboratory, Magnolia Petroleum Company, Dallas, 1956)

    Google Scholar 

  50. N. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edn. (North-Holland, Amsterdam, 2007)

    Google Scholar 

  51. S. Karlin, H. Taylor, A First Course in Stochastic Processes (Academic, New York, 1975)

    MATH  Google Scholar 

  52. E. Keller, L. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  Google Scholar 

  53. V.M. Kenkre, The generalized master equation and its applications, in Statistical Mechanics and Statistical Methods in Theory and Application (Plenum, New York, 1977)

    Google Scholar 

  54. V.M. Kenkre, E.W. Montroll, M.F. Shlesinger, Generalized master equations for continuous-time random walks. J. Stat. Phys. 9(1), 45–50 (1973)

    Article  Google Scholar 

  55. J.C. Kluyver, A local probability theorem. Ned. Akad. Wet. Proc. A 8, 341–350 (1906)

    Google Scholar 

  56. D.E. Koshland, Bacterial Chemotaxis as a Model Behavioral System (Raven Press, New York, 1980)

    Google Scholar 

  57. T. Lämmermann, B.L. Bader, S.J. Monkley, T. Worbs, R. Wedlich-Söldner, K. Hirsch, M. Keller, R. Förster, D.R. Critchley, R. Fässler et al., Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008)

    Article  Google Scholar 

  58. J. Lega, T. Passot, Hydrodynamics of bacterial colonies: a model. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 67(3 Pt 1), 031906 (2003)

    Article  MathSciNet  Google Scholar 

  59. L. Li, S.F. Nørrelykke, E.C. Cox, Persistent cell motion in the absence of external signals: a search strategy for eukaryotic cells. PLoS One 3(5), e2093 (2008)

    Google Scholar 

  60. R.L. Liboff, Kinetic Theory: Classical, Quantum, and Relativistic Descriptions (Springer, Berlin, 2003)

    Google Scholar 

  61. P.M. Lushnikov, N. Chen, M. Alber, Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. Phys. Rev. E 78(6), 061904 (2008)

    Google Scholar 

  62. R.M. Macnab, Sensing the environment: bacterial chemotaxis, in Biological Regulation and Development, ed. by R. Goldberg (Plenum Press, New York, 1980), pp. 377–412

    Google Scholar 

  63. U.M.B. Marconi, P. Tarazona, Nonequilibrium inertial dynamics of colloidal systems. J. Chem. Phys. 124, 164901 (2006)

    Article  Google Scholar 

  64. F. Matthaus, M. Jagodic, J. Dobnikar, E. coli superdiffusion and chemotaxis–search strategy, precision, and motility. Biophys. J. 97(4), 946–957 (2009)

    Google Scholar 

  65. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  66. E.W. Montroll, G.H. Weiss, Random walks on lattices. II. J. Math. Phys. 6, 167 (1965)

    Article  MathSciNet  Google Scholar 

  67. G. Naldi, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  68. K. Oelschläger, A fluctuation theorem for moderately interacting diffusion processes. Probab. Theor. Relat. Field 74, 591–616 (1987)

    Article  MATH  Google Scholar 

  69. A. Okubo, Diffusion and Ecological Problems: Mathematical Models (Springer, New York, 1980)

    MATH  Google Scholar 

  70. H. Othmer, T. Hillen, The diffusion limit of transport equations 2: chemotaxis equations. SIAM J. Appl. Math. 62, 1222–1250 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  71. H.G. Othmer, Interactions of Reaction and Diffusion in Open Systems, PhD thesis, University of Minnesota, 1969

    Google Scholar 

  72. H.G. Othmer, A. Stevens, Aggregation, blowup, and collapse: The ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math. 57(4), 1044–1081 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  73. H.G. Othmer, S.R. Dunbar, W. Alt, Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  74. H.G. Othmer, K. Painter, D. Umulis, C. Xue, The intersection of theory and application in biological pattern formation. Math. Mod. Nat. Phenom. 4, 3–79 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  75. K.J. Painter, P.K. Maini, H.G. Othmer, Development and applications of a model for cellular response to multiple chemotactic cues. J. Math. Biol. 41(4), 285–314 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  76. E. Palsson, H.G. Othmer, A model for individual and collective cell movement in Dictyostelium discoideum. Proc. Natl. Acad. Sci. 97, 11448–11453 (2000)

    Google Scholar 

  77. G.C. Papanicolaou, Asymptotic analysis of transport processes. Bull. AMS 81, 330–392 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  78. C.A. Parent, P.N. Devreotes, A cell’s sense of direction. Science 284(5415), 765–770 (1999). Review

    Google Scholar 

  79. E. Pate, H.G. Othmer, Differentiation, cell sorting and proportion regulation in the slug stage of Dictyostelium discoideum. J. Theor. Biol. 118, 301–319 (1986)

    Google Scholar 

  80. C.S. Patlak, Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  81. K. Pearson, The problem of the random walk. Nature 72(1865), 294–294 (1905)

    Article  Google Scholar 

  82. R. Pemantle, A survey of random processes with reinforcement. Probab. Surv. 4, 1–79 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  83. B. Perthame, Mathematical tools for kinetic equations. Bull. Am. Math. Soc. 41(2), 205–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  84. L. Rayleigh, On the resultant of a large number of vibrations of the same pitch and of arbitrary phase. Phil. Mag. 10(73), 491 (1880)

    Google Scholar 

  85. J. Renkawitz, K. Schumann, M. Weber, T. Lämmermann, H. Pflicke, M. Piel, J. Polleux, J.P. Spatz, M. Sixt, Adaptive force transmission in amoeboid cell migration. Nat. Cell Biol. 11(12), 1438–1443 (2009)

    Article  Google Scholar 

  86. K.I. Sato, Lévy Processes and Infinitely Divisible Distributions (Cambridge University Press, London, 1999)

    MATH  Google Scholar 

  87. P.A. Spiro, J.S. Parkinson, H.G. Othmer, A model of excitation and adaptation in bacterial chemotaxis. Proc. Natl. Acad. Sci. 94(14), 7263–7268 (1997)

    Article  Google Scholar 

  88. H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, New York, 1991)

    Book  MATH  Google Scholar 

  89. A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems. SIAM J. Appl. Math. 61, 183–212 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  90. M.A. Stolarska, Y. Kim, H.G. Othmer, Multi-scale models of cell and tissue dynamics. Phil. Trans. R. Soc. A 367(1902), 3525 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  91. D.W. Stroock, Some stochastic processes which arise from a model of the motion of a bacterium. Probab. Theor. Relat. Field 28, 305–315 (1974)

    MATH  Google Scholar 

  92. G.I. Taylor, Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196–212 (1920)

    Article  Google Scholar 

  93. B.J. Varnum-Finney, E. Voss, D.R. Soll, Frequency and orientation of pseudopod formation of Dictyostelium discoideum amebae chemotaxing in a spatial gradient: further evidence for a temporal mechanism. Cell Motil. Cytoskeleton 8(1), 18–26 (1987)

    Article  Google Scholar 

  94. K. Kang, B. Perthame, A. Stevens, J.J.L. Velázquez, An integro-differential equation model for alignment and orientational aggregation. J. Differ. Equat. 246(4), 1387–1421 (2009)

    Article  MATH  Google Scholar 

  95. T. Vicsek, A. Zafiris, Collective motion (2010). arXiv preprint arXiv:1010.5017

    Google Scholar 

  96. D.C. Walker, G.Hill, S.M. Wood, R.H. Smallwood, J. Southgate, Agent-based computational modeling of wounded epithelial cell monolayers. IEEE Trans. Nanobiosci. 3(3), 153–163 (2004)

    Article  Google Scholar 

  97. Q.D. Wang, The global solution of the n-body problem. Celestial Mech. Dynam. Astron. 50, 73–88 (1991)

    Article  MATH  Google Scholar 

  98. G.H. Weiss, Aspects and Applications of the Random Walk, vol. 121 (North-Holland, Amsterdam, 1994)

    MATH  Google Scholar 

  99. D. Widder, The Laplace Transform (Princeton University Press, Princeton, 1946)

    Google Scholar 

  100. G. Wilemski, On the derivation of Smoluchowski equations with corrections in the classical theory of Brownian motion. J. Stat. Phys. 14(2), 153–169 (1976)

    Article  Google Scholar 

  101. Y. Wu, A.D. Kaiser, Y. Jiang, M.S. Alber, Periodic reversal of direction allows myxobacteria to swarm. Proc. Natl. Acad. Sci. 106(4), 1222 (2009)

    Article  Google Scholar 

  102. X. Xin, H.G. Othmer, A trimer of dimers - based model for the chemotactic signal transduction network in bacterial chemotaxis. Bull. Math. Biol., 1–44 (2012)

    Google Scholar 

  103. C. Xue, Mathematical Models of Taxis-Driven Bacterial Pattern Formation, PhD thesis, University of Minnesota, 2008

    Google Scholar 

  104. C. Xue, H.G. Othmer, Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 70(1), 133–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  105. C. Xue, H.G. Othmer, R. Erban, From Individual to Collective Behavior of Unicellular Organisms: Recent Results and Open Problems, vol. 1167 (AIP, Melville, NY, 2009), pp. 3–14

    Google Scholar 

  106. C. Xue, H.J. Hwang, K.J. Painter, R. Erban, Travelling waves in hyperbolic chemotaxis equations. Bull. Math. Biol. 73(8), 1695–1733 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  107. C. Xue, E.O. Budrene, H.G. Othmer, Radial and spiral stream formation in proteus mirabilis colonies. PLoS Comput. Biol. 7(12), e1002332 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans G. Othmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Othmer, H.G., Xue, C. (2013). The Mathematical Analysis of Biological Aggregation and Dispersal: Progress, Problems and Perspectives. In: Lewis, M., Maini, P., Petrovskii, S. (eds) Dispersal, Individual Movement and Spatial Ecology. Lecture Notes in Mathematics(), vol 2071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35497-7_4

Download citation

Publish with us

Policies and ethics