Skip to main content

Nanomaterial Toxicity, Hazards, and Safety

  • Chapter
Springer Handbook of Nanomaterials

Part of the book series: Springer Handbooks ((SHB))

Abstract

Manufactured nanoparticles of different chemical compositions are now widely commercially applied. They are found in places as diverse as food packaging and automotive bumpers, where their special nanoscale properties help to lower cost while improving performance. Given these widespread applications, the unintended effects of manufactured nanomaterials on workers, consumers, and the environment have become a focal point for international research. Initially, the human health effects of nanoscale materials were of most interest, but more recently identification of nanoscale particles in wastewater sludge has turned attention towards their environmental impacts. Though the topic of nanomaterial safety has received substantial attention in the literature, many basic questions about nanoparticle transport, fate, and toxicology remain unanswered. A central challenge for researchers has been the definitive characterization of particular manufactured nanomaterials, particularly in commercial products that have significant human or environmental exposure. Careful determination of the physical size, surface chemistry, internal structure, and intermediate stability of manufactured nanomaterials helps investigators compare results, as well as link unwanted biological outcomes to particular material features. This chapter provides an overview of the current exposure and toxicity studies of manufactured (e.g., engineered) nanomaterials. A special emphasis in this chapter is the practice used for nanomaterial characterization as it relates to their biological and environmental properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

atomic force microscopy

ASTM:

American Society for Testing and Materials

BASF:

Badische Anilin und Soda Fabrik

BET:

Brunauer–Emmett–Teller

BSI:

British Standards Institution

CNT:

carbon nanotube

DLS:

dynamic light scattering

DMPO:

5,5-dimethyl-pyrroline N-oxide

DNA:

deoxyribonucleic acid

EDS:

energy-dispersive x-ray spectroscopy

EPR:

electron paramagnetic resonance

FDA:

Food and Drug Administration

GSH:

glutathione

IANH:

International Alliance for NanoEHS (environment, health, safety)

ICP-MS:

inductively coupled plasma mass spectrometry

ICP:

inductively coupled plasma

IR:

infrared

ISO:

International Standards Organization

MDA:

malondialdehyde

NP:

nanoparticle

PEN:

Project on Emerging Nanotechnologies

ROS:

reactive oxygen species

SEM:

scanning electron microscopy

SSA:

specific surface area

TEM:

transmission electron microscopy

UV:

ultraviolet

XPS:

x-ray photoelectron spectroscopy

XRD:

x-ray diffraction

pzc:

point of zero charge

References

  1. ASTM (2006) Terminology for Nanotechnology. E2456-06 American Society for Testing and Materials, available online at http://www.astm.org/Standards/E2456.htm (last accessed 7 February 2011)

  2. H.F. Krug, P. Wick: Nanotoxicology: An interdisciplinary challenge, Angew. Chem. Int. Ed. 50(6), 1260–1278 (2011)

    Article  CAS  Google Scholar 

  3. N.S. Wigginton, K.L. Haus, M.F. Hochella: Aquatic environmental nanoparticles, J. Environ. Monitoring 9(12), 1306–1316 (2007)

    Article  CAS  Google Scholar 

  4. BSI (2007) Terminology for nanomaterials. PAS 136: 2007 British Standards Institution, available online at www.bsigroup.com (last accessed 15 February 2010)

  5. A.D. Maynard: Nanotechnology: The next big thing, or much ado about nothing?, Ann. Occup. Hyg. 51(1), 1–12 (2007)

    Article  CAS  Google Scholar 

  6. G. Oberdörster, E. Oberdörster, J. Oberdörster: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect 113(7), 823–839 (2005)

    Article  CAS  Google Scholar 

  7. R. Rossetti, S. Nakahara, L.E. Brus: Quantum size effects in the redox potentials, resonance Raman-spectra, and electronic-spectra of Cds crystallites in aqueous-solution, J. Chem. Phys. 79(2), 1086–1088 (1983)

    Article  CAS  Google Scholar 

  8. E.A. Schutz-Sikma, H.M. Joshi, Q. Ma, K.W. MacRenaris, A.L. Eckermann, V.P. Dravid, T.J. Meade: Probing the chemical stability of mixed ferrites: Implications for magnetic resonance contrast agent design, Chem. Mater. 23(10), 2657–2664 (2011)

    Article  CAS  Google Scholar 

  9. S.F. Hansen, E.S. Michelson, A. Kamper, P. Borling, F. Stuer-Lauridsen, A. Baun: Categorization framework to aid exposure assessment of nanomaterials in consumer products, Ecotoxicology 17(5), 438–447 (2008)

    Article  CAS  Google Scholar 

  10. PEN (2009): The Project on Emerging Nanotechnologies Woodrow Wilson International Center for Scholars (Washington 2011), available online from www.nanotechproject.org (last accesses 08 February 2011)

  11. R. Kessler: Engineered nanoparticles in consumer products: Understanding a new ingredient, Environ. Health Perspect 119(3), 120–125 (2011)

    Article  Google Scholar 

  12. ICON (2012) Nano-EHS Database Analysis Tool. International Council on Nanotechnology, Rice University, Houston (2012), available online from http://icon.rice.edu/report.cfm (last accessed 05 March 2012)

  13. A.D. Maynard, R.J. Aitken, T. Butz, V. Colvin, K. Donaldson, G. Oberdörster, M.A. Philbert, J. Ryan, A. Seaton, V. Stone, S.S. Tinkle, L. Tran, N.J. Walker, D.B. Warheit: Safe handling of nanotechnology, Nature 444(7117), 267–269 (2006)

    Article  CAS  Google Scholar 

  14. E. Nielsen: Human Health and Nanomaterials in Consumer Products. Literature Review for the Region of Peel`s Public Health Unit (EBN Consulting, Richmond 2008)

    Google Scholar 

  15. M. Simkó, M.O. Mattsson: Risks from accidental exposures to engineered nanoparticles and neurological health effects: A critical review, Part. Fibre Toxicol. 7, 42 (2010)

    Article  CAS  Google Scholar 

  16. P.J.A. Borm, D. Robbins, S. Haubold, T. Kuhlbusch, H. Fissan, K. Donaldson, R. Schins, V. Stone, W. Kreyling, J. Lademann, J. Krutmann, D. Warheit, E. Oberdorster: The potential risks of nanomaterials: A review carried out for ECETOC, Part. Fibre Toxicol. 3, 11 (2006)

    Article  CAS  Google Scholar 

  17. J.R. Peralta-Videa, L.J. Zhao, M.L. Lopez-Moreno, G. de la Rosa, J. Hong, J.L. Gardea-Torresdey: Nanomaterials and the environment: A review for the biennium 2008–2010, J. Hazard. Mater. 186(1), 1–15 (2011)

    Article  CAS  Google Scholar 

  18. Z.A. Lewicka, A.F. Benedetto, D.N. Benoit, W.W. Yu, J.D. Fortner, V.L. Colvin: The structure, composition and dimensions of TiO2 and ZnO nanomaterials in commercial sunscreens, J. Nanopart. Res. 12(4), 3607–3617 (2011)

    Article  CAS  Google Scholar 

  19. B.D. More: Physical sunscreens: On the comeback trail, Indian J. Dermatol. Venereol. Leprol. 73(2), 80–85 (2007)

    Article  Google Scholar 

  20. A.P. Popov, A.V. Priezzhev, J. Lademann, R. Myllya: The effect of nanometer particles of titanium oxide on the protective properties of skin in the UV region, J. Opt. Technol. 73, 208–211 (2005)

    Article  Google Scholar 

  21. C.O. Hendren, X. Mesnard, J. Dröge, M.R. Wiesner: Estimating production data for five engineered nanomaterials as a basis for exposure assessment, Environ. Sci. Technol. 45(7), 2562–2568 (2011)

    Article  CAS  Google Scholar 

  22. B. Nowack, T.D. Bucheli: Occurrence, behavior and effects of nanoparticles in the environment, Environ. Pollut. 150, 5–22 (2007)

    Article  CAS  Google Scholar 

  23. N. Musee: Nanowastes and the environment: Potential new waste management paradigm, Environ. Int. 37(1), 112–128 (2011)

    Article  CAS  Google Scholar 

  24. M.A. Kiser, P. Westerhoff, T. Benn, Y. Wang, J. Perez-Rivera, K. Hristovski: Titanium nanomaterial removal and release from wastewater treatment plants, Environ. Sci. Technol. 43(17), 6757–6763 (2009)

    Article  CAS  Google Scholar 

  25. F. Gottschalk, T. Sonderer, R.W. Scholz, B. Nowack: Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis, Environ. Toxicol. Chem. 29(5), 1036–1048 (2010)

    CAS  Google Scholar 

  26. F. Gottschalk, T. Sonderer, R.W. Scholz, B. Nowack: Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions, Environ. Sci. Technol. 43(24), 9216–9222 (2009)

    Article  CAS  Google Scholar 

  27. B. Nowack, J.F. Ranville, S. Diamond, J.A. Gallego-Urrea, C. Metcalfe, J. Rose, N. Horne, A.A. Koelmans, S.J. Klaine: Potential scenarios for nanomaterial release and subsequent alteration in the environment, Environ. Toxicol. Chem. 31(1), 50–59 (2012)

    Article  CAS  Google Scholar 

  28. P.J.J. Alvarez, V. Colvin, J. Lead, V. Stone: Research priorities to advance eco-responsible nanotechnology, ACS Nano 3(7), 1616–1619 (2009)

    Article  CAS  Google Scholar 

  29. V. Stone, B. Nowack, A. Baun, N. van den Brink, F. von der Kammer, M. Dusinska, R. Handy, S. Hankin, M. Hassellov, E. Joner, T.F. Fernandes: Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation, Sci. Total Environ. 408(7), 1745–1754 (2010)

    Article  CAS  Google Scholar 

  30. S.K. Brar, M. Verma, R.D. Tyagi, R.Y. Surampalli: Engineered nanoparticles in wastewater and wastewater sludge – Evidence and impacts, Waste Manag. 30(3), 504–520 (2010)

    Article  CAS  Google Scholar 

  31. M.J. McCall: Environmental, Health and Safety Issues; Nanoparticles in the real world, Nat. Nanotechnol. 6(10), 613–614 (2011)

    Article  CAS  Google Scholar 

  32. J.R. Lead, K.J. Wilkinson: Aquatic colloids and nanoparticles: Current knowledge and future trends, Environ. Chem. 3(3), 159–171 (2006)

    Article  CAS  Google Scholar 

  33. M. Delay, F.H. Frimmel: Nanoparticles in aquatic systems, Anal. Bioanal. Chem. 402(2), 583–592 (2012)

    Article  CAS  Google Scholar 

  34. K.A.D. Guzman, M.P. Finnegan, J.F. Banfield: Influence of surface potential on aggregation and transport of titania nanoparticles, Environ. Sci. Technol. 40(24), 7688–7693 (2006)

    Article  CAS  Google Scholar 

  35. J. Labille, J.H. Feng, C. Botta, D. Borschneck, M. Sammut, M. Cabie, M. Auffan, J. Rose, J.Y. Bottero: Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment, Environ. Pollut. 158(12), 3482–3489 (2010)

    Article  CAS  Google Scholar 

  36. D.H. Lin, X.L. Tian, F.C. Wu, B.S. Xing: Fate and transport of engineered nanomaterials in the environment, J. Environ. Qual. 39(6), 1896–1908 (2010)

    Article  Google Scholar 

  37. E. Oberdörster: Manufactured nanomaterials (Fullerenes, C-60) induce oxidative stress in the brain of juvenile largemouth bass, Environ. Health Perspect 112(10), 1058–1062 (2004)

    Article  CAS  Google Scholar 

  38. V.L. Colvin: The potential environmental impact of engineered nanomaterials, Nat. Biotechnol. 21(10), 1166–1170 (2003)

    Article  CAS  Google Scholar 

  39. E. Bergamaschi: Occupational exposure to nanomaterials: Present knowledge and future development, Nanotoxicology 3(3), 194–201 (2009)

    Article  CAS  Google Scholar 

  40. M. Farre, K. Gajda-Schrantz, L. Kantiani, D. Barcelo: Ecotoxicity and analysis of nanomaterials in the aquatic environment, Anal. Bioanal. Chem. 393(1), 81–95 (2009)

    Article  CAS  Google Scholar 

  41. V. Matranga, I. Corsi: Toxic effects of engineered nanoparticles in the marine environment: Model organisms and molecular approaches, Mar. Environ. Res. 76, 32–40 (2012)

    Article  CAS  Google Scholar 

  42. S.J. Klaine, P.J.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin, J.R. Lead: Nanomaterials in the environment: Behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem. 27(9), 1825–1851 (2008)

    Article  CAS  Google Scholar 

  43. R.D. Handy, F. von der Kammer, J.R. Lead, M. Hassellov, R. Owen, M. Crane: The ecotoxicology and chemistry of manufactured nanoparticles, Ecotoxicology 17(4), 287–314 (2008)

    Article  CAS  Google Scholar 

  44. A. Kahru, K. Savolainen: Potential hazard of nanoparticles: From properties to biological and environmental effects, Toxicology 269(2/3), 89–91 (2010)

    Article  CAS  Google Scholar 

  45. J.P. Cheng, E. Flahaut, S.H. Cheng: Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos, Environ. Toxicol. Chem. 26(4), 708–716 (2007)

    Article  CAS  Google Scholar 

  46. L.K. Adams, D.Y. Lyon, P.J.J. Alvarez: Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions, Water Res. 40(19), 3527–3532 (2006)

    Article  CAS  Google Scholar 

  47. R.J. Griffitt, R. Weil, K.A. Hyndman, N.D. Denslow, K. Powers, D. Taylor, D.S. Barber: Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio), Environ. Sci. Technol. 41(23), 8178–8186 (2007)

    Article  CAS  Google Scholar 

  48. M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier, A. Kahru: Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere 71(7), 1308–1316 (2008)

    Article  CAS  Google Scholar 

  49. F. Gagne, J. Auclair, P. Turcotte, M. Fournier, C. Gagnon, S. Sauve, C. Blaise: Ecotoxicity of CdTe quantum dots to freshwater mussels: Impacts on immune system, oxidative stress and genotoxicity, Aquat. Toxicol. 86(3), 333–340 (2008)

    Article  CAS  Google Scholar 

  50. M.K. Yeo, M. Kang: Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis, Bull. Korean Chem. Soc. 29(6), 1179–1184 (2008)

    Article  CAS  Google Scholar 

  51. A. Kahru, H.C. Dubourguier: From ecotoxicology to nanoecotoxicology, Toxicology 269(2/3), 105–119 (2010)

    Article  CAS  Google Scholar 

  52. M.A. Wilson, N.H. Tran, A.S. Milev, G.S.K. Kannangara, H. Volk, G.Q.M. Lu: Nanomaterials in soils, Geoderma 146(1/2), 291–302 (2008)

    Article  CAS  Google Scholar 

  53. B.K.G. Theng, G. Yuan: Nanoparticles in the soil environment, Elements 4(6), 395–399 (2008)

    Article  CAS  Google Scholar 

  54. G.V. Lowry, E.M. Hotze, E.S. Bernhardt, D.D. Dionysiou, J.A. Pedersen, M.R. Wiesner, B.S. Xing: Environmental occurrences, behavior, fate, and ecological effects of nanomaterials: An introduction to the special series, J. Environ. Qual. 39(6), 1867–1874 (2010)

    Article  CAS  Google Scholar 

  55. R. Dinesh, M. Anandaraj, V. Srinivasan, S. Hamza: Engineered nanoparticles in the soil and their potential implications to microbial activity, Geoderma 173, 19–27 (2012)

    Article  CAS  Google Scholar 

  56. X. Ma, J. Geiser-Lee, Y. Deng, A. Kolmakov: Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation, Sci. Total Environ. 408(16), 3053–3061 (2010)

    Article  CAS  Google Scholar 

  57. J.E. Canas, M. Long, S. Nations, R. Vadan, L. Dai, M. Luo, R. Ambikapathi, E.H. Lee, D. Olszyk: Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species, Environ. Toxicol. Chem. 27(9), 1922–1931 (2008)

    Article  CAS  Google Scholar 

  58. M. Khodakovskaya, E. Dervishi, M. Mahmood, Y. Xu, Z. Li, F. Watanabe, A.S. Biris: Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth, Acs Nano 3(10), 3221–3227 (2009)

    Article  CAS  Google Scholar 

  59. J.-Y. Roh, Y.-K. Park, K. Park, J. Choi: Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints, Environ. Toxicol. Pharmacol. 29(2), 167–172 (2010)

    Article  CAS  Google Scholar 

  60. H.H. Wang, R.L. Wick, B.S. Xing: Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans, Environ. Pollut. 157(4), 1171–1177 (2009)

    Article  CAS  Google Scholar 

  61. V.K. Sharma: Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment – A Review, J. Environ. Sci. Health Pt. A 44(14), 1485–1495 (2009)

    Article  CAS  Google Scholar 

  62. R.D. Handy, N. van den Brink, M. Chappell, M. Mühling, R. Behra, M. Dušinská, P. Simpson, J. Ahtiainen, A.N. Jha, J. Seiter, A. Bednar, A. Kennedy, T.F. Fernandes, M. Riediker: Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: What have we learnt so far?, Ecotoxicology 21(4), 933–972 (2012)

    Article  CAS  Google Scholar 

  63. W.G. Kreyling, M. Semmler-Behnke, W. Moeller: Health implications of nanoparticles, J. Nanopart. Res. 8(5), 543–562 (2006)

    Article  CAS  Google Scholar 

  64. C.S. Yah, G.S. Simate, S.E. Iyuke: Nanoparticles toxicity and their routes of exposures, Pak. J. Pharm. Sci. 25(2), 477–491 (2012)

    CAS  Google Scholar 

  65. W. Yang, J.I. Peters, R.O. Williams: Inhaled nanoparticles – A current review, Int. J. Pharm. 356(1/2), 239–247 (2008)

    Article  CAS  Google Scholar 

  66. S. Bakand, A. Hayes, F. Dechsakulthorn: Nanoparticles: A review of particle toxicology following inhalation exposure, Inhal. Toxicol. 24(2), 125–135 (2012)

    Article  CAS  Google Scholar 

  67. W. Hofmann: Modelling inhaled particle deposition in the human lung-A review, J. Aerosol. Sci. 42(10), 693–724 (2011)

    Article  CAS  Google Scholar 

  68. W.G. Kreyling, M. Semmler, F. Erbe, P. Mayer, S. Takenaka, H. Schulz, G. Oberdörster, A. Ziesenis: Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low, J. Toxicol. Env. Health Pt. A 65(20), 1513–1530 (2002)

    Article  CAS  Google Scholar 

  69. G. Oberdörster, Z. Sharp, V. Atudorei, A. Elder, R. Gelein, W. Kreyling, C. Cox: Translocation of inhaled ultrafine particles to the brain, Inhal. Toxicol. 16(6/7), 437–445 (2004)

    Article  CAS  Google Scholar 

  70. J.X. Wang, Y. Liu, F. Jiao, F. Lao, W. Li, Y.Q. Gu, Y.F. Li, C.C. Ge, G.Q. Zhou, B. Li, Y.L. Zhao, Z.F. Chai, C.Y. Chen: Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles, Toxicology 254(1/2), 82–90 (2008)

    Article  CAS  Google Scholar 

  71. T.G.M. Smijs, J.A. Bouwstra: Focus on skin as a possible port of entry for solid nanoparticles and the toxicological impact, J. Biomed. Nanotechnol. 6(5), 469–484 (2010)

    Article  CAS  Google Scholar 

  72. C. Smith (Feature Ed): Nanotechnology in cosmetics analysed, Personal Care Mag. (Nov. 2010), available online from http://www.personalcaremagazine.com (last accessed 08 June 2012)

  73. L.A. DeLouise: Applications of nanotechnology in dermatology, J. Investig. Dermatol. 132(3), 964–975 (2012)

    Article  CAS  Google Scholar 

  74. G.J. Nohynek, E. Antignac, T. Re, H. Toutain: Safety assessment of personal care products/cosmetics and their ingredients, Toxicol. Appl. Pharmacol. 243(2), 239–259 (2009)

    Article  CAS  Google Scholar 

  75. G.J. Nohynek, J. Lademann, C. Ribaud, M.S. Roberts: Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety, Crit. Rev. Toxicol. 37(3), 251–277 (2007)

    Article  CAS  Google Scholar 

  76. P. Filipe, J.N. Silva, R. Silva, J.L.C. de Castro, M.M. Gomes, L.C. Alves, R. Santus, T. Pinheiro: Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption, Skin. Pharmacol. Physiol. 22(5), 266–275 (2009)

    Article  CAS  Google Scholar 

  77. R.F.V. Lopez, J.E. Seto, D. Blankschtein, R. Langer: Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate, Biomaterials 32(3), 933–941 (2011)

    Article  CAS  Google Scholar 

  78. N.A. Monteiro-Riviere, K. Wiench, R. Landsiedel, S. Schulte, A.O. Inman, J.E. Riviere: Safety evaluation of sunscreen formulations containing titanium ioxide and zinc oxide nanoparticles in UVB sunburned skin: An in vitro and in vivo study, Toxicol. Sci. 123(1), 264–280 (2011)

    Article  CAS  Google Scholar 

  79. T.W. Prow, J.E. Grice, L.L. Lin, R. Faye, M. Butler, W. Becker, E.M.T. Wurm, C. Yoong, T.A. Robertson, H.P. Soyer, M.S. Roberts: Nanoparticles and microparticles for skin drug delivery, Adv. Drug. Deliv. Rev. 63(6), 470–491 (2011)

    Article  CAS  Google Scholar 

  80. N.V. Gopee, D.W. Roberts, P. Webb, C.R. Cozart, P.H. Siitonen, J.R. Latendresse, A.R. Warbitton, W.W. Yu, V.L. Colvin, N.J. Walker, P.C. Howard: Quantitative determination of skin penetration of PEG-coated CdSe quantum dots in dermabraded but not Intact SKH-1 hairless mouse skin, Toxicol. Sci. 111(1), 37–48 (2009)

    Article  CAS  Google Scholar 

  81. J.P. Ryman-Rasmussen, J.E. Riviere, N.A. Monteiro-Riviere: Penetration of intact skin by quantum dots with diverse physicochemical properties, Toxicol. Sci. 91(1), 159–165 (2006)

    Article  CAS  Google Scholar 

  82. B. Baroli, M.G. Ennas, F. Loffredo, M. Isola, R. Pinna, M.A. Lopez-Quintela: Penetration of metallic nanoparticles in human full-thickness skin, J. Investig. Dermatol. 127(7), 1701–1712 (2007)

    CAS  Google Scholar 

  83. Y.Z. Huang, F.Q. Yu, Y.S. Park, J.X. Wang, M.C. Shin, H.S. Chung, V.C. Yang: Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery, Biomaterials 31(34), 9086–9091 (2010)

    Article  CAS  Google Scholar 

  84. G. Sonavane, K. Tomoda, A. Sano, H. Ohshima, H. Terada, K. Makino: In vitro permeation of gold nanoparticles through rat skin and rat intestine: Effect of particle size, Colloid Surf. B – Biointerfaces 65(1), 1–10 (2008)

    Article  CAS  Google Scholar 

  85. S.S. Tinkle, J.M. Antonini, B.A. Rich, J.R. Roberts, R. Salmen, K. DePree, E.J. Adkins: Skin as a route of exposure and sensitization in chronic beryllium disease, Environ. Health Perspect. 111, 1202–1208 (2003)

    Article  CAS  Google Scholar 

  86. J.G. Rouse, J. Yang, J.P. Ryman-Rasmussen, A.R. Barron, N.A. Monteiro-Riviere: Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin, Nano Lett. 7, 155–160 (2007)

    Article  CAS  Google Scholar 

  87. L.J. Mortensen, G. Oberdörster, A.P. Pentland, L.A. DeLouise: In vivo skin penetration of quantum dot nanoparticles in the murine model: The effect of UVR, Nano Lett. 8(9), 2779–2787 (2008)

    Article  CAS  Google Scholar 

  88. L.W. Zhang, N.A. Monteiro-Riviere: Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin, Skin. Pharmacol. Physiol. 21(3), 166–180 (2008)

    Article  CAS  Google Scholar 

  89. S. Ravichandran, L.J. Mortensen, L.A. Delouise: Quantification of human skin barrier function and susceptibility to quantum dot skin penetration, Nanotoxicology 5(4), 675–686 (2010)

    Article  CAS  Google Scholar 

  90. J.R. Bond, B.W. Barry: Limitations of hairless mouse skin as a model for invitro permeation studies through human-skin – hydration damage, J. Investig. Dermatol. 90(4), 486–489 (1988)

    Article  CAS  Google Scholar 

  91. G.A. Simon, H.I. Maibach: Relevance of hairless mouse as an experimental model of percutaneous penetration in man, Skin. Pharmacol. Appl. Skin. Physiol. 11(2), 80–86 (1998)

    Article  CAS  Google Scholar 

  92. R.L. Bronaugh, R.F. Stewart, E.R. Congdon: Methods for invitro percutaneous-absorption studies II. Animal-models for human-skin, Toxicol. Appl. Pharmacol. 62(3), 481–488 (1982)

    Article  CAS  Google Scholar 

  93. N. Otberg, H. Richter, H. Schaefer, U. Blume-Peytavi, W. Sterry, J. Lademann: Variations of hair follicle size and distribution in different body sites, J. Investig. Dermatol. 122(1), 14–19 (2004)

    Article  CAS  Google Scholar 

  94. B.A. Magnuson, T.S. Jonaitis, J.W. Card: A brief review of the occurrence, use, and safety of food-related nanomaterials, J. Food Sci. 76(6), R126–R133 (2011)

    Article  CAS  Google Scholar 

  95. C.-Y. Kuan, W. Yee-Fung, K.-H. Yuen, M.-T. Liong: Nanotech: Propensity in foods and bioactives, Crit. Revi. Food Sci. Nutr. 52(1–3), 55–71 (2012)

    Article  Google Scholar 

  96. E. Frohlich, E. Roblegg: Models for oral uptake of nanoparticles in consumer products, Toxicology 291(1–3), 10–17 (2012)

    Article  CAS  Google Scholar 

  97. K.R. Vega-Villa, J.K. Takemoto, J.A. Yanez, C.M. Remsberg, M.L. Forrest, N.M. Davies: Clinical toxicities of nanocarrier systems, Adv. Drug. Deliv. Rev. 60(8), 929–938 (2008)

    Article  CAS  Google Scholar 

  98. S. Yamago, H. Tokuyama, E. Nakamura, K. Kikuchi, S. Kananishi, K. Sueki, H. Nakahara, S. Enomoto, F. Ambe: In-vivo biological behavior of a water-miscible fullerene – C-14 labeling, absorption, distribution, excretion and acute toxicity, Chem. Biol. 2(6), 385–389 (1995)

    Article  CAS  Google Scholar 

  99. P.U. Jani, D.E. McCarthy, A.T. Florence: Titanium-dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral-administration, Int. J. Pharm. 105(2), 157–168 (1994)

    Article  CAS  Google Scholar 

  100. Z. Chen, H.A. Meng, G.M. Xing, C.Y. Chen, Y.L. Zhao, G.A. Jia, T.C. Wang, H. Yuan, C. Ye, F. Zhao, Z.F. Chai, C.F. Zhu, X.H. Fang, B.C. Ma, L.J. Wan: Acute toxicological effects of copper nanoparticles in vivo, Toxicol. Lett. 163(2), 109–120 (2006)

    Article  CAS  Google Scholar 

  101. M. Lu, K.T. Al-Jamal, K. Kostarelos, J. Reineke: Physiologically based pharmacokinetic modeling of nanoparticles, Acs Nano 4(11), 6303–6317 (2010)

    Article  CAS  Google Scholar 

  102. M. Bartneck, H.A. Keul, G. Zwadlo-Klarwasser, J. Groll: Phagocytosis independent extracellular nanoparticle clearance by human immune cells, Nano Lett. 10(1), 59–63 (2010)

    Article  CAS  Google Scholar 

  103. V. Stone, H. Johnston, R.P.F. Schins: Development of in vitro systems for nanotoxicology: Methodological considerations, Crit. Rev. Toxicol. 39(7), 613–626 (2009)

    Article  CAS  Google Scholar 

  104. B. Kong, J.H. Seog, L.M. Graham, S.B. Lee: Experimental considerations on the cytotoxicity of nanoparticles, Nanomedicine 6(5), 929–941 (2011)

    Article  CAS  Google Scholar 

  105. P. Rivera Gil, G. Oberdörster, A. Elder, V. Puntes, W.J. Parak: Correlating physico-chemical with toxicological properties of nanoparticles: The present and the future, Acs Nano 4(10), 5527–5531 (2010)

    Article  CAS  Google Scholar 

  106. N. Lewinski, V. Colvin, R. Drezek: Cytotoxicity of nanoparticles, Small 4(1), 26–49 (2008)

    Article  CAS  Google Scholar 

  107. N. Khlebtsov, L. Dykman: Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies, Chem. Soc. Rev. 40(3), 1647–1671 (2010)

    Article  CAS  Google Scholar 

  108. R. Landsiedel, L. Ma-Hock, A. Kroll, D. Hahn, J. Schnekenburger, K. Wiench, W. Wohlleben: Testing metal-oxide nanomaterials for human safety, Adv. Mater. 22(24), 2601–2627 (2010)

    Article  CAS  Google Scholar 

  109. A. Dhawan, V. Sharma: Toxicity assessment of nanomaterials: Methods and challenges, Anal. Bioanal. Chem. 398(2), 589–605 (2010)

    Article  CAS  Google Scholar 

  110. A. Nel, T. Xia, L. Madler, N. Li: Toxic potential of materials at the nanolevel, Science 311(5761), 622–627 (2006)

    Article  CAS  Google Scholar 

  111. A. Seaton, L. Tran, R. Aitken, K. Donaldson: Nanoparticles, human health hazard and regulation, J. R. Soc. Interface 7, S119–S129 (2011)

    Article  CAS  Google Scholar 

  112. K. Pulskamp, S. Diabate, H.F. Krug: Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants, Toxicol. Lett. 168(1), 58–74 (2007)

    Article  CAS  Google Scholar 

  113. J. Chlopek, B. Czajkowska, B. Szaraniec, E. Frackowiak, K. Szostak, F. Béguin: In vitro studies of carbon nanotubes biocompatibility, Carbon 44(6), 1106–1111 (2006)

    Article  CAS  Google Scholar 

  114. S.J. Soenen, P. Rivera-Gil, J.-M. Montenegro, W.J. Parak, S.C. De Smedt, K. Braeckmans: Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation, Nano Today 6(5), 446–465 (2011)

    Article  CAS  Google Scholar 

  115. S.K. Sohaebuddin, P.T. Thevenot, D. Baker, J.W. Eaton, L. Tang: Nanomaterial cytotoxicity is composition, size, and cell type dependent, Part. Fibre Toxicol. 7, 22 (2010)

    Article  CAS  Google Scholar 

  116. S. Lanone, F. Rogerieux, J. Geys, A. Dupont, E. Maillot-Marechal, J. Boczkowski, G. Lacroix, P. Hoet: Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines, Part. Fibre Toxicol. 6, 14 (2009)

    Article  CAS  Google Scholar 

  117. C.R. Thomas, S. George, A.M. Horst, Z.X. Ji, R.J. Miller, J.R. Peralta-Videa, T.A. Xia, S. Pokhrel, L. Madler, J.L. Gardea-Torresdey, P.A. Holden, A.A. Keller, H.S. Lenihan, A.E. Nel, J.I. Zink: Nanomaterials in the environment: From materials to high-throughput screening to organisms, Acs Nano 5(1), 13–20 (2011)

    Article  CAS  Google Scholar 

  118. D.B. Warheit: How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization?, Toxicol. Sci. 101(2), 183–185 (2008)

    Article  CAS  Google Scholar 

  119. G. Oberdörster: Safety assessment for nanotechnology and nanomedicine: Concepts of nanotoxicology, J. Int. Med. 267(1), 89–105 (2009)

    Article  CAS  Google Scholar 

  120. K.D. Grieger, A. Baun, R. Owen: Redefining risk research priorities for nanomaterials, J. Nanopart. Res. 12(2), 383–392 (2010)

    Article  Google Scholar 

  121. J.W. Card, B.A. Magnuson: A method to assess the quality of studies that examine the toxicity of engineered nanomaterials, Int. J. Toxicol. 29(4), 402–410 (2011)

    Article  CAS  Google Scholar 

  122. D.R. Boverhof, R.M. David: Nanomaterial characterization: Considerations and needs for hazard assessment and safety evaluation, Anal. Bioanal. Chem. 396(3), 953 (2010)

    Article  CAS  Google Scholar 

  123. A. Maynard: MINChar Initiative, Recommended Minimum Physical and Chemical Parameters for Characterizing Nanomaterials on Toxicology Studies (2008), available online from http://characterizationmatters.org/parameters/ (last accessed 21 May 2011)

  124. D. Hyde: Technical Committee, TC 229 Nanotechnologies, ISO International Standards for Business, Government and Society (ISO, Geneva 2011), available online from http://www.iso.org/iso/iso_technical_committee?commid=381983 (last accessed 18 May 2011)

  125. A.D. Maynard, D.B. Warheit, M.A. Philbert: The new toxicology of sophisticated materials: Nanotoxicology and beyond, Toxicol. Sci. 120, S109–S129 (2011)

    Article  CAS  Google Scholar 

  126. C.M. Sayes, R. Wahi, P.A. Kurian, Y. Liu, J.L. West, K.D. Ausman, D.B. Warheit, V.L. Colvin: Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells, Toxicol. Sci. 92, 174–185 (2006)

    Article  CAS  Google Scholar 

  127. K.W. Powers, S.C. Brown, V.B. Krishna, S.C. Wasdo, B.M. Moudgil, S.M. Roberts: Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation, Toxicol. Sci. 90(2), 296–303 (2006)

    Article  CAS  Google Scholar 

  128. P.J. Goodhew, J. Humphreys, R. Beanland (Eds.): Electron Microscopy and Analysis, 3rd edn. (Taylor Francis, London 2001)

    Google Scholar 

  129. D.R. Baer, D.J. Gaspar, P. Nachimuthu, S.D. Techane, D.G. Castner: Application of surface chemical analysis tools for characterization of nanoparticles, Anal. Bioanal. Chem. 396(3), 983–1002 (2010)

    Article  CAS  Google Scholar 

  130. S. Gupta, P. Brouwer, S. Bandyopadhyay, S. Patil, R. Briggs, J. Jain, S. Seal: TEM/AFM investigation of size and surface properties of nanocrystalline ceria, J. Nanosci. Nanotechnol. 5(7), 1101–1107 (2005)

    Article  CAS  Google Scholar 

  131. S. Brunauer, P.H. Emmett, E. Teller: Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  132. B.D. Cullity, S.R. Stock (Eds.): Elements of x-ray Diffraction (Prentice Hall, Upper Saddle River 2001)

    Google Scholar 

  133. J.F. Watts, J. Wolstenholme (Eds.): An Introduction to Surface Analysis by XPS and AES (Wiley, Chichester 2003)

    Google Scholar 

  134. A. Scheffer, C. Engelhard, M. Sperling, W. Buscher: ICP-MS as a new tool for the determination of gold nanoparticles in bioanalytical applications, Anal. Bioanal. Chem. 390(1), 249–252 (2008)

    Article  CAS  Google Scholar 

  135. B. Fernandez, J.M. Costa, R. Pereiro, A. Sanz-Medel: Inorganic mass spectrometry as a tool for characterisation at the nanoscale, Anal. Bioanal. Chem. 396(1), 15–29 (2010)

    Article  CAS  Google Scholar 

  136. R.C. Murdock, L. Braydich-Stolle, A.M. Schrand, J.J. Schlager, S.M. Hussain: Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique, Toxicol. Sci. 101(2), 239–253 (2008)

    Article  CAS  Google Scholar 

  137. Malvern Inc.: Zeta Potential: An Introduction in 30 Minutes, Malvern Tech. Note MRK654-01, available online from http://www.nbtc.cornell.edu/facilities/downloads/Zeta%20potential%20-%20An%20introduction%20in%2030%20minutes.pdf. (last accessed 29 July 2012)

  138. B.D. Chithrani, A.A. Ghazani, W.C.W. Chan: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells, Nano Lett. 6(4), 662–668 (2006)

    Article  CAS  Google Scholar 

  139. B.D. Chithrani, W.C.W. Chan: Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes, Nano Lett. 7(6), 1542–1550 (2007)

    Article  CAS  Google Scholar 

  140. K.W. Powers, M. Palazuelos, B.M. Moudgil, S.M. Roberts: Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies, Nanotoxicology 1(1), 42–51 (2007)

    Article  CAS  Google Scholar 

  141. A. Magrez, S. Kasas, V. Salicio, N. Pasquier, J.W. Seo, M. Celio, S. Catsicas, B. Schwaller, L. Forro: Cellular toxicity of carbon-based nanomaterials, Nano Lett. 6(6), 1121–1125 (2006)

    Article  CAS  Google Scholar 

  142. H.L. Karlsson, J. Gustafsson, P. Cronholm, L. Moller: Size-dependent toxicity of metal oxide particles – A comparison between nano- and micrometer size, Toxicol. Lett. 188(2), 112–118 (2009)

    Article  CAS  Google Scholar 

  143. A.M. Schrand, M.F. Rahman, S.M. Hussain, J.J. Schlager, D.A. Smith, A.F. Syed: Metal-based nanoparticles and their toxicity assessment, Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol. 2(5), 544–568 (2010)

    Article  CAS  Google Scholar 

  144. S. Wang, W. Lu, O. Tovmachenko, U.S. Rai, H. Yu, P.C. Ray: Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes, Chem. Phys. Lett. 463(1–3), 145–149 (2008)

    Article  CAS  Google Scholar 

  145. I. Montes-Burgos, D. Walczyk, P. Hole, J. Smith, I. Lynch, K. Dawson: Characterisation of nanoparticle size and state prior to nanotoxicological studies, J. Nanopart. Res. 12(1), 47–53 (2010)

    Article  Google Scholar 

  146. G. Nichols, S. Byard, M.J. Bloxham, J. Botterill, N.J. Dawson, A. Dennis, V. Diart, N.C. North, J.D. Sherwood: A review of the terms agglomerate and aggregate with a recommendation for nomenclature used in powder and particle characterization, J. Pharm. Sci. 91(10), 2103–2109 (2002)

    Article  CAS  Google Scholar 

  147. E. Vigneau, C. Loisel, M.F. Devaux, P. Cantoni: Number of particles for the determination of size distribution from microscopic images, Powder Technol. 107(3), 243–250 (2000)

    Article  CAS  Google Scholar 

  148. A.J. Paine: Error-estimates in the sampling from particle-size distributions, Part. Part. Syst. Charact. 10(1), 26–32 (1993)

    Article  CAS  Google Scholar 

  149. J.T. Nurmi, P.G. Tratnyek, V. Sarathy, D.R. Baer, J.E. Amonette, K. Pecher, C.M. Wang, J.C. Linehan, D.W. Matson, R.L. Penn, M.D. Driessen: Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics, Environ. Sci. Technol. 39(5), 1221–1230 (2005)

    Article  CAS  Google Scholar 

  150. S.C. Sahu, D.A. Casciano (Eds.): Nanotoxicity: From In Vivo and In Vitro Models to Health Risks (Wiley, Chichester 2009)

    Google Scholar 

  151. T. Stoeger, C. Reinhard, S. Takenaka, A. Schroeppel, E. Karg, B. Ritter, J. Heyder, H. Schulz: Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice, Environ. Health Perspect. 114(3), 328–333 (2006)

    Article  Google Scholar 

  152. D.M. Brown, M.R. Wilson, W. MacNee, V. Stone, K. Donaldson: Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines, Toxicol. Appl. Pharmacol. 175(3), 191–199 (2001)

    Article  CAS  Google Scholar 

  153. R. Duffin, L. Tran, D. Brown, V. Stone, K. Donaldson: Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: Highlighting the role of particle surface area and surface reactivity, Inhal. Toxicol. 19(10), 849–856 (2007)

    Article  CAS  Google Scholar 

  154. D. Napierska, L.C.J. Thomassen, V. Rabolli, D. Lison, L. Gonzalez, M. Kirsch-Volders, J.A. Martens, P.H. Hoet: Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells, Small 5(7), 846–853 (2009)

    Article  CAS  Google Scholar 

  155. M.A. Maurer-Jones, Y.S. Lin, C.L. Haynes: Functional assessment of metal oxide nanoparticle toxicity in immune cells, ACS Nano 4(6), 3363–3373 (2010)

    Article  CAS  Google Scholar 

  156. A.L. Ortiz, W. Osborn, T. Markmaitree, L.L. Shaw: Crystallite sizes of LiH before and after ball milling and thermal exposure, J. Alloy. Compound. 454(1/2), 297–305 (2008)

    Article  CAS  Google Scholar 

  157. M.K. Naskar: Soft solution processing for the synthesis of alumina nanoparticles in the presence of glucose, J. Am. Ceram. Soc. 93(5), 1260–1263 (2010)

    CAS  Google Scholar 

  158. M. Khalfaoui, S. Knani, M.A. Hachicha, A. Ben Lamine: New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment, J. Colloid Interface Sci. 263(2), 350–356 (2003)

    Article  CAS  Google Scholar 

  159. Y.H. Tan, J.A. Davis, K. Fujikawa, N.V. Ganesh, A.V. Demchenko, K.J. Stine: Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy, J. Mater. Chem. 22(14), 6733–6745 (2012)

    Article  CAS  Google Scholar 

  160. S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes (Eds.): Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Kluwer Academic, Dordrecht 2004)

    Google Scholar 

  161. P. Bouras, E. Stathatos, P. Lianos: Pure versus metal-ion-doped nanocrystalline titania for photocatalysis, Appl. Catal. B-Environ. 73(1/2), 51–59 (2007)

    Article  CAS  Google Scholar 

  162. S.G. Wang, W.T. Lu, O. Tovmachenko, U.S. Rai, H.T. Yu, P.C. Ray: Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes, Chem. Phys. Lett. 463(1–3), 145–149 (2008)

    Article  CAS  Google Scholar 

  163. H. Yin, H.P. Too, G.M. Chow: The effects of particle size and surface coating on the cytotoxicity of nickel ferrite, Biomaterials 26(29), 5818–5826 (2005)

    Article  CAS  Google Scholar 

  164. D.B. Warheit, W.J. Brock, K.P. Lee, T.R. Webb, K.L. Reed: Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: Impact of surface treatments on particle toxicity, Toxicol. Sci. 88(2), 514–524 (2005)

    Article  CAS  Google Scholar 

  165. T.A. Egerton, N.J. Everall, J.A. Mattinson, L.M. Kessell, I.R. Tooley: Interaction of TiO2 nano-particles with organic UV absorbers, J. Photochem. Photobiol. A 193(1), 10–17 (2008)

    Article  CAS  Google Scholar 

  166. J.-E. Otterstedt, D.A. Brandreth (Eds.): Small Particles Technology (Plenum, New York 1998)

    Google Scholar 

  167. G. Roebben, S. Ramirez-Garcia, V.A. Hackley, M. Roesslein, F. Klaessig, V. Kestens, I. Lynch, C.M. Garner, A. Rawle, A. Elder, V.L. Colvin, W. Kreyling, H.F. Krug, Z.A. Lewicka, S. McNeil, A. Nel, A. Patri, P. Wick, M. Wiesner, T. Xia, G. Oberdörster, K.A. Dawson: Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment, J. Nanopart. Res. 13(7), 2675–2687 (2011)

    Article  Google Scholar 

  168. D. Fairhurst, M.A. Mitchnick: Particulate sun blocks: General principles. In: Sunscreens, ed. by N.J. Lowe, N.A. Shaath, M.A. Pathak (Marcel Dekker, New York 1997) p. 313

    Google Scholar 

  169. N. Serpone, D. Dondi, A. Albini: Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare product, Inorg. Chim. Acta 360(3), 794–802 (2007)

    Article  CAS  Google Scholar 

  170. P. Stamatakis, B.R. Palmer, G.C. Salzman, C.F. Bohren, T.B. Allen: Optimum particle-size of titanium-dioxide and zinc-oxide for attenuation of ultraviolet-radiation, J. Coat. Technol. 62(789), 95–98 (1990)

    CAS  Google Scholar 

  171. FDA: Sunscreen Drug Products for Over-The-Counter Human Use, Final Monograph Federal Register 48(98) (US Food and Drug Administration, Washington 1999)

    Google Scholar 

  172. J. Cunningham, P. Sedlak: Interrelationships between pollutant concentration, extent of adsorption, TiO2-sensitized removal, photon flux and levels of electron or hole trapping additives. 1. Aqueous monochlorophenol-TiO2 (P25) suspensions, J. Photochem. Photobiol. A 77(2/3), 255–263 (1994)

    Article  CAS  Google Scholar 

  173. J.C. Doliveira, G. Alsayyed, P. Pichat: Photodegradation of 2-chlorophenol and 3-chlorophenol in TiO2 aqueous suspensions, Environ. Sci. Technol. 24(7), 990–996 (1990)

    Article  CAS  Google Scholar 

  174. A.L. Linsebigler, G.Q. Lu, J.T. Yates: Photocatalysis on TiO2 surfaces – principles, mechanisms, and selected results, Chem. Rev. 95(3), 735–758 (1995)

    Article  CAS  Google Scholar 

  175. G. Mills, M.R. Hoffmann: Photocatalytic degradation of pentachlorophenol on TiO2 particles – Identification of intermediates and mechanism of reaction, Environ. Sci. Technol. 27(8), 1681–1689 (1993)

    Article  CAS  Google Scholar 

  176. U. Stafford, K.A. Gray, P.V. Kamat: Radiolytic and TiO2-assisted photocatalytic degradation of 4-chlorophenol – a comparative-study, J. Phys. Chem. 98(25), 6343–6351 (1994)

    Article  CAS  Google Scholar 

  177. V. Brezova, D. Dvoranova, A. Stasko: Characterization of titanium dioxide photoactivity following the formation of radicals by EPR spectroscopy, Res. Chem. Intermed. 33(3–5), 251–268 (2007)

    Article  CAS  Google Scholar 

  178. V. Brezova, S. Gabcova, D. Dvoranova, A. Stasko: Reactive oxygen species produced upon photoexcitation of sunscreens containing titanium dioxide (an EPR study), J. Photochem. Photobiol. B 79(2), 121–134 (2005)

    Article  CAS  Google Scholar 

  179. M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann: Environmental applications of semiconductor photocatalysis, Chem. Rev. 95(1), 69–96 (1995)

    Article  CAS  Google Scholar 

  180. G. Riegel, J.R. Bolton: Photocatalytic efficiency variability in TiO2 particles, J. Phys. Chem. 99(12), 4215–4224 (1995)

    Article  CAS  Google Scholar 

  181. N. Daneshvar, D. Salari, A.R. Khataee: Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, J. Photochem. Photobiol. A 162(2/3), 317–322 (2004)

    Article  CAS  Google Scholar 

  182. C.A.K. Gouvea, F. Wypych, S.G. Moraes, N. Duran, N. Nagata, P. Peralta-Zamora: Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution, Chemosphere 40(4), 433–440 (2000)

    Article  CAS  Google Scholar 

  183. J.R. Harbour, M.L. Hair: Radical intermediates in the photosynthetic generation of H2O2 with aqueous ZnO dispersions, J. Phys. Chem. 83(6), 652–656 (1979)

    Article  CAS  Google Scholar 

  184. V. Kandavelu, H. Kastien, K.R. Thampi: Photocatalytic degradation of isothiazolin-3-ones in water and emulsion paints containing nanocrystalline TiO2 and ZnO catalysts, Appl. Catal. B 48(2), 101–111 (2004)

    Article  CAS  Google Scholar 

  185. C. Kormann, D.W. Bahnemann, M.R. Hoffmann: Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO, and desert sand, Environ. Sci. Technol. 22(7), 798–806 (1988)

    Article  CAS  Google Scholar 

  186. A. Lipovsky, Z. Tzitrinovich, H. Friedmann, G. Applerot, A. Gedanken, R. Lubart: EPR study of visible light-induced ROS generation by nanoparticles of ZnO, J. Phys. Chem. C 113(36), 15997–16001 (2009)

    Article  CAS  Google Scholar 

  187. A. Shafaei, M. Nikazar, M. Arami: Photocatalytic degradation of terephthalic acid using titania and zinc oxide photocatalysts: Comparative study, Desalination 252(1–3), 8–16 (2010)

    Article  CAS  Google Scholar 

  188. J. Villasenor, P. Reyes, G. Pecchi: Photodegradation of pentachlorophenol on ZnO, J. Chem. Technol. Biotechnol. 72(2), 105–110 (1998)

    Article  CAS  Google Scholar 

  189. B. Balasubramanian, W.K. Pogozelski, T.D. Tullius: DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone, Proc. Natl. Acad. Sci. USA 95, 9738–9743 (1998)

    Article  CAS  Google Scholar 

  190. K.J.A. Davies: Protein damage and degradation by oxygen radicals I. General-aspects, J. Biol. Chem. 262(20), 9895–9901 (1987)

    CAS  Google Scholar 

  191. I. Kruk: Environmental toxicology and chemistry of oxygen species: Reactions and processes. In: The Handbook of Environmental Chemistry, 2nd edn., ed. by O. Hyutzinger (Springer, Berlin, Heidelberg 1998) p. 261

    Google Scholar 

  192. Y. Nakagawa, S. Wakuri, K. Sakamoto, N. Tanaka: The photogenotoxicity of titanium dioxide particles, Mutat. Res. Genet. Toxicol. Environ. Mutagen 394(1–3), 125–132 (1997)

    Article  CAS  Google Scholar 

  193. J.F. Reeves, S.J. Davies, N.J.F. Dodd, A.N. Jha: Hydroxyl radicals (• OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells, Mutat. Res. Fundam. Mol. Mech. Mutagen 640(1/2), 113–122 (2008)

    Article  CAS  Google Scholar 

  194. T. Uchino, H. Tokunaga, M. Ando, H. Utsumi: Quantitative determination of OH radical generation and its cytotoxicity induced by TiO2-UVA treatment, Toxicol. Vitro 16(5), 629–635 (2002)

    Article  CAS  Google Scholar 

  195. C. Wang, S.Q. Cao, X.X. Tie, B. Qiu, A.H. Wu, Z.H. Zheng: Induction of cytotoxicity by photoexcitation of TiO2 can prolong survival in glioma-bearing mice, Mol. Biol. Rep. 38(1), 523–530 (2011)

    Article  CAS  Google Scholar 

  196. J. Petkovic, T. Kuzma, K. Rade, S. Novak, M. Filipic: Pre-irradiation of anatase TiO2 particles with UV enhances their cytotoxic and genotoxic potential in human hepatoma HepG2 cells, J. Hazard. Mater. 196, 145–152 (2011)

    Article  CAS  Google Scholar 

  197. R.C. Gopalan, I.F. Osman, A. Amani, M. De Matas, D. Anderson: The effect of zinc oxide and titanium dioxide nanoparticles in the Comet assay with UVA photoactivation of human sperm and lymphocytes, Nanotoxicology 3(1), 33–39 (2009)

    Article  CAS  Google Scholar 

  198. K. Hirakawa, M. Mori, M. Yoshida, S. Oikawa, S. Kawanishi: Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide, Free Radic. Res. 38(5), 439–447 (2004)

    Article  CAS  Google Scholar 

  199. H. Hidaka, H. Kobaysahi, T. Koike, T. Sato, N. Serpone: DNA damage photoinduced by cosmetic pigments and sunscreen agents under solar exposure and artifical UV illumination, J. Oleo Sci. 55, 205–1212 (2006)

    Google Scholar 

  200. TGA: A review of the scientific literature on the safety of nanoparticulate titanium dioxide or zinc oxide in sunscreens, Australian Governemt (Therapeutic Goods Administration, Woden 2009), available online from http://www.tga.gov.au/pdf/review-sunscreens-060220.pdf (last accessed 20 July 2012)

  201. D.T. Tran, R. Salmon: Potential photocarcinogenic effects of nanoparticle sunscreens, Australas. J. Dermatol. 52, 1–6 (2010)

    Article  Google Scholar 

  202. M. Crosera, M. Bovenzi, G. Maina, G. Adami, C. Zanette, C. Florio, F.F. Larese: Nanoparticle dermal absorption and toxicity: A review of the literature, Int. Arch. Occup. Environ. Health 82(9), 1043–1055 (2009)

    Article  CAS  Google Scholar 

  203. M.D. Newman, M. Stotland, J.I. Ellis: The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens, J. Am. Acad. Dermatol. 61(4), 685–692 (2009)

    Article  CAS  Google Scholar 

  204. M.J. Osmond, M.J. McCall: Zinc oxide nanoparticles in modern sunscreens: An analysis of potential exposure and hazard, Nanotoxicology 4(1), 15–41 (2010)

    Article  CAS  Google Scholar 

  205. N. Sadrieh, A.M. Wokovich, N.V. Gopee, J.W. Zheng, D. Haines, D. Parmiter, P.H. Siitonen, C.R. Cozart, A.K. Patri, S.E. McNeil, P.C. Howard, W.H. Doub, L.F. Buhse: Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles, Toxicol. Sci. 115(1), 156–166 (2010)

    Article  CAS  Google Scholar 

  206. B. Baroli: Penetration of nanoplarticles and nanomaterials in the skin: Fiction or reality?, J. Pharm. Sci. 99(1), 21–50 (2009)

    Article  CAS  Google Scholar 

  207. M.E. Carlotti, E. Ugazio, S. Sapino, I. Fenoglio, G. Greco, B. Fubini: Role of particle coating in controlling skin damage photoinduced by titania nanoparticles, Free Radic. Res. 43(3), 312–322 (2009)

    Article  CAS  Google Scholar 

  208. L.F. Hakim, D.M. King, Y. Zhou, C.J. Gump, S.M. George, A.W. Weimer: Nanoparticle coating for advanced optical, mechanical and rheological properties, Adv. Funct. Mater. 17, 3175–3181 (2007)

    Article  CAS  Google Scholar 

  209. A. Rampaul, I.P. Parkin, L.P. Cramer: Damaging and protective properties of inorganic components of sunscreens applied to cultured human skin cells, J. Photochem. Photobiol. A 191(2/3), 138–148 (2007)

    Article  CAS  Google Scholar 

  210. G. Wakefield, M. Green, S. Lipscomb, B. Flutter: Modified titania nanomaterials for sunscreen applications – reducing free radical generation and DNA damage, Mater. Sci. Technol. 20(8), 985–988 (2004)

    Article  CAS  Google Scholar 

  211. G. Wakefield, S. Lipscomb, E. Holland, J. Knowland: The effects of manganese doping on UVA absorption and free radical generation of micronised titanium dioxide and its consequences for the photostability of UVA absorbing organic sunscreen components, Photochem. Photobiol. Sci. 3(7), 648–652 (2004)

    Article  CAS  Google Scholar 

  212. H.J. Johnston, G.R. Hutchison, F.M. Christensen, S. Peters, S. Hankin, V. Stone: Identification of the mechanisms that drive the toxicity of TiO2 particulates: The contribution of physicochemical characteristics, Part. Fibre Toxicol. 6, 33 (2009)

    Article  CAS  Google Scholar 

  213. K. Schilling, B. Bradford, D. Castelli, E. Dufour, J.F. Nash, W. Pape, S. Schulte, I. Tooley, J. van den Bosch, F. Schellauf: Human safety review of ``nanoʼʼ titanium dioxide and zinc oxide, Photochem. Photobiol. Sci. 9(4), 495–509 (2010)

    Article  CAS  Google Scholar 

  214. R. Dunford, A. Salinaro, L. Cai, N. Serpone, S. Horikohi, H. Hidaka, J. Knowland: Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients, FEBS Lett. 418, 87–90 (1997)

    Article  CAS  Google Scholar 

  215. M. Buchalska, G. Kras, M. Oszajca, W. Lasocha, W. Macyk: Singlet oxygen generation in the presence of titanium dioxide materials used as sunscreens in suntan lotions, J. Photochem. Photobiol. A 213(2/3), 158–163 (2010)

    Article  CAS  Google Scholar 

  216. P.J. Barker, A. Branch: The interaction of modern sunscreen formulations with surface coatings, Prog. Org. Coat. 62(3), 313–320 (2008)

    Article  CAS  Google Scholar 

  217. Z.A. Lewicka, V.L. Colvin: Photoactivity tests of TiO2 and ZnO sunscreen ingredients, Mater. Res. Soc. Symp. Proc. 1413, mrsf11–1413–gg03–03 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuzanna A. Lewicka or Vicki L. Colvin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag

About this chapter

Cite this chapter

Lewicka, Z.A., Colvin, V.L. (2013). Nanomaterial Toxicity, Hazards, and Safety. In: Vajtai, R. (eds) Springer Handbook of Nanomaterials. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20595-8_32

Download citation

Publish with us

Policies and ethics