Skip to main content

Methanogens in the Digestive Tract of Termites

  • Chapter
  • First Online:
(Endo)symbiotic Methanogenic Archaea

Part of the book series: Microbiology Monographs ((MICROMONO,volume 19))

Abstract

Methanogenesis in termite guts is a product of symbiotic digestion, fueled by hydrogen and reduced one-carbon compounds that are formed during the fermentative breakdown of plant fiber and humus. Methanogens are restricted to the hindgut region and can be found in several distinct microhabitats. In lower termites, the methanogens belong almost exclusively to the genus Methanobrevibacter. They are either endosymbionts of flagellate protists or colonize the periphery of the hindgut, a habitat that is not fully anoxic. The oxygen-reducing capacities of the few isolates available so far indicate that they are well adapted to the continuous influx of oxygen across the gut wall. In higher termites, which lack gut flagellates, the hindgut is highly compartmented and characterized by strong differences in pH, redox potential, and other microenvironmental conditions. Here, the archaeal communities differ strongly between compartments and comprise not only Methanobacteriales, but also Methanosarcinales, Methanomicrobiales, and the recently discovered Methanomassiliicoccales. All methanogens in termite guts belong to distinct phylogenetic clusters that are restricted to the intestinal tracts of insects and millipedes. Only few representatives have been isolated in pure culture. The high methane emissions of termites, together with their enormous biomass in the tropics, make them a significant natural source of this important greenhouse gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bignell DE (2010) Termites. In: Reay D, Smith P, van Amstel A (eds) Methane and climate change. Earthscan, London, pp 62–73

    Google Scholar 

  • Bignell DE, Oskarsson H, Anderson JM (1980) Specialization of the hindgut wall for the attachment of symbiotic microorganisms in a termite Procubitermes aburiensis. Zoomorphology 96:103–112

    Article  Google Scholar 

  • Bignell DE, Eggleton P, Nunes L, Thomas KL (1997) Termites as mediators of carbon fluxes in tropical forests: budgets for carbon dioxide and methane emissions. In: Watt AB, Stork NE, Hunter MD (eds) Forests and insects. Chapman and Hall, London, pp 109–134

    Google Scholar 

  • Boga HI, Brune A (2003) Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts. Appl Environ Microbiol 69:779–786

    Article  CAS  Google Scholar 

  • Borrel G, Parisot N, Harris HM, Peyretaillade E, Gaci N, Tottey W, Bardot O, Raymann K, Gribaldo S, Peyret P, O’Toole PW, Brugère JF (2014) Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 15:679

    Article  Google Scholar 

  • Boucias DG, Cai Y, Sun Y, Lietze V-U, Sen R, Raychoudhury R, Scharf ME (2013) The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Mol Ecol 22:1836–1853

    Article  CAS  Google Scholar 

  • Bourguignon T, Lo N, Dietrich C, Šobotník J, Sidek S, Roisin Y, Brune A, Evans TA (2018) Rampant host-switching shaped the termite gut microbiome. Curr Biol 28:649–654.e2

    Article  CAS  Google Scholar 

  • Brauman A, Kane M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387

    Article  CAS  Google Scholar 

  • Brauman A, Dore J, Eggleton P, Bignell D, Breznak JA, Kane MD (2001) Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36

    Article  CAS  Google Scholar 

  • Breznak JA (1975) Symbiotic relationships between termites and their intestinal microbiota. Symp Soc Exp Biol 29:559–580

    Google Scholar 

  • Breznak JA (1994) Acetogenesis from carbon dioxide in termite guts. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 303–330

    Chapter  Google Scholar 

  • Breznak JA (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic, Dordrecht, pp 209–231

    Chapter  Google Scholar 

  • Breznak JA, Leadbetter JR (2006) Termite gut spirochetes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, Proteobacteria: delta and epsilon subclasses. Deeply rooting bacteria, vol 7, 3rd edn. Springer, New York, pp 318–329

    Chapter  Google Scholar 

  • Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breznak JA, Brill WJ, Mertins JW, Coppel HC (1973) Nitrogen fixation in termites. Nature 244:577–580

    Article  CAS  Google Scholar 

  • Breznak JA, Mertins JW, Coppel HC (1974) Nitrogen fixation and methane production in a wood-eating cockroach, Cryptocercus punctulatus Scudder (Orthoptera: Blattidae). Univ Wisc Forest Res Notes 184:1–2

    Google Scholar 

  • Brune A (1998) Termite guts: the world’s smallest bioreactors. Trends Biotechnol 16:16–21

    Article  CAS  Google Scholar 

  • Brune A (2010) Methanogens in the digestive tract of termites. In: Hackstein JHP (ed) (Endo)symbiotic methanogenic archaea, 1st edn. Springer, Heidelberg, pp 81–100

    Chapter  Google Scholar 

  • Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180

    Article  CAS  Google Scholar 

  • Brune A (2018) Methanogenesis in the digestive tracts of insects. In: Stams AJM, Sousa D (eds) Biogenesis of hydrocarbons. Handbook of hydrocarbon and lipid microbiology, 2nd edn. Springer, Cham

    Google Scholar 

  • Brune A, Friedrich M (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3:263–269

    Article  CAS  Google Scholar 

  • Brune A, Kühl M (1996) pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J Insect Physiol 42:1121–1127

    Article  CAS  Google Scholar 

  • Brune A, Ohkuma M (2011) Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 439–475

    Google Scholar 

  • Brune A, Frenzel P, Cypionka H (2000) Life at the oxic−anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710

    Article  CAS  Google Scholar 

  • Cao Y, Sun J-Z, Rodriguez JM, Lee KC (2010) Hydrogen emission by three wood-feeding subterranean termite species (Isoptera: Rhinotermitidae): production and characteristics. Insect Sci 17:237–244

    Article  CAS  Google Scholar 

  • Collins NM, Wood TG (1984) Termites and atmospheric gas production. Science 224:84–86

    Article  CAS  Google Scholar 

  • Cook SF (1932) The respiratory gas exchange in Termopsis nevadensis. Biol Bull 63:246–257

    Article  CAS  Google Scholar 

  • Deevong P, Hattori S, Yamada A, Trakulnaleamsai S, Ohkuma M, Noparatnaraporn N, Kudo T (2004) Isolation and detection of methanogens from the gut of higher termites. Microb Environ 19:221–226

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, pp 499–587

    Google Scholar 

  • Donovan SE, Purdy KJ, Kane MD, Eggleton P (2004) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol 70:3884–3892

    Article  CAS  Google Scholar 

  • Ebert A, Brune A (1997) Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egert M, Wagner B, Lemke T, Brune A, Friedrich MW (2003) Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69:6659–6668

    Article  CAS  Google Scholar 

  • Friedrich MW, Schmitt-Wagner D, Lueders T, Brune A (2001) Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl Environ Microbiol 67:4880–4890

    Article  CAS  Google Scholar 

  • Hackstein JHP, Stumm CK (1994) Methane production in terrestrial arthropods. Proc Natl Acad Sci USA 91:5441–5445

    Article  CAS  Google Scholar 

  • Hackstein JHP, van Alen TA (2018) Methanogens in the gastro-intestinal tract of animals. In: Hackstein JHP (ed) (Endo)symbiotic methanogenic archaea. Springer, Heidelberg

    Google Scholar 

  • Hara K, Shinzato N, Seo M, Oshima T, Yamagishi A (2002) Phylogenetic analysis of symbiotic archaea living in the gut of xylophagous cockroaches. Microb Environ 17:185–190

    Article  Google Scholar 

  • Hara K, Shinzato N, Oshima T, Yamagishi A (2004) Endosymbiotic Methanobrevibacter species living in symbiotic protists of the termite Reticulitermes speratus detected by fluorescent in situ hybridization. Microb Environ 19:120–127

    Article  Google Scholar 

  • Hongoh Y, Ohkuma M (2018) Termite gut flagellates and their methanogenic and eubacterial symbionts. In: Hackstein JHP (ed) (Endo)symbiotic methanogenic archaea. Springer, Heidelberg

    Google Scholar 

  • Inoue J, Noda S, Hongoh Y, Ui S, Ohkuma M (2008) Identification of endosymbiotic methanogen and ectosymbiotic spirochetes of gut protists of the termite Coptotermes formosanus. Microb Environ 23:94–97

    Article  Google Scholar 

  • Ji R, Brune A (2006) Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochemistry 78:267–283

    Article  Google Scholar 

  • Kappler A, Brune A (2002) Dynamics of redox potential and changes in redox state of iron and humic acids during gut passage in soil-feeding termites (Cubitermes spp.). Soil Biol Biochem 34:221–227

    Article  CAS  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG et al (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823

    Article  CAS  Google Scholar 

  • Köhler T, Dietrich C, Scheffrahn RH, Brune A (2012) High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol 78:4691–4701

    Article  Google Scholar 

  • Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brune A (2015) New mode of energy metabolism in the seventh order of methanogens as indicated by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl Environ Microbiol 81:1338–1352

    Article  Google Scholar 

  • Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292

    Article  CAS  Google Scholar 

  • Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689

    Article  CAS  Google Scholar 

  • Lee MJ, Schreurs PJ, Messer AC, Zinder SH (1987) Association of methanogenic bacteria with flagellated protozoa from a termite hindgut. Curr Microbiol 15:337–341

    Article  Google Scholar 

  • Lemke T, van Alen T, Hackstein JHP, Brune A (2001) Cross-epithelial hydrogen transfer from the midgut compartment drives methanogenesis in the hindgut of cockroaches. Appl Environ Microbiol 67:4657–4661

    Article  CAS  Google Scholar 

  • Lemke T, Stingl U, Egert M, Friedrich MW, Brune A (2003) Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69:6650–6658

    Article  CAS  Google Scholar 

  • Lilburn TG, Schmidt TM, Breznak JA (1999) Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1:331–345

    Article  CAS  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189

    Article  CAS  Google Scholar 

  • Messer AC, Lee MJ (1989) Effect of chemical treatments on methane emission by the hindgut microbiota in the termite Zootermopsis angusticollis. Microb Ecol 18:275–284

    Article  CAS  Google Scholar 

  • Miyata R, Noda N, Tamaki H, Kinjyo K, Aoyagi H, Uchiyama H, Tanaka H (2007) Phylogenetic relationship of symbiotic archaea in the gut of the higher termite Nasutitermes takasagoensis fed with various carbon sources. Microb Environ 22:157–164

    Article  Google Scholar 

  • Odelson DA, Breznak JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45:1602–1613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Odelson DA, Breznak JA (1985) Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl Environ Microbiol 49:614–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkuma M, Brune A (2011) Diversity, structure, and evolution of the termite gut microbial community. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 413–438

    Google Scholar 

  • Ohkuma M, Kudo T (1998) Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. FEMS Microbiol Lett 164:389–395

    Article  CAS  Google Scholar 

  • Ohkuma M, Noda S, Horikoshi K, Kudo T (1995) Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol Lett 134:45–50

    Article  CAS  Google Scholar 

  • Ohkuma M, Noda S, Kudo T (1999) Phylogenetic relationships of symbiotic methanogens in diverse termites. FEMS Microbiol Lett 171:147–153

    Article  CAS  Google Scholar 

  • Ottesen EA, Leadbetter JR (2011) Formyltetrahydrofolate synthetase gene diversity in the guts of higher termites with different diets and lifestyles. Appl Environ Microbiol 77:3461–3467

    Article  CAS  Google Scholar 

  • Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464–1467

    Article  CAS  Google Scholar 

  • Paul K, Nonoh JO, Mikulski L, Brune A (2012) “Methanoplasmatales,” Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol 78:8245–8253

    Article  CAS  Google Scholar 

  • Pester M, Brune A (2006) Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. Environ Microbiol 8:1261–1270

    Article  CAS  Google Scholar 

  • Pester M, Brune A (2007) Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J 1:551–565

    Article  CAS  Google Scholar 

  • Pester M, Tholen A, Friedrich MW, Brune A (2007) Methane oxidation in termite hindguts: absence of evidence and evidence of absence. Appl Environ Microbiol 73:2024–2028

    Article  CAS  Google Scholar 

  • Poehlein A, Seedorf H (2016) Draft genome sequences of Methanobrevibacter curvatus DSM11111, Methanobrevibacter cuticularis DSM11139, Methanobrevibacter filiformis DSM11501, and Methanobrevibacter oralis DSM7256. Genome Announc 4:e00617–e00616

    PubMed  PubMed Central  Google Scholar 

  • Radek R (1994) Monocercomonoides termitis n. sp., an oxymonad from the lower termite Kalotermes sinaicus. Arch Protistenkunde 144:373–382

    Article  Google Scholar 

  • Radek R (1997) Spirotrichonympha minor n. sp., a new hypermastigote termite flagellate. Eur J Protistol 33:361–374

    Article  Google Scholar 

  • Rahman NA, Parks DH, Willner DL, Engelbrektson AL, Goffredi SK, Warnecke F, Scheffrahn RH, Hugenholtz P (2015) A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome 3:5

    Article  Google Scholar 

  • Rasmussen RA, Khalil MAK (1983) Global production of methane by termites. Nature 301:700–702

    Article  CAS  Google Scholar 

  • Salmassi TM, Leadbetter JR (2003) Molecular aspects of CO2-reductive acetogenesis in cultivated spirochetes and the gut community of the termite Zootermopsis angusticollis. Microbiology 149:2529–2537

    Article  CAS  Google Scholar 

  • Sanderson MG (1996) Biomass of termites and their emissions of methane and carbon dioxide: a global database. Global Biogeochem Cycles 10:543–557

    Article  CAS  Google Scholar 

  • Santana RH, Catão ECP, Lopes FAC, Constantino R, Barreto CC, Krüger RH (2015) The gut microbiota of workers of the litter-feeding termite Syntermes wheeleri (Termitidae: Syntermitinae): archaeal, bacterial, and fungal communities. Microb Ecol 70:545–556

    Article  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt-Wagner D, Brune A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4490–4496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Huang Z, Han S, Fan S, Yang H (2015) Phylogenetic diversity of Archaea in the intestinal tract of termites from different lineages. J Basic Microbiol 54:1–8

    CAS  Google Scholar 

  • Shinzato N, Yoshino H, Yara K (1992) Methane production by microbial symbionts in the lower and higher termites of the Ryukyu Archipelago. In: Sato S, Ishida M, Ishikawa H (eds) Endocytobiology V. Tübingen University Press, Tübingen, pp 161–166

    Google Scholar 

  • Shinzato N, Matsumoto T, Yamaoka I, Oshima T, Yamagishi A (1999) Phylogenetic diversity of symbiotic methanogens living in the hindgut of the lower termite Reticulitermes speratus analyzed by PCR and in situ hybridization. Appl Environ Microbiol 65:837–840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shinzato N, Matsumoto T, Yamaoka I, Oshima T, Yamagishi A (2001) Methanogenic symbionts and the locality of their host lower termites. Microb Environ 16:43–47

    Article  Google Scholar 

  • Sprenger WW, van Belzen MC, Rosenberg J, Hackstein JHP, Keltjens JT (2000) Methanomicrococcus blatticola gen. nov., sp., nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int J Syst Evol Microbiol 50:1989–1999

    Article  CAS  Google Scholar 

  • Sprenger WW, Hackstein JHP, Keltjens JT (2005) The energy metabolism of Methanomicrococcus blatticola: physiological and biochemical aspects. Antonie van Leeuwenhoek 87:289–299

    Article  CAS  Google Scholar 

  • Sprenger WW, Hackstein JH, Keltjens JT (2007) The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics. FEMS Microbiol Ecol 60:266–275

    Article  CAS  Google Scholar 

  • Sugimoto A, Inoue T, Kirtibutr N, Abe T (1998a) Methane oxidation by termite mounds estimated by the carbon isotopic composition of methane. Global Biogeochem Cycles 12:595–605

    Article  CAS  Google Scholar 

  • Sugimoto A, Inoue T, Tayasu I, Miller L, Takeichi S, Abe T (1998b) Methane and hydrogen production in a termite-symbiont system. Ecol Res 13:241–257

    Article  CAS  Google Scholar 

  • Sugimoto A, Bignell DE, MacDonald JA (2000) Global impact of termites on the carbon cycle and atmospheric trace gases. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 409–435

    Chapter  Google Scholar 

  • Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  CAS  Google Scholar 

  • Tholen A, Brune A (1999) Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4497–4505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tholen A, Brune A (2000) Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2:436–449

    Article  CAS  Google Scholar 

  • Tholen A, Schink B, Brune A (1997) The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiol Ecol 24:137–149

    Article  CAS  Google Scholar 

  • Tholen A, Pester M, Brune A (2007) Simultaneous methanogenesis and oxygen reduction by Methanobrevibacter cuticularis at low oxygen fluxes. FEMS Microbiol Ecol 62:303–312

    Article  CAS  Google Scholar 

  • Tokura M, Ohkuma M, Kudo T (2000) Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol Ecol 33:233–240

    Article  CAS  Google Scholar 

  • Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  CAS  Google Scholar 

  • Wheeler GS, Tokoro M, Scheffrahn RH, Su N-Y (1996) Comparative respiration and methane production rates in nearctic termites. J Insect Physiol 42:799–806

    Article  CAS  Google Scholar 

  • Yanase Y, Miura M, Fujii Y, Okumura S, Yoshimura T (2013) Evaluation of the concentrations of hydrogen and methane emitted by termite using a semiconductor gas sensor. J Wood Sci 59:243–248

    Article  CAS  Google Scholar 

  • Zimmerman PR, Greenberg JP, Wandiga SO, Crutzen PJ (1982) Termites: a potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science 218:563–565

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Brune .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brune, A. (2018). Methanogens in the Digestive Tract of Termites. In: Hackstein, J. (eds) (Endo)symbiotic Methanogenic Archaea. Microbiology Monographs, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-98836-8_6

Download citation

Publish with us

Policies and ethics