Skip to main content
Log in

Responses of Microbial Communities in Arctic Sea Ice After Contamination by Crude Petroleum Oil

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial communities associated with Arctic fjord ice polluted with petroleum oils were investigated in this study. A winter field experiment was conducted in the Van Mijen Fjord (Svalbard) from February to June 2004, in which the ice was contaminated with a North Sea paraffinic oil. Holes were drilled in the ice and oil samples frozen into the ice at the start of the experiment. Samples, including cores of both oil-contaminated and clean ice, were collected from the field site 33, 74, and 112 days after oil application. The sampled cores were separated into three sections and processed for microbiological and chemical analyses. In the oil-contaminated cores, enumerations of total prokaryotic cells by fluorescence microscopy and colony-forming units (CFU) counts of heterotrophic prokaryotes both showed stimulation of microbial growth, while concentrations of oil-degrading prokaryotes remained at similar levels in contaminated and clean ice. Analysis of polymerase chain reaction (PCR)-amplified bacterial 16S rRNA gene fragments by denaturing gradient gel electrophoresis (DGGE) revealed that bacterial communities in oil-contaminated ice generated fewer bands than communities in clean ice, although banding patterns changed both in contaminated and clean ice during the experimental period. Microbial communities in unpolluted ice and in cores contaminated with the paraffinic oil were examined by cloning and sequence analysis. In the contaminated cores, the communities became predominated by Gammaproteobacteria related to the genera Colwellia, Marinomonas, and Glaciecola, while clean ice included more heterogeneous populations. Chemical analysis of the oil-contaminated ice cores with determinations of n-C17/Pristane and naphthalene/phenanthrene ratios indicated slow oil biodegradation in the ice, primarily in the deeper parts of the ice with low hydrocarbon concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Altschul SF, Madden TF, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179

    Article  PubMed  CAS  Google Scholar 

  3. Bano N, Hollibaugh JT (2002) Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol. 68:505–518

    Article  PubMed  CAS  Google Scholar 

  4. Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078

    PubMed  CAS  Google Scholar 

  5. Bowman JP, McCammon SA, Brown JL, McMeekin TA (1998) Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Bacteriol 48:1213–1222

    Article  Google Scholar 

  6. Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418

    Article  CAS  Google Scholar 

  7. Brakstad OG, Bonaunet K (2006) Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0–5°C) and bacterial communities associated with degradation. Biodegradation 17:71–82

    Article  PubMed  CAS  Google Scholar 

  8. Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium “Psychromonas ingrahamii”. Microb Ecol 47:300–304

    Article  PubMed  CAS  Google Scholar 

  9. Brinkmeyer R, Knittel K, Jürgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69:6610–6619

    Article  PubMed  CAS  Google Scholar 

  10. Brown MV, Bowman JP (2001) A molecular phylogenetic survey of sea-ice microbial communities (SIMCO) FEMS Microb Ecol 35:267–275

    Article  CAS  Google Scholar 

  11. Brown EJ, Braddock JF (1990) Sheen screen, a miniaturised most-probable number method for enumeration of oil-degrading microorganisms. Appl Environ Microbiol 56:3895–3896

    PubMed  Google Scholar 

  12. Buist LA, Potter SG, Dickins DF (1983) Fate and behaviour of water-in-oil emulsions in ice. Proceedings to the 6th Arctic and Marine Oilspill Program Technical Seminar, Ottawa, Canada

  13. Cavanagh JE, Nichols PD, Franzmann PD, McMeekin, TA (1998) Hydrocarbon degradation by Antarctic coastal bacteria. Antarct Sci 10:386–397

    Article  Google Scholar 

  14. Colwell RR, Mills AL, Walker JD, Garcia-Tello P, Campos V (1978) Microbial ecological studies at the Metula spill in the Strait of Magellan. J Fish Res Board Can 35:573–580

    CAS  Google Scholar 

  15. Chrzanowski TH, Crotty RD, Hubbard JG, Welch RP (1984) Applicability of the fluorescein diacetate method of detecting active bacteria in freshwater. Microb Ecol 10:179–185

    Article  Google Scholar 

  16. Delille D, Basseres A, Dessommes A (1997) Seasonal variation of bacteria in sea ice contaminated by diesel fuel and dispersed crude oil. Microb Ecol 33:97–105

    Article  PubMed  Google Scholar 

  17. Delille D, Basseres A, Dessommes A (1998) Effectiveness of bioremediation for oil-polluted Antarctic seawater. Polar Biol 19:237–241

    Article  Google Scholar 

  18. Delille, D., Basseres, A., Dessommes, A., Rosiers (1998) Influence of daylight on potential biodegradation of diesel and crude oil in Antarctic seawater. Mar Environ Res 45:249–258

    Article  CAS  Google Scholar 

  19. Delille D, Perret E (1989) Influence of temperature on the growth potential of southern polar bacteria. Microb Ecol 18:117–123

    Article  Google Scholar 

  20. Delille D, Siron R (1993) Effects of dispersed oil on heterotrophic bacterial communities in cold marine waters. Microb Ecol 25:263–273

    Article  Google Scholar 

  21. Deppe U, Richnow H-H, Michaelis W, Antranikian G (2005) Degradation of crude oil by an arctic microbial consortium. Extremophiles 9:461–470

    Article  PubMed  Google Scholar 

  22. Douglas GS, Bence AE, Prince RC, McMillen SJ, Butler EL (1996) Environmental stability of selected petroleum hydrocarbon source and weathering ratios. Environ Sci Technol 30:2332–2339

    Article  CAS  Google Scholar 

  23. Erikson M, Ka J-O, Mohn WW (2001) Effects of low temperature and freeze–thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl Environ Microbiol 67:5107–5112

    Article  Google Scholar 

  24. Erikson M, Sodersten E, Yu Z, Dalhammar G, Mohn WW (2003) Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl Environ Microbiol 69:275–284

    Article  CAS  Google Scholar 

  25. Evans FF, Rosado AS, Sebastián GV, Casella R, Machado PLOA, Holmström C, Kjelleberg S, van Elsas JD, Seldin L (2004) Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiol Ecol 49:295–305

    Article  CAS  PubMed  Google Scholar 

  26. Faksness L-G, Brandvik PJ (2005) Dissolution of water soluble components from oil spills encapsulated in ice. Proceedings to the 2005 Arctic and Marine Oilspill Program Technical Seminar, Calgary, Canada, pp. 59–73

  27. Fiala M, Delille D (1999) Annual changes of microalgae biomass in Antarctic sea ice contaminated by crude oil and diesel fuel. Polar Biol 21:391–396

    Article  Google Scholar 

  28. Fingas MF, Hollebone BP (2003) Review of the behaviour of oil in freezing environments. Mar Poll Bull 47:333–340

    Article  CAS  Google Scholar 

  29. Gerdes B, Brinkmeyer R, Dieckmann G, Helmke E (2005) Influence of crude oil on changes of bacterial communities in Arctic sea-ice. FEMS Microb Ecol 53:129–139

    Article  CAS  Google Scholar 

  30. Gradinger R, Zhang Q (1997) Vertical distribution of bacteria in Arctic sea ice from the Barents and Laptev Seas. Polar Biol 17:448–454

    Article  Google Scholar 

  31. Grossi JJ, Kottmeier ST, Sullivan CW (1984) Sea-ice microbial communities. III. Seasonal abundance of microalgae and associated bacteria. Microb Ecol 10:231–242

    Article  Google Scholar 

  32. Grossman M, Prince R, Garrett R, Garrett K, Bare R, Lee K, Sergy G, Owens E, Gúenette C (1999) Microbial diversity in oiled and un-oiled shoreline sediments in the Norwegian Arctic. Proceedings of the 8th International Symposium on Microbial Ecology, Halifax, Ca

  33. Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H, Antranikian G (2004) Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8:475–488

    Article  PubMed  CAS  Google Scholar 

  34. Juck D, Charles T, Whyte LG, Greer CW (2000) Polyphasic microbial community analysis of petroleum hydrocarbon-contaminated soils from two northern Canadian communities. FEMS Microb Ecol 33:241–249

    Article  CAS  Google Scholar 

  35. Junge K, Imhoff F, Staley T, Deming JW (2002) Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured as subzero temperatures. Microb. Ecol 43:315–328

    Article  PubMed  CAS  Google Scholar 

  36. Junge K, Eicken H, Deming JW (2003) Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Appl Environ Microbiol 69:4282–4284

    Article  PubMed  CAS  Google Scholar 

  37. Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 and −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557

    Article  PubMed  CAS  Google Scholar 

  38. Junge K, Eicken H, Swanson BD, Deming JW (2006) Bacterial incorporation of leucine into protein down to −20°C with evidence for potential activity in sub-eutectic saline formations. Cryobiol 52:417–429

    Article  CAS  Google Scholar 

  39. Luz AP, Pellizari VH, Whyte LG, Greer CW (2004) A survey of microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Can J Microbiol 50:323–333

    Article  PubMed  CAS  Google Scholar 

  40. Massana R, Murray AE, Preston CM, DeLong EF (1997) Vertical distribution and phylogenetic characterization of marine planktonic archaea in the Santa Barbara channel. Appl Environ Microbiol 63:50–56

    PubMed  CAS  Google Scholar 

  41. Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang XJ, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou LW, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci U S A 102:10913–10918

    Article  PubMed  CAS  Google Scholar 

  42. Michaud L, Lo Guidice A, Saitta M, De Domenico M, Bruni V (2004) The biodegradation efficiency on diesel oil by two psychrotrophic Antarctic bacteria during a two-month-long experiment. Mar Poll Bull 49:405–409

    Article  CAS  Google Scholar 

  43. Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for the 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  44. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73:127–141

    Article  PubMed  CAS  Google Scholar 

  45. Pelletier E, Delille D, Delille B (2004) Crude oil bioremediation in sub-Antarctic intertidal sediments: chemistry and toxicity of oiled residue. Mar Environ Res 57:311–327

    Article  PubMed  CAS  Google Scholar 

  46. Pfirman SL, Eicken H, Bauch D, Weeks WF (1995) The potential transport of pollutants by Arctic sea-ice. Sci Total Environ. 159:129–146

    Article  CAS  Google Scholar 

  47. Powell SM, Bowman JP, Snape I (2004) Degradation of nonane by bacteria from Antarctic marine sediments. Polar Biol 27:573–578

    Article  Google Scholar 

  48. Powell SM, Riddle MJ, Snape I, Stark JS (2005) Location and DGGE methodology can influence interpretation of field experimental studies on the response to hydrocarbons by Antarctic benthic microbial community. Antarct Sci 17:353–360

    Article  Google Scholar 

  49. Powell SM, Ferguson SH, Bowman JP, Snape I (2006) Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microb Ecol 52:523–532

    Article  CAS  Google Scholar 

  50. Prince RC, Owens EH, Sergy G (2002) Weathering of an Arctic oil spill over 20 years: the BIOS experiment revisited. Mar Poll Bull 44:1236–1242

    Article  CAS  Google Scholar 

  51. Rike AG, Haugen KB, Børresen M, Engene B, Kolstad P (2003) In situ biodegradation of petroleum hydrocarbons in frozen arctic soils. Cold Reg Sci Technol 37:97–120

    Article  Google Scholar 

  52. Roubal G, Atlas RM (1978) Distribution of hydrocarbon utilizing microorganisms and hydrocarbon biodegradation potentials in Alaskan continental shelf areas. Appl Environ Microbiol 35:897–905

    PubMed  CAS  Google Scholar 

  53. Röling WFM, Milner MG, Jones DM, Lee K, Daniel F, Swannell RPJ, Head IM (2002) Robust hydrocarbon degradation during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68:5537–5548

    Article  PubMed  CAS  Google Scholar 

  54. Sambrook J, Russel DW (eds) (2001) Molecular cloning. A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

  55. Siron R, Pelletier É, Brochu C (1995) Environmental factors influencing the biodegradation of petroleum hydrocarbons in cold seawater. Arch Environ Contam Toxicol 28:406–416

    Article  CAS  Google Scholar 

  56. Teske A, Wawer C, Muyzer G, Ramsing NB (1996) Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol 62:1405–1415

    PubMed  CAS  Google Scholar 

  57. Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Golyshin PN (2003) Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785

    Article  PubMed  CAS  Google Scholar 

  58. Yakimov MM, Gentile G, Bruni V, Cappello S, D’Auria G, Golyshin PN, Giuliano L (2004) Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microb Ecol 49:419–432

    Article  CAS  Google Scholar 

  59. Wang Q-F, Miao J-L, Hou Y-H, Li G-Y (2006) Expression of CspA and GST by an Antarctic bacterium Colwellia sp. NJ341 at near-freezing temperature. World J Microbiol Botechnol 22:311–316

    Article  CAS  Google Scholar 

  60. Whyte LG, Schulz A, van Beilen JB, Luz AP, Pellizari V, Labbé D, Greer CW (2002) Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microb Ecol 41:141–150

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this project was provided by the National Research Council of Norway (project # 152460/720). We want to thank Kristin Bonaunet and Inger K. Almaas for technical assistance during laboratory analysis. The experience and assistance of field technicians from UNIS and SINTEF during field sampling were also highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odd Gunnar Brakstad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brakstad, O.G., Nonstad, I., Faksness, LG. et al. Responses of Microbial Communities in Arctic Sea Ice After Contamination by Crude Petroleum Oil. Microb Ecol 55, 540–552 (2008). https://doi.org/10.1007/s00248-007-9299-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9299-x

Keywords

Navigation