Skip to main content
Log in

Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanotechnology is a rapidly emerging field of great interest and promise. As new materials are developed and commercialized, hazard information also needs to be generated to reassure regulators, workers, and consumers that these materials can be used safely. The biological properties of nanomaterials are closely tied to the physical characteristics, including size, shape, dissolution rate, agglomeration state, and surface chemistry, to name a few. Furthermore, these properties can be altered by the medium used to suspend or disperse these water-insoluble particles. However, the current toxicology literature lacks much of the characterization information that allows toxicologists and regulators to develop “rules of thumb” that could be used to assess potential hazards. To effectively develop these rules, toxicologists need to know the characteristics of the particle that interacts with the biological system. This void leaves the scientific community with no options other than to evaluate all materials for all potential hazards. Lack of characterization could also lead to different laboratories reporting discordant results on seemingly the same test material because of subtle differences in the particle or differences in the dispersion medium used that resulted in altered properties and toxicity of the particle. For these reasons, good characterization using a minimal characterization data set should accompany and be required of all scientific publications on nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Murdock RC et al (2008) Toxicol Sci 101(2):239–253

    Article  CAS  Google Scholar 

  2. Guo L et al (2008) Small 4(6):721–727

    Article  CAS  Google Scholar 

  3. Holsapple MP et al (2005) Toxicol Sci 88(1):12–17

    Article  CAS  Google Scholar 

  4. Oberdorster G et al (2005) Part Fibre Toxicol 2:8

    Article  CAS  Google Scholar 

  5. Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) (2006) The appropriateness of existing methodologies to assess the potential risk associated with engineered and adventitious products of nanotechnology. http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_003b.pdf

  6. Environmental Defense Fund and DuPont (2007) Nano risk framework. http://nanoriskframework.com/page.cfm?tagID=1095

  7. Borm P et al (2006) Toxicol Sci 90(1):23–32

    Article  CAS  Google Scholar 

  8. Xia T et al (2008) ACS Nano 2(10):2121–2134

    Article  CAS  Google Scholar 

  9. Hardman R (2006) Environ Health Perspect 114(2):165–172

    Google Scholar 

  10. Poland CA et al (2008) Nat Nanotechnol 3(7):423–428

    Article  CAS  Google Scholar 

  11. Maxim LD et al (2006) Regul Toxicol Pharmacol 46(1):42–62

    Article  CAS  Google Scholar 

  12. Ma-Hock L et al (2007) Inhal Toxicol 19(10):833–848

    Article  CAS  Google Scholar 

  13. Baron PA et al (2008) Inhal Toxicol 20(8):751–760

    Article  CAS  Google Scholar 

  14. Oberdorster G, Oberdorster E, Oberdorster J (2005) Environ Health Perspect 113(7):823–839

    Article  CAS  Google Scholar 

  15. Warheit DB et al (2004) Toxicol Sci 77(1):117–125

    Article  CAS  Google Scholar 

  16. Sager TM, Castranova V (2009) Part Fibre Toxicol 6:5

    Article  CAS  Google Scholar 

  17. Oberdorster G et al (1990) J Aerosol Sci 21:384–387

    Article  Google Scholar 

  18. Glory J et al (2007) J Nanosci Nanotechnol 7(10):3458–3462

    Article  CAS  Google Scholar 

  19. Rogers K et al (2009) In: The toxicologist—Society of Toxicology annual meeting 2009 abstracts

  20. Sager TM, Kommineni C, Castranova V (2008) Part Fibre Toxicol 5:17

    Article  CAS  Google Scholar 

  21. Stoeger T et al (2006) Environ Health Perspect 114(3):328–333

    Google Scholar 

  22. Wittmaack K (2007) Environ Health Perspect 115(2):187–194

    Article  CAS  Google Scholar 

  23. Warheit DB et al (2007) Toxicol Sci 95(1):270–280

    Article  CAS  Google Scholar 

  24. Warheit DB et al (2006) Toxicol Sci 91(1):227–236

    Article  CAS  Google Scholar 

  25. Oberdorster G, Oberdorster E, Oberdorster J (2007) Environ Health Perspect 115(6):A290

    Article  Google Scholar 

  26. Stoeger T et al (2007) Environ Health Perspect 115(6):A290–291 author reply A291–292

    Google Scholar 

  27. Wittmaack K (2007) Environ Health Perspect 115(6):A290–291 author reply A291–292

    Article  Google Scholar 

  28. Warheit DB et al (2007) Toxicol Lett 171(3):99–110

    Article  CAS  Google Scholar 

  29. Ahamed M et al (2008) Toxicol Appl Pharmacol 233(3):404–410

    Article  CAS  Google Scholar 

  30. Hauck TS, Ghazani AA, Chan WC (2008) Small 4(1):153–159

    Article  CAS  Google Scholar 

  31. Jani P et al (1990) J Pharm Pharmacol 42(12):821–826

    CAS  Google Scholar 

  32. Jani PU et al (1996) J Drug Target 4(2):87–93

    Article  CAS  Google Scholar 

  33. Florence AT et al (1995) J Drug Target 3(1):65–70

    Article  CAS  Google Scholar 

  34. Monteiro-Riviere NA, Inman AO, Zhang LW (2009) Toxicol Appl Pharmacol 234(2):222–235

    Article  CAS  Google Scholar 

  35. Donaldson K et al (2009) Part Fibre Toxicol 6:13

    Article  CAS  Google Scholar 

  36. Renwick LC et al (2004) Occup Environ Med 61(5):442–447

    Article  CAS  Google Scholar 

  37. Barlow PG et al (2005) Part Fibre Toxicol 2:11

    Article  CAS  Google Scholar 

  38. Brunner TJ et al (2006) Environ Sci Technol 40(14):4374–4381

    Article  CAS  Google Scholar 

  39. Sayes CM, Warheit D (2008) Int J Nanotechnol 5(1):15–29

    Article  CAS  Google Scholar 

  40. Barnes CA et al (2008) Nano Lett 8(9):3069–3074

    Article  CAS  Google Scholar 

  41. Singh N et al (2009) Biomaterials 30(23–24):3891–3914

    Article  CAS  Google Scholar 

  42. Warheit DB (2008) Toxicol Sci 101(2):183–185

    Article  CAS  Google Scholar 

  43. Powers KW et al (2006) Toxicol Sci 90(2):296–303

    Article  CAS  Google Scholar 

  44. Erickson BE (2008) Chem Eng News 86(50):25–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond M. David.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boverhof, D.R., David, R.M. Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation. Anal Bioanal Chem 396, 953–961 (2010). https://doi.org/10.1007/s00216-009-3103-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3103-3

Keywords

Navigation