Skip to main content

Sea-Ice Microbial Communities

  • Reference work entry
The Prokaryotes

Abstract

Being located in the most remote and climactically harshest regions of Earth, research on sea-ice and its primarily microbe-sized inhabitants has been steadily progressing over the last 30 years. Sea-ice, especially in the Antarctic, is exceptionally seasonally dynamic, and biological activity within sea-ice is thus physically forced in way that generates a community structure different to the underlying seawater. Sea-ice microbial communities (SIMCOs) contribute substantially to the total productivity of polar oceans and influence global energy budgets and atmospheric-oceanic interactions. In spring when ice extent is still close to maximal ice-associated algae bloom forming distinct banded assemblages living within the ice matrix. Bacterial growth accelerates when the algal bloom is well established. Sea-ice bacteria are often epiphytic and dependent on algal production. SIMCO can achieve very dense concentrations of cells that can lead to hypoxic pockets allowing denitrification and other processes. Together with algae sea, ice bacteria form a discrete microbial loop, which in turn supports allochthonous and autochthonous small metazoa, and by virtue of its vast extent collectively forms a major food source in polar oceans at higher trophic levels. The sea-ice SIMCO bacterial component, primarily members of classes Gammaproteobacteria, Alphaproteobacteria, and Flavobacteria, like the algae possesses a highly developed degree of psychrophily with the ability to multiply at subzero temperatures. It is one of the few environments, except the deep ocean, where true psychrophiles predominate. Within this extremely cold and very saline environment, algae and bacteria clearly thrive, even down to −20 °C. The myriad of specialized adaptations allowing survival in sea-ice brine channels represents an exciting research dimension that is not only ecologically very interesting but also astrologically and having biotechnological potential. With climate change, Antarctic and especially Arctic sea ice are perhaps the most threatened biomes on the planet, and thus, there is some urgency in the understanding of sea ice and preservation of its inhabitants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackley SF, Sullivan CW (1994) Physical controls on the development and characteristics of Antarctic Sea ice biological communities- a review and synthesis. Deep Sea Research I. Oceanogr Res Paper 41:1583–1604

    Article  Google Scholar 

  • Ackley SF, Diekmann GS, Shen H (1987) Algal and foram incorporation into new sea ice. Eos 68:1736

    Google Scholar 

  • Aguilar A, Ingemansson T, Magnien E (1998) Extremophile microorganisms as cell factories—support from the European Union. Extremophiles 2:367–373

    Article  PubMed  CAS  Google Scholar 

  • Allen EE, Bartlett DH (2002) Structure and regulation of the omega-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9. Microbiology 148:1903–1913

    PubMed  CAS  Google Scholar 

  • Allen PA, Etienne JL (2008) Sedimentary challenge to Snowball Earth. Nat Geosci 1:817–825

    Article  CAS  Google Scholar 

  • Arrigo KR, Thomas DN (2004) Large scale of sea ice biology in the Southern Ocean. Antarctic Sci 16:471–486

    Article  Google Scholar 

  • Auman AJ, Breezee JL, Gosink JJ, Kämpfer P, Staley JT (2006) Psychromonas ingrahamii sp nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. Int J Syst Evol Microbiol 56:1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Auman AJ, Breezee JL, Gosink JJ, Schumann P, Barnes CR, Kämpfer P, Staley JT (2010) Psychromonas boydii sp nov., a gas-vacuolate, psychrophilic bacterium isolated from an Arctic sea-ice core. Int J Syst Evol Microbiol 60:84–92

    Article  PubMed  CAS  Google Scholar 

  • Baas-Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum & Zoon, The Hague

    Google Scholar 

  • Bathmann UK, Scharek R, Klaas C, Duischar CD, Smetachek V (1997) Spring development of phytoplankton biomass and composition in major water masses of the Atlantic sector and the Southern Ocean. Deep Sea Res II 44:51–67

    Article  CAS  Google Scholar 

  • Bayer-Giraldi M, Uhlig C, John U, Mock T, Valentin K (2010) Antifreeze proteins in polar sea ice diatoms: diversity and gene expression in the genus Fragilariopsis. Environ Microbiol 12:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Bayer-Giraldi M, Weikusat I, Besir H, Dieckmann G (2011) Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice. Cryobiology 63:210–219

    Article  PubMed  CAS  Google Scholar 

  • Bell W, Mitchell R (1972) Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull 143:265–277

    Article  Google Scholar 

  • Bluhm BA, Gradinger RR, Schnack-Shiel SB (2010) Sea-ice meio- and macrofauna. In: Thomas DN, Dieckmann GS (eds) Sea ice, 2nd edn. Wiley-Blackwell, Chichester, pp 357–394

    Google Scholar 

  • Boras JA, Sala MM, Arrieta JM, Sa EL, Felipe J, Agusti S, Duarte CM, Vaque D (2010) Effect of ice melting on bacterial carbon fluxes channeled by viruses and protists in the Arctic Ocean. Polar Biol 33:1695–1707

    Article  Google Scholar 

  • Borriss M, Helmke E, Hanschke R, Schweder T (2004) Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea-ice. Extremophiles 7:377–384

    Article  CAS  Google Scholar 

  • Borriss M, Lombardot T, Glockner FO, Becher D, Albrecht D, Schweder T (2007) Genome and proteome characterization of the psychrophilic Flavobacterium phage 11b. Extremophiles 11:95–104

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP (1998) Pseudoalteromonas prydzensis sp. nov., a psychrotrophic, halotolerant bacterium from Antarctic sea ice. Int J Syst Evol Microbiol 48:1037–1041

    CAS  Google Scholar 

  • Bowman JP (2000) Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868

    PubMed  CAS  Google Scholar 

  • Bowman JP (2008) Genomic analysis of psychrophilic prokaryotes. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, New York, pp 265–284

    Chapter  Google Scholar 

  • Bowman JS, Deming JW (2010) Elevated bacterial abundance and exopolymers in saline frost flowers and implications for atmospheric chemistry and microbial dispersal. Geophys Res Lett 12:1041–1052

    Google Scholar 

  • Bowman JP, Nichols DS (2002) Aequorivita gen. nov., a member of the family Flavobacteriaceae isolated from terrestrial and marine Antarctic habitats. Int J Syst Evol Microbiol 52:1533–1541

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP, Nichols DS (2005) Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp nov., Subsaximicrobium saxinquililnus sp nov., Subsaxibacter broadyi gen. nov., sp nov., Lacinutrix copepodicola gen. nov., sp nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. Int J Syst Evol Microbiol 55:1471–1486

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP, Brown MV, Nichols DS (1997a) Biodiversity and ecophysiology of bacteria associated with Antarctic sea ice. Antarctic Sci 9:134–142

    Article  Google Scholar 

  • Bowman JP, McCammon SA, Brown JL, Nichols PD, McMeekin TA (1997b) Psychroserpens burtonensis gen. nov, sp. nov, and Gelidibacter algens gen. nov, sp. nov, psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int J Syst Bacteriol 47:670–677

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997c) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078

    PubMed  CAS  Google Scholar 

  • Bowman JP, McCammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, McMeekin TA (1997d) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP, Nichols DS, McMeekin TA (1997e) Psychrobacter glacincola sp. nov, a halotolerant, psychrophilic bacterium isolated from Antarctic sea ice. Syst Appl Microbiol 20:209–215

    Article  CAS  Google Scholar 

  • Bowman JP, Gosink JJ, McCammon SA, Lewis TE, Nichols DS, Nichols PD, Skerratt JH, Staley JT, McMeekin TA (1998a) Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22: 6 omega 3). Int J Syst Evol Microbiol 48:1171–1180

    CAS  Google Scholar 

  • Bowman JP, McCammon SA, Brown JL, McMeekin TA (1998b) Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Evol Microbiol 48:1213–1222

    Google Scholar 

  • Bowman JP, McCammon SA, Lewis T, Skerratt JH, Brown JL, Nichols DS, McMeekin TA (1998c) Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 144:1601–1609

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP, Mancuso Nichols C, Gibson JAE (2003) Algoriphagus ratkowskyi gen. nov., sp nov., Brumimicrobium glaciale gen. nov., sp nov., Cryomorpha ignava gen. nov., sp nov and Crocinitomix catalasitica gen. nov., sp nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 53:1343–1355

    Article  PubMed  CAS  Google Scholar 

  • Bowman JS, Rasmussen S, Blom N, Deming JW, Rysgaard S, Sicheritz-Ponten T (2012) Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S rRNA gene. ISME J 6:11–20

    Article  PubMed  CAS  Google Scholar 

  • Brakstad OG, Nonstad I, Faksness LG, Brandvik PJ (2008) Responses of microbial communities in Arctic sea ice after contamination by crude petroleum oil. Microb Ecol 55:540–552

    Article  PubMed  Google Scholar 

  • Bratback G, Thingstad TF (1985) Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalisms. Mar Ecol Prog Ser 25:23–30

    Article  Google Scholar 

  • Brett MT, Muller-Navarra DC (1997) The role of highly unsaturated fatty acids in aquatic food web processes. Freshwater Biol 38:483–499

    Article  CAS  Google Scholar 

  • Brinkmeyer R, Knitted K, Jargons J, Weyland H, Amman R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69:6610–6619

    Article  PubMed  CAS  Google Scholar 

  • Brown MV, Bowman JP (2001) A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35:267–275

    Article  PubMed  CAS  Google Scholar 

  • Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64:573–606

    Article  PubMed  CAS  Google Scholar 

  • Cavalieri DJ, Gloersen P, Parkinson CL, Comiso JC, Zwally HJ (1997) Observed hemisphere asymmetry in global sea ice changes. Science 278:1104–1106

    Article  CAS  Google Scholar 

  • Cavicchioli R (2006) Cold-adapted archaea. Nat Rev Microbiol 4:331–343

    Article  PubMed  CAS  Google Scholar 

  • Christian JR, Karl DM (1995) Bacterial ectoenzymes in marine waters: activity ratios and temperature responses in three oceanographic provinces. Limnol Oceanogr 40:1042–1049

    Article  CAS  Google Scholar 

  • Chróst RJ (1992) Significance of bacterial ectoenzymes in aquatic environments. Hydrobiologia 243:61–70

    Article  Google Scholar 

  • Clarke DB, Ackley SF (1984) Sea ice structure and biological activity in the Antarctic marginal ice zone. J Geophys Res 89:2087–2095

    Article  Google Scholar 

  • Cole JJ (1982) Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Syst 13:291–314

    Article  Google Scholar 

  • Collins RE, Deming JW (2011) Abundant dissolved genetic material in Arctic sea ice Part II: viral dynamics during autumn freeze-up. Polar Biol 34:1831–1841

    Article  Google Scholar 

  • Collins RE, Carpenter SD, Deming JW (2008a) Spatial heterogeneity and temporal dynamics of particles, bacteria, and pEPS in Arctic winter sea ice. J Mar Syst 74:902–917

    Article  Google Scholar 

  • Collins T, Roulling F, Piette F, Marx J-C, Feller G, Gerday C, D’Amico S (2008b) Fundamentals of cold-adapted enzymes. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, New York, pp 211–228

    Chapter  Google Scholar 

  • Collins RE, Rocap G, Deming JW (2010) Persistence of bacterial and archaeal communities in sea-ice through the Arctic winter. Environ Microbiol 12:1828–1841

    Article  PubMed  CAS  Google Scholar 

  • Connelly TL, Tilburg CM, Yager PL (2006) Evidence for psychrophiles outnumbering psychrotolerant marine bacteria in the springtime coastal Arctic. Limnol Oceanogr 51:1205–1210

    Article  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93

    Article  PubMed  CAS  Google Scholar 

  • DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–249

    Article  PubMed  CAS  Google Scholar 

  • Delille D (1996) Biodiversity and function of bacteria in the Southern Ocean. Biodivers Conserv 5:1505–1523

    Article  Google Scholar 

  • Delille D, Rosiers C (1996) Seasonal changes of Antarctic marine bacterioplankton and sea ice bacterial assemblages. Polar Biol 16:27–34

    Google Scholar 

  • Delille D, Fiala M, Rosiers C (1995) Seasonal changes in phytoplankton and bacterioplankton distribution at the ice-water interface in the Antarctic neritic area. Mar Ecol Prog Ser 123:225–233

    Article  Google Scholar 

  • Delille D, Basseres A, Dessommes A (1997) Seasonal variation if bacteria in sea ice contaminated by diesel fuel and dispersed crude oil. Microb Ecol 33:97–105

    Article  PubMed  Google Scholar 

  • DeLong EF, Béjà O (2010) The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biol 8:e1000359

    Article  PubMed  CAS  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    Article  PubMed  CAS  Google Scholar 

  • Dieckmann GS, Hellmer HH (2010) The importance of sea-ice: an overview. In: Thomas DN, Dieckmann GS (eds) Sea ice, 2nd edn. Wiley-Blackwell, Chichester, pp 1–22

    Google Scholar 

  • Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi and phylogenetically diverse plants. Cryobiology 30:322–328

    Article  Google Scholar 

  • Eicken H, Lensu M, Leppäranta M, Tucker WB III, Gow AJ, Salmela O (1995) Thickness, structure, and properties of level summer multiyear ice in the Eurasian sector of the Arctic Ocean. J Geophys Res 100:22697–22710

    Article  Google Scholar 

  • El-Sayed SK (1971) Biological aspects of the pack ice ecosystem. In: Deacon G (ed) Symposium on antarctic ice and water masses. Scientific Committee on Antarctic Research, Tokyo, pp 534–554

    Google Scholar 

  • El-Sayed SZ, Fryxell GA (1993) Phytoplankton. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 65–122

    Google Scholar 

  • Elser JJ, Stabler LB, Hassett RP (1995) Nutrient limitation of bacterial growth and rates of bactivory in lakes and oceans: a comparative study. Aquat Microb Ecol 9:105–110

    Article  Google Scholar 

  • Ewert M, Deming JW (2011) Selective retention in saline ice of extracellular polysaccharides produced by the cold-adapted marine bacterium Colwellia psychrerythraea strain 34H. Annals Glaciol 52:111–117

    Article  CAS  Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    Article  PubMed  CAS  Google Scholar 

  • Franzmann PD (1996) Examination of Antarctic prokaryotic diversity through molecular comparisons. Biodiver Conserv 5:1295–1305

    Article  Google Scholar 

  • Fritsen CH, Memmott JC, Ross RM, Quetin LB, Vernet M, Wirthlin ED (2011) The timing of sea ice formation and exposure to photosynthetically active radiation along the Western Antarctic Peninsula. Polar Biol 34:683–692

    Article  Google Scholar 

  • Garcia RO, Reichenbach H, Ring MW, Müller R (2009) Phaselicystis flava gen. nov., sp. nov., an arachidonic acid-containing soil myxobacterium, and the description of Phaselicystidaceae fam. nov. Int J Syst Evol Microbiol 59:1524–1530

    Article  PubMed  CAS  Google Scholar 

  • Garrison DL, Buck KR (1986) Organism losses during ice melting: a serious bias in sea ice community studies. Polar Biol 10:564–572

    Google Scholar 

  • Garrison DL, Buck KR (1989) The biota of Antarctic pack ice in the Weddell Sea and Antarctic Peninsula regions. Polar Biol 10:211–219

    Article  Google Scholar 

  • Garrison DL, Ackley SF, Buck KR (1983) A physical mechanism for establishing algal populations in frazil ice. Nature 306:363–365

    Article  CAS  Google Scholar 

  • Gerdes B, Brinkmeyer R, Dieckmann G, Helmke E (2004) Influence of crude oil on changes of bacterial communities in Arctic sea-ice. FEMS Microbiol Ecol 53:129–139

    Article  PubMed  CAS  Google Scholar 

  • Gianelli V, Thomas DN, Haas C, Kattner G, Kennedy H, Dieckmann GS, Jeffries MO, Eicken H (2001) Behavior of dissolved organic matter and inorganic nutrients during experimental sea-ice formation. Annals Glaciol 33:317–321

    Article  Google Scholar 

  • Giesenhager HC, Detme AE, de Wall JA, Weber A, Gradinger RR, Jochem FJ (1999) How are Antarctic planktonic microbial food webs and algal blooms affected by melting of sea ice? Microcosm simulations. Aquat Microb Ecol 20:183–201

    Article  Google Scholar 

  • Gleitz M, Thomas DN (1993) Variation in phytoplankton standing stock, chemical composition and physiology during sea ice formation in the southeastern Weddell Sea, Antarctica. J Exp Mar Biol Ecol 173:211–230

    Article  CAS  Google Scholar 

  • Gleitz M, Bathmann UV, Lochte K (1994) Build-up and decline of summer phytoplankton biomass in the eastern Weddell Sea, Antarctica. Polar Biol 14:413–422

    Article  Google Scholar 

  • Gosink JJ, Herwig RP, Staley JT (1997) Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus, sp.nov., non-pigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst Appl Microbiol 20:356–365

    Article  Google Scholar 

  • Gosink JJ, Woese CR, Staley JT (1998) Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolated polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ' Flectobacillus glomeratus as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 48:223–235

    Article  PubMed  Google Scholar 

  • Gosselin M, Legendre L, Demers S, Ingram RG (1985) Responses of sea-ice microalgae to climatic and fortnightly tidal energy inputs (Manitounuk Sound, Hudson Bay). Can J Fish Aquat Sci 42:999–1006

    Article  Google Scholar 

  • Gowing MM, Garrison DL, Gibson AH, Krupp JM, Jeffries MO, Fritsen CH (2004) Bacterial and viral abundance in Ross Sea summer pack ice communities. Mar Ecol Prog Ser 279:3–12

    Article  CAS  Google Scholar 

  • Griffiths RP, Caldwell BA, Morita RY (1982) Seasonal changes in microbial heterotrophic activity in subarctic marine waters as related to phytoplankton primary productivity. Mar Biol 71:121–127

    Article  Google Scholar 

  • Grossi SM, Kottmeier ST, Sullivan CW (1984) Sea ice microbial communities III. Seasonal abundance of microalgae and associated bacteria, McMurdo Sound, Antarctica. Microb Ecol 10:231–241

    Article  Google Scholar 

  • Grossmann S (1994) Bacterial activity in sea ice and open water of the Weddell Sea, Antarctica: a microautoradiographic study. Microb Ecol 28:1–18

    Article  CAS  Google Scholar 

  • Grossmann S, Diekmann GS (1994) Bacterial standing stock, activity and carbon production of sea ice in the Weddell Sea, Antarctica. Appl Environ Microbiol 60:2746–2753

    PubMed  CAS  Google Scholar 

  • Grossmann S, Gleitz M (1993) Microbial responses to experimental sea ice formation: implications for the establishment of Antarctic sea ice communities. J Exp Mar Biol Ecol 173:273–289

    Article  Google Scholar 

  • Groudieva T, Grote R, Antranikian G (2003) Psychromonas arctica sp. nov., a novel psychrotolerant, biofilm-forming bacterium isolated from Spitzbergen. Int J Syst Evol Microbiol 53:539–545

    Article  PubMed  CAS  Google Scholar 

  • Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H, Antranikian G (2004) Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8:475–488

    Article  PubMed  CAS  Google Scholar 

  • Gunther S, Gleitz M, Dieckmann GS (1999) Biogeochemistry of Antarctic sea ice: a case study on platelet ice layers at Drescher Inlet, Weddell Sea. Mar Ecol Prog Ser 177:1–13

    Article  CAS  Google Scholar 

  • Harder W, Veldcamp H (1971) Competition of marine psychrophilic bacteria at low temperatures. Antonie Van Leeuwenhoek 37:51–63

    Article  PubMed  CAS  Google Scholar 

  • Hassler C, Schoemann V, Mancuso-Nichols CA, Butler EC, Boyd P (2011) Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proc Natl Acad Sci USA 108:1076–1081

    Article  PubMed  CAS  Google Scholar 

  • Helmke E, Weyland H (1995) Bacteria in sea ice and underlying water of the eastern Weddell Sea in midwinter. Mar Ecol Prog Ser 11:269–287

    Article  Google Scholar 

  • Herborg LM, Thomas DN, Kennedy H, Haas C, Dieckmann GS (2001) Dissolved carbohydrates in Antarctic sea ice. Antarctic Sci 13:119–125

    Article  Google Scholar 

  • Hodson RE, Azam F, Carlucci AF, Fuhrman JA, Karl DM, Holm-Hansen O (1981) Microbial uptake of dissolved organic matter in McMurdo Sound, Antarctica. Mar Biol 61:89–94

    Article  Google Scholar 

  • Holm-Hansen O, Vernet M (1990) RACER: phytoplankton distribution and rates of primary production during the austral spring bloom. Antarctic J US 25:141–144

    Google Scholar 

  • Horner RA (ed) (1985) Sea ice biota. CRC Press, Boca Raton

    Google Scholar 

  • Horner RA, Syvertsen EE, Thomas DP, Lange C (1988) Proposed terminology and reporting units for sea ice algal assemblages. Polar Biol 8:249–253

    Article  Google Scholar 

  • Hosoya S, Arunpairojana V, Suwannachart C, Kanjana-Opas A, Yokota A (2006) Aureispira marina gen. nov., sp. nov., a gliding, arachidonic acid-containing bacterium isolated from the southern coastline of Thailand. Int J Syst Evol Microbiol 56:2931–2935

    Article  PubMed  CAS  Google Scholar 

  • Hunken M, Harder J, Kirst GO (2008) Epiphytic bacteria on the Antarctic ice diatom Amphiprora kufferathii Manguin cleave hydrogen peroxide produced during algal photosynthesis. Plant Biol 10:519–526

    Article  PubMed  CAS  Google Scholar 

  • Huston AL, Krieger-Brockett BB, Deming JW (2000) Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ Microbiol 2:383–388

    Article  PubMed  CAS  Google Scholar 

  • Janech MG, Krell A, Mock T, Kang JS, Raymond JA (2006) Ice-binding proteins from sea ice diatoms. J Phycol 42:410–416

    Article  CAS  Google Scholar 

  • Jaspers E, Overmann J (2004) Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70:4831–4839

    Article  PubMed  CAS  Google Scholar 

  • Junge K, Swanson BD (2008) High-resolution ice nucleation spectra of sea-ice bacteria: implications for cloud formation and life in frozen environments. Biogeosciences 5:865–873

    Article  Google Scholar 

  • Junge K, Gosink JJ, Hoppe HG, Staley JT (1998) Arthrobacter, Brachybacterium and Planococcus isolates identified from Antarctic sea ice brine. description of Planococcus mcmeekinii, sp. nov. Syst Appl Microbiol 21:306–314

    Article  PubMed  CAS  Google Scholar 

  • Junge K, Imhoff F, Staley JT, Deming JW (2002) Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb Ecol 43:315–328

    Article  PubMed  CAS  Google Scholar 

  • Junge K, Eicken H, Deming JW (2004) Bacterial activity at-2 to-20 degrees C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557

    Article  PubMed  CAS  Google Scholar 

  • Junge K, Eicken H, Swanson BD, Deming JW (2006) Bacterial incorporation of leucine into protein down to -20 C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52:417–429

    Article  PubMed  CAS  Google Scholar 

  • Kaartokallio H (2001) Evidence for active microbial nitrogen transformations in sea ice (Gulf of Bothnia, Baltic Sea) in midwinter. Polar Biol 24:21–28

    Article  Google Scholar 

  • Kaartokallio H, Laamanen M, Sivonen K (2005) Responses of Baltic Sea ice and open-water natural bacterial communities to salinity change. Appl Environ Microbiol 71:4363–4371

    Article  CAS  Google Scholar 

  • Kaartokallio H, Tuomainen J, Kuosa H, Kuparinen J, Martikainen PJ, Servomaa K (2008) Succession of sea-ice bacterial communities in the Baltic Sea fast ice. Polar Biol 31:783–893

    Article  Google Scholar 

  • Karl DM (1993) Microbial processes in the southern oceans. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 1–64

    Google Scholar 

  • Karl DM, Holm-Hansen O, Taylor GT et al (1991) Microbial biomass and productivity in the western Bransfield Strait, Antarctica during the 1986–87 austral summer. Deep Sea Res 38:1029–1055

    Article  Google Scholar 

  • Kim K, Kim KR, Min DH et al (2001) Warming and structural changes in the East(Japan) Sea: a clue to future changes in global oceans? Geophys Res Lett 28:3293–3296

    Article  Google Scholar 

  • Kivi K, Kuosa H (1994) Late winter microbial communities in the western Weddell Sea (Antarctica). Polar Biol 14:389–399

    Article  Google Scholar 

  • Knox GA (ed) (1994) The biology of the southern ocean: studies in polar research. Cambridge University Press, New York

    Google Scholar 

  • Koh EY, Atamna-Ismaeel N, Martin A, Cowie ROM, Béjà O, Davy SK, Maas EW, Ryan KG (2010) Proteorhodopsin-bearing bacteria in Antarctic sea ice. Appl Environ Microbiol 76:5918–5925

    Article  PubMed  CAS  Google Scholar 

  • Koh EY, Phua W, Ryan KG (2011) Aerobic anoxygenic phototrophic bacteria in Antarctic sea ice and seawater. Environ Microbiol Reports 3:710–716

    Article  CAS  Google Scholar 

  • Kottmeier ST, Sullivan CW (1987) Late winter primary production and bacterial production in sea ice and seawater west of the Antarctic Peninsula. Mar Ecol Prog Ser 36:287–298

    Article  Google Scholar 

  • Kottmeier ST, Sullivan CW (1988) Sea ice microbial communities (SIMCO) 9. Effects of temperature and salinity on rates of metabolism and growth of autotrophs and heterotrophs. Polar Biol 8:293–304

    Article  Google Scholar 

  • Kottmeier ST, Sullivan CW (1990) Bacterial biomass and production in pack ice of Antarctic marginal ice edge zones. Deep Sea Res 37:1311–1330

    Article  Google Scholar 

  • Kottmeier ST, Grossi SM, Sullivan CW (1987) Sea ice microbial communities.VIII. Bacterial production in annual sea ice of McMurdo Sound, Antarctica. Mar Ecol Prog Ser 35:175–186

    Article  Google Scholar 

  • Krembs C, Deming JW (2008) The role of exopolymers to adaptation of microorganisms to sea-ice. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, New York, pp 247–264

    Chapter  Google Scholar 

  • Krembs C, Gradinger R, Spindler M (1999) Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice. J Exp Mar Biol Ecol 243:55–80

    Article  Google Scholar 

  • Krembs C, Tuschling K, Juterzenka K (2002) The topography of the ice water interface—its influence on the colonization of sea ice by algae. Polar Biol 25:106–117

    Google Scholar 

  • Krembs C, Eicken H, Deming JW (2011) Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc Natl Acad Sci USA 108:3653–3658

    Article  PubMed  CAS  Google Scholar 

  • Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2009) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123

    Article  PubMed  CAS  Google Scholar 

  • Kuparinen J, Autio R, Kaartokallio H (2011) Sea ice bacterial growth rate, growth efficiency and preference for inorganic nitrogen sources in the Baltic Sea. Polar Biol 34:1361–1373

    Article  Google Scholar 

  • Lange MA (1988) Basic properties of Antarctic sea ice as revealed by textural analysis of ice cores. Annals Glaciol 10:95–101

    Google Scholar 

  • Lewis EL, Weeks WF (1971) Sea ice: some polar contrasts. In: Deacon G (ed) Antarctic ice and water masses. Scientific Committee on Antarctic Research, Cambridge, pp 23–34

    Google Scholar 

  • Lizotte MP (2003) Microbiology. In: Thomas DN, Dieckmann GS (eds) Sea-ice: an introduction to its physics, chemistry, biology and geology. Blackwell Science, Oxford, pp 184–210

    Google Scholar 

  • Lovejoy C, Bowman JP, Hallegraeff GM (1998) Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Appl Environ Microbiol 64:2806–2813

    PubMed  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33:1–14

    Article  Google Scholar 

  • Martin A, Anderson MJ, Thorn C, Davy SK, Ryan KG (2011) Response of sea-ice microbial communities to environmental disturbance: an in situ transplant experiment in the Antarctic. Mar Ecol Prog Ser 424:25–37

    Article  Google Scholar 

  • Martin A, Hall J, Ryan K (2009) Low salinity and high level UV-B radiation reduce single-cell activity in Antarctic sea-ice bacteria. Appl Environ Microbiol 75:7570–7573

    Article  PubMed  CAS  Google Scholar 

  • Marx JG, Carpenter SD, Deming JW (2009) Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea 34H. Can J Microbiol 55:63–72

    Article  PubMed  CAS  Google Scholar 

  • Maykut GA (1985) The Ice Environment. In: Horner RA (ed) Sea ice biota. CRC Press, Boca Raton, pp 21–82

    Google Scholar 

  • McMinn A, Skerratt J, Trull T, Ashworth C, Lizotte M (1999) Nutrient stress gradient in the bottom 5 cm of fast ice, McMurdo sound, Antarctica. Polar Biol 21:220–227

    Article  Google Scholar 

  • Meiners K, Brinkmeyer R, Granskog MA, Lindfors A (2004) Abundance, size distribution and bacterial colonization of exopolymer particles in Antarctic sea ice (Bellinghausen Sea). Aquat Microb Ecol 35:283–296

    Article  Google Scholar 

  • Meiners K, Krembs C, Gradinger R (2008) Exopolymer particles: microbial hotspots of enhanced bacterial activity in Arctic fast ice (Chukchi Sea). Aquat Microb Ecol 52:195–207

    Article  Google Scholar 

  • Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang XJ, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou LW, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequencing of Colwellia psychrerythraea 34H through genome and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918

    Article  PubMed  CAS  Google Scholar 

  • Mitchell BG, Holm-Hansen O (1991) Observations and modeling of the Antarctic phytoplankton crop in relation to mixing depth. Deep Sea Res 38:981–1007

    Article  CAS  Google Scholar 

  • Mock T, Kruse M, Dieckmann GS (2003) A new microcosm to investigate oxygen dynamics during sea ice formation. Aquat Microb Ecol 30:197–205

    Article  Google Scholar 

  • Mock T, Thomas DN (2005) Recent advances in sea-ice microbiology. Environ Microbiol 7:605–619

    Article  PubMed  CAS  Google Scholar 

  • Montfort P, Demers S, Levasseur M (2000) Bacterial dynamics in first year sea ice and underlying seawater of Saroma-ko Lagoon (sea of Okhotsk, Japan) and resolute Passage (High Canadian Arctic): inhibitory effects of ice algae on bacterial dynamics. Can J Microbiol 46:623–632

    Article  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    PubMed  CAS  Google Scholar 

  • Nevot M, Deroncele V, Messner P, Guinea J, Mercade E (2006) Characterization of the outer membrane vesicles released by the psychrotolerant bacterium Pseudoalteromonas antarctica NF(3). Environ Microbiol 8:1523–1533

    Article  PubMed  CAS  Google Scholar 

  • Nguyen D, Maranger R (2011) Respiration and bacterial carbon dynamics in Arctic sea-ice. Polar Biol 34:1843–1855

    Article  Google Scholar 

  • Nichols DS, Brown JL, Nichols PD, McMeekin TA (1997) Production of eicosapentaenoic and arachidonic acids by an Antarctic bacterium: response to growth temperature. FEMS Microbiol Lett 152:349–354

    Article  CAS  Google Scholar 

  • Nichols D, Bowman J, Sanderson K, Nichols CM, Lewis T, McMeekin T, Nichols PD (1999a) Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol 10:240–246

    Article  PubMed  CAS  Google Scholar 

  • Nichols DS, Greenhill AR, Shadbolt CT, Ross T, McMeekin TA (1999b) Physicochemical parameters for growth of the sea ice bacteria Glaciecola punicea 611(T) and Gelidibacter sp. IC158. Appl Environ Microbiol 65:3757–3760

    PubMed  CAS  Google Scholar 

  • Nichols DS, Olley J, Garda H, Brenner RR, McMeekin TA (2000) Effect of temperature and salinity stress on growth and; lipid composition of Shewanella gelidimarina. Appl Environ Microbiol 66:2422–2429

    Article  PubMed  CAS  Google Scholar 

  • Nichols CM, Bowman JP, Guezennec J (2005) Effects of incubation temperature on growth and production of exopolysaccharides by an Antarctic sea-ice bacterium grown in batch culture. Appl Environ Microbiol 71:3519–3523

    Article  PubMed  CAS  Google Scholar 

  • Nichols CM, Guezennec J, Bowman JP (2006) Bacterial exopolysaccharides from extreme marine environments with special consideration of the Southern Ocean, sea ice, and deep-sea hydrothermal vents: a review. Marine Biotechnol 7:253–271

    Article  CAS  Google Scholar 

  • Ochman H, Elwyn H, Moran NA (1999) Calibrating bacterial evolution. Proc Natl Acad Sci USA 96:12638–12643

    Article  PubMed  CAS  Google Scholar 

  • Palmisano AC, Garrison DL (1993) Microorganisms in Antarctic sea ice. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 167–218

    Google Scholar 

  • Palmisano AC, Sullivan CW (1985) Pathways of photosynthetic carbon assimilation in sea ice microalgae from McMurdo Sound, Antarctica. Limnol Oceanogr 30:674–678

    Article  CAS  Google Scholar 

  • Palmisano AC, SooHoo JB, Moe RL, Sullivan CW (1997) Sea ice microbial communities. VII. Changes in under ice spectral irradiance during the development of Antarctic sea ice microalgal communities. Mar Ecol Prog Ser 35:165–173

    Article  Google Scholar 

  • Pankowski A, McMinn A (2008) Ferredoxin and flavodoxin in eastern Antarctica pack ice. Polar Biol 31:1153–1165

    Article  Google Scholar 

  • Pankowski A, McMinn A (2009) Iron availability regulates growth, photosynthesis and production of ferredoxin and flavodoxin in Antarctic sea ice diatoms. Aquat Biol 4:273–288

    Article  Google Scholar 

  • Petri R, Imhoff JF (2001) Genetic analysis of sea-ice bacterial communities of the Western Baltic Sea using an improved double gradient method. Polar Biol 24:252–257

    Article  Google Scholar 

  • Pomeroy LR, Wiebe WJ (2001) Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Microb Ecol 23:187–204

    Article  Google Scholar 

  • Priddle J, Leakey RKG, Archer SD, Murphy EJ (1996) Eukaryotic microbiota in the surface waters and sea ice of the Southern Ocean: aspects of physiology, ecology and biodiversity in a ‘two-phase’ ecosystem. Biodivers Conserv 5:1473–1504

    Article  Google Scholar 

  • Pusceddu A, Dell'Anno A, Vezzulli L, Fabiano M, Saggiomo V, Cozzi S, Catalano G, Guglielmo L (2009) Microbial loop malfunctioning in the annual sea ice at Terra Nova Bay (Antarctica). Polar Biol 32:337–346

    Article  Google Scholar 

  • Ratkowsky DA, Lowry RK, McMeekin TA, Stokes AN, Chandler RE (1983) Model for bacterial culture growth rate through the entire biokinetic temperature range. J Bacteriol 154:1222–1226

    PubMed  CAS  Google Scholar 

  • Ratkowsky DA, Olley J, Ross T (2005) Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins. J Theor Biol 233:351–362

    Article  PubMed  CAS  Google Scholar 

  • Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61:214–221

    Article  PubMed  CAS  Google Scholar 

  • Reimnitz E, Clayton JR, Kempema EW, Payne JR, Weber WS (1993) Interaction of rising frazil with suspended particles: tank experiments with application to nature. Cold Regions Sci Technol 21:117–135

    Article  Google Scholar 

  • Riedel A, Michel C, Gosselin M (2006) Seasonal study of sea-ice exopolymeric substances of the Mackenzie shelf: implication for transport of sea-ice bacteria and algae. Aquat Microb Ecol 45:195–206

    Article  Google Scholar 

  • Riedel A, Michel C, Gosselin M, Leblanc B (2007) Enrichment of nutrients, exopolymeric substances and microorganisms in newly formed sea ice on the Mackenzie shelf. Mar Ecol Prog Ser 342:55–67

    Article  CAS  Google Scholar 

  • Riley M, Staley JT, Danchin A, Wang TZ, Brettin TS, Hauser LJ, Land ML, Thompson L (2008) Genomics of an extreme psychrophile. Psychromonas ingrahamii. BMC Genom 9:e210

    Article  CAS  Google Scholar 

  • Rodrigues DF, Jesus ED, Ayala-del-Rio HL, Pellizari VH, Gilichinsky D, Sepulveda-Torres L, Tiedje JM (2009) Biogeography of two cold-adapted genera: Psychrobacter and Exiguobacterium. ISME J 3:658–665

    Article  PubMed  CAS  Google Scholar 

  • Romanenko LA, Uchino M, Mikhailov VV, Zhukova NV, Uchimura T (2003) Marinomonas primoryensis sp nov., a novel psychrophile isolated from coastal sea-ice in the Sea of Japan. Int J Syst Evol Microbiol 53:829–832

    Article  PubMed  CAS  Google Scholar 

  • Romanenko LA, Lysenko AM, Rohde M, Mikhailov VV, Stackebrandt E (2004) Psychrobacter maritimus sp.nov.and Psychrobacter arenosus sp.nov., isolated from coastal sea ice and sediments of the Sea of Japan. Int J Syst Evol Microbiol 54:1741–1745

    Article  PubMed  CAS  Google Scholar 

  • Romanenko LA, Tanaka N, Frolova GM, Mikhailov VV (2008) Pseudochrobactrum glaciei sp nov., isolated from sea ice collected from Peter the Great Bay of the Sea of Japan. Int J Syst Evol Microbiol 58:2454–2458

    Article  PubMed  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Russell NJ (1998) Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv Biochem Eng Biotechnol 61:1–21

    PubMed  CAS  Google Scholar 

  • Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90

    Article  PubMed  CAS  Google Scholar 

  • Russell NJ, Nichols DS (1999) Polyunsaturated fatty acids in marine bacteria-a dogma rewritten. Microbiology 145:767–779

    Article  PubMed  CAS  Google Scholar 

  • Rysgaard S, Glud RN (2004) N2 production in Arctic sea ice. Limnol Oceanogr 49:86–94

    Article  CAS  Google Scholar 

  • Rysgaard S, Glud RN, Sejr MK, Blicher ME, Stahl HJ (2008) Denitrification activity and oxygen dynamics in Arctic sea ice. Polar Biol 31:527–537

    Article  Google Scholar 

  • Sala MM, Arrieta JM, Boras JA, Duarte CM, Vaque D (2010) The impact of ice melting on bacterioplankton in the Arctic Ocean. Polar Biol 33:1683–1694

    Article  Google Scholar 

  • Schewe I, Soltwedel T (2003) Benthic response to ice-edge-induced particle flux in the Arctic Ocean. Polar Biol 26:610–620

    Article  Google Scholar 

  • Schwartzmann D (1999) Life, temperature and the Earth: the self-organizing biosphere. Columbia University Press, New York

    Google Scholar 

  • Seiler H, Bleicher A, Busse HJ, Hüfner J, Scherer S (2011) Psychroflexus halocasei sp. nov., isolated from an aberrant cheese surface ripening microbial consortium. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.034801-0

    Google Scholar 

  • Shivaji S, Reddy GSN, Raghavan PUM, Sarita NB, Delille D (2004) Psychrobacter salsus sp. nov. and Psychrobacter adeliensis sp. nov. isolated from fast ice from Adelie Land, Antarctica. Syst Appl Microbiol 27:628–635

    Article  PubMed  CAS  Google Scholar 

  • Shulse CN, Allen EE (2010) Diversity and distribution of microbial long-chain fatty acid biosynthetic genes in the marine environment. Environ Microbiol 13:684–695

    Article  PubMed  CAS  Google Scholar 

  • Skerratt JH, Bowman JP, Nichols PD (2002) Shewanella olleyana sp. nov., a marine species isolated from a temperate estuary which produces high levels of polyunsaturated fatty acids. Int J Syst Evol Microbiol 52:2101–2106

    Article  PubMed  CAS  Google Scholar 

  • Skinner LC, Fallon S, Waelbroeck C, Michel E, Barker S (2010) Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328:1147–1151

    Article  PubMed  CAS  Google Scholar 

  • Smith CR, Mincks S, Demaster DJ (2004) A synthesis of bentho-pelagic coupling on the Antarctic shelf: Food banks, ecosystem inertia and global climate change. deep sea research II. Top Stud Oceanogr 53:875–894

    Article  Google Scholar 

  • Staley JT, Gosink JJ (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol 53:189–215

    Article  PubMed  CAS  Google Scholar 

  • Staley JT, Irgens RL, Herwig RP (1989) Gas vacuolate bacteria from the sea ice of Antarctica. Appl Environ Microbiol 55:1033–1036

    PubMed  CAS  Google Scholar 

  • Style RW, Worster MG (2009) Frost flower formation on sea ice and lake ice. Geophys Res Lett 36:11501–11504

    Article  CAS  Google Scholar 

  • Sullivan CW, Palmisano AC (1981) Sea ice microbial communities in McMurdo Sound. Antarctic J US 16:126–127

    Google Scholar 

  • Sullivan CW, Palmisano AC (1984) Sea ice microbial communities: distribution, abundance and diversity of sea ice bacteria in McMurdo Sound, Antarctica, in 1980. Appl Environ Microbiol 47:788–795

    PubMed  CAS  Google Scholar 

  • Sullivan CW, Palmisano AC, Kottmeier S, McGrath Grossi S, Moe R, Taylor GT (1983) The influence of light on development and growth of sea ice microbial communities in McMurdo Sound. Antarctic J US 18:177–179

    Google Scholar 

  • Taylor GT, Sullivan CW (2008) Vitamin B-12 and cobalt cycling among diatoms and bacteria in Antarctic sea ice microbial communities. Limnol Oceanogr 53:2454–2458

    Article  Google Scholar 

  • Thomas DN, Dieckmann GS (2002) Ocean science—Antarctic Sea ice—a habitat for extremophiles. Science 295:641–644

    Article  PubMed  CAS  Google Scholar 

  • Thomas DN, Kattner G, Engbrodt R, Gianelli V, Kennedy H, Haas C, Dieckmann GS, Jeffries MO, Eicken H (2001) Dissolved organic matter in Antarctic sea ice. Annals Glaciol 33:297–303

    Article  CAS  Google Scholar 

  • Tucker WB, Weatherly JW, Eppler DT, Farmer LD, Bentley DL (2001) Evidence for rapid thinning of sea ice in the western Arctic Ocean at the end of the 1980s. Geophys Res Lett 28:2851–2854

    Article  Google Scholar 

  • Tupas LM, Koike I, Karl DM, Holm-Hansen O (1994) Nitrogen metabolism by heterotrophic bacterial assemblages in Antarctic coastal waters. Polar Biol 14:195–204

    Article  Google Scholar 

  • Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE (2001) Essential fatty acids in visual and brain development. Lipids 36:885–895

    Article  PubMed  CAS  Google Scholar 

  • Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, London

    Google Scholar 

  • Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarctic Sci 12:374–385

    Article  Google Scholar 

  • Vincent WF (2010) Microbial ecosystem responses to rapid climate change in the Arctic. ISME J 4:1089–1091

    Article  Google Scholar 

  • Wadhams P (1994) The Antarctic sea ice cover. In: Hempel G (ed) Antarctic science: global concerns. Springer, Berlin, pp 45–59

    Chapter  Google Scholar 

  • Watanabe K, Satoh H (1997) Seasonal variations of ice algae standing crop near Syowa Station, East Antarctica. Bull Plankton Soc Jpn 34:143–164

    Google Scholar 

  • Weissenberger J, Grossmann S (1998) Experimental formation of sea ice: importance of water circulation and wave action for incorporation of phytoplankton and bacteria. Polar Biol 20:178–188

    Article  Google Scholar 

  • Wells LE, Deming JW (2006a) Modelled and measured dynamics of viruses in Arctic winter sea-ice brines. Environ Microbiol 8:1115–1121

    Article  PubMed  Google Scholar 

  • Wells LE, Deming JW (2006b) Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquat Microb Ecol 45:15–29

    Article  Google Scholar 

  • Wigley TML, Raper SCB (1987) Thermal expansion of sea water associated with global warming. Nature 330:127–131

    Article  Google Scholar 

  • Wong APS, Bindoff NL, Church JA (1999) Large-scale freshening of intermediate waters in the Pacific and Indian oceans. Nature 400:440–443

    Article  CAS  Google Scholar 

  • Yu Y, Li HR, Zeng YX, Chen B (2009) Extracellular enzymes of cold adapted bacteria from Arctic sea-ice, Canada Basin. Polar Biol 32:1539–1547

    Article  Google Scholar 

  • Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724

    PubMed  CAS  Google Scholar 

  • Zdanowski MK, Donachie SP (1993) Bacteria in the sea ice zone between Elephant Island and the South Orkneys during the Polish sea-ice zone expedition (December 1988 to January 1989). Polar Biol 13:245–254

    Article  Google Scholar 

  • Zhang DC, Li HR, Xin YH, Chi ZM, Zhou PJ, Yu Y (2008a) Marinobacter psychrophilus sp nov., a psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 58:1463–1466

    Article  PubMed  CAS  Google Scholar 

  • Zhang DC, Li HR, Xin YH, Liu HC, Chen B, Chi ZM, Zhou PJ, Yu Y (2008b) Marinomonas arctica sp nov., a psychrotolerant bacterium isolated from the Arctic. Int J Syst Evol Microbiol 58:1715–1718

    Article  PubMed  CAS  Google Scholar 

  • Zhang DC, Yu Y, Xin YH, Liu HC, Zhou PJ, Zhou YG (2008c) Colwellia polaris sp nov., a psychrotolerant bacterium isolated from Arctic sea ice. Int J Syst Evol Microbiol 58:1931–1934

    Article  PubMed  CAS  Google Scholar 

  • Zwally HJ, Parkinson CL, Comiso JC (1983) Variability of Antarctic sea ice and changes in carbon dioxide. Science 220:1005–1012

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Bowman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bowman, J.P. (2013). Sea-Ice Microbial Communities. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30123-0_46

Download citation

Publish with us

Policies and ethics