Skip to main content

The Sesame Genome for Gene Discovery in Sesame

  • Chapter
  • First Online:
The Sesame Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Implementation of the Sesame Genome Project and the achievement of sesame genome research provide abundant bioinformatics information for the theoretical and applied genetic analyses of the important agronomic traits and biological processes in sesame. In order to facilitate the application of the genome information and bioinformatics, we present the discovery of some key genes such as SiDt1, Sidwf1, SiOPP, and Sicl1 and describe the main methods of gene cloning based on the sesame genome data. The potential of gene digging using the high-quality assembled genome is also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Ashri A (2001) Induced mutations in sesame breeding. No. IAEA-TECDOC-1195

    Google Scholar 

  • Ashri A (2006) Sesame (Sesamum indicum L.). In: Signh RJ (ed) Genetic resources, chromosome engineering, and crop improvement. CRC Press, Boca Raton, FL, pp 231–280

    Chapter  Google Scholar 

  • Atewll S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465(7298):627–631

    Article  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83

    CAS  PubMed  Google Scholar 

  • Cadic E, Coque M, Vear F, Grezes-Besset B, Pauquet J et al (2013) Combined linkage and association mapping of flowering time in sunflower (Helianthus annuus L.). Theor Appl Genet 126(5):1337–1356

    Google Scholar 

  • Chen JCF, Lin RH, Huang HC, Tzen JTC (1997) Cloning, expression and isoform classification of a minor oleosin in sesame oil bodies. J Biochem 122:819–824

    CAS  PubMed  Google Scholar 

  • Chun JA, Jin UH, Lee JW, Yi YB, Hyung NI et al (2003) Isolation and characterization of a myo-inositol 1-phosphate synthase cDNA from developing sesame (Sesamum indicum L.) seeds: functional and differential expression, and salt-induced transcription during germination. Planta 216:874–880

    Article  CAS  PubMed  Google Scholar 

  • Chyan CL, Lee TTT, Liu CP, Yang YC, Tzen JTC et al (2005) Cloning and expression of a seed-specific metallothionein-like protein from sesame. Biosci Biotechnol Biochemy 69(12):2319–2325

    Article  CAS  Google Scholar 

  • Deborah DA, Vemireddy LR, Roja V, Patil S, Choudhary GP et al (2017) Molecular dissection of QTL governing grain size traits employing association and linkage mapping in basmati rice. Mol Breed 37(6):77

    Article  Google Scholar 

  • Dossa K, Wei X, Li D, Fonceka D, Zhang Y et al (2016b) Insight into the ap2/erf transcription factor superfamily in sesame and expression profiling of dreb subfamily under drought stress. BMC Plant Biol 16(1):171

    Article  PubMed  PubMed Central  Google Scholar 

  • Dossa K, Diouf D, Cissé N (2016a) Genome-wide investigation of Hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response. Front Plant Sci 7:1522

    Article  PubMed  PubMed Central  Google Scholar 

  • Hata N, Hayashi Y, Okazawa A, Ono E, Satake H, et al. (2010) Comparison of sesamin contents and cyp81q1 gene expressions in aboveground vegetative organs between two Japanese sesame (Sesamum indicum L.) varieties differing in seed sesamin contents. Plant Sci 178(6):510–516

    Google Scholar 

  • Hsiao ESL, Lin LJ, Li FY, Wang MMC, Liao MY et al (2006) Gene families encoding isoforms of two major sesame seed storage proteins, 11S globulin and 2S albumin. J Agri Food Chem 54:9544–9550

    Article  CAS  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao q, Feng Q et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961

    Google Scholar 

  • Huang X, Zhao Y, Wei X, Li C, Wang A et al (2011) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44(1):32

    Article  CAS  PubMed  Google Scholar 

  • Jin UH, Lee JW, Chung YS, Lee JH, Yi YB et al (2001) Characterization and temporal expression of a ω-6 fatty acid desaturase cDNA from sesame (Sesamum indicum L.) seeds Plant Sci 161:935–941

    Google Scholar 

  • Kim MJ, Kim JK, Shin JS, Suh MC (2007) The sebhlh transcription factor mediates trans-activation of the sefad2 gene promoter through binding to e- and g-box elements. Plant Mol Biol 64:453–466

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Go YS, Lee SB, Kim YS, Shin JS et al (2010) Seed-expressed casein kinase i acts as a positive regulator of the sefad2 promoter via phosphorylation of the sebhlh transcription factor. Plant Mol Biol 73(s4–5):425–437

    Article  CAS  PubMed  Google Scholar 

  • Kitts PA, Church DM, Françoise TN, Jinna C, Vichet H et al (2016) Assembly: a resource for assembled genomes at NCBI. Nucleic Acids Res 2016(D1):D73–D80

    Article  Google Scholar 

  • Korir PC, Zhang J, Wu K, Zhao T, Gai J (2013) Association mapping combined with linkage analysis for aluminum tolerance among soybean cultivars released in Yellow and Changjiang River Valleys in China. Theor Appl Genet 126(6):1659

    Article  CAS  PubMed  Google Scholar 

  • Lee TTT, Leu WM, Yang HH, Chen BCM, Tzen JTC (2006) Sesame oleosin and prepro-2s albumin expressed as a fusion polypeptide in transgenic rice were split, processed and separately assembled into oil bodies and protein bodies. J Cereal Sci 44(3):333–341

    Article  CAS  Google Scholar 

  • Loewus FA, Murthy PPN (2000) myo-Inositol metabolism in plants. Plant Sci 150:1–19

    Article  CAS  Google Scholar 

  • Loewus FA, Everand JD, Young KA (1990) Inositol metabolism: precursor role and breakdown. In: Morre´ DJ, Boss WF, Loewus FA (eds) Inositol metabolism in plants. Wiley-Liss, New York, pp 21–45

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naoki H, Yoshinori H, Atsushi O, Eiichiro O, Honoo S et al (2012) Effect of photoperiod on growth of the plants, and sesamin content and cyp81q1 gene expression in the leaves of sesame (Sesamum indicum L.). Environ Exp Bot 75:212–219

    Article  Google Scholar 

  • Ono E, Nakai M, Fukui Y, Tomimori N, Fukuchi-Mizutani M et al (2006) Formation of two methylenedioxy bridges by a Sesamum cyp81q protein yielding a furofuran lignan, (+)-sesamin. Proc Natl Acad Sci USA 103(26):10116–10121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak N, Bhaduri A, Bhat KV, Rai AK, Bekker R (2015) Tracking sesamin synthase gene expression through seed maturity in wild and cultivated sesame species—a domestication footprint. Plant Biol 17(5):1039–1046

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Zhan J, Yang Y, Ye J, Huang S et al (2015) Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Sci Rep 5:14481

    Google Scholar 

  • Shittu LAJ, Bankole M, Ahmed T, Bankole MN, Shittu RK et al (2007) Antibacterial and antifungal activities of essential oils of crude extracts of Sesamum radiatum against some common pathogenic microorganisms. Iran J Pharmacol Ther 6(6):165–170

    Google Scholar 

  • Suh MC, Kim MJ, Hur CG, Bae JM, Park YI et al (2003) Comparative analysis of expressed sequence tags from Sesamum indicum and Arabidopsis thaliana developing seeds. Plant Mol Biol 52:1107–1123

    Article  PubMed  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Google Scholar 

  • Tsuchisaka A, Theologis A (2004) Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proc Natl Acad Sci USA 101(8):2275–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzen JTC (2012) Integral proteins in plant oil bodies. ISRN Botany Article ID 263270

    Google Scholar 

  • Tzen JTC, Cao YZ, Laurent P, Ratnayake C, Huang AHC (1993) Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiol 101:267–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzen JTC, Wang MMC, Chen JCF, Lin LJ, Chen MCM (2003) Seed oil body proteins: oleosin, caleosin, and steroleosin. Curr Topics Biochem Res 5:133–139

    Google Scholar 

  • Wang L, Yu S, Tong C, Zhao Y, Liu Y et al (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15(2):R39

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Yu J, Sun P, Li Y, Xia R et al (2016) Comparative genomics analysis of rice and pineapple contributes to understand the chromosome number reduction and genome changes in grasses. Front Genet 7:174

    PubMed  PubMed Central  Google Scholar 

  • Wei LB, Zhang HY, Zheng YZ, Miao HM, Zhang TZ et al (2009) A genetic linkage map construction for sesame (Sesamum indicum L.). Genes Genom 31(2):199–208

    Google Scholar 

  • Wei WL, Qi X, Wang LH, Zhang YX, Wei H et al. (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using illumina paired-end sequencing and development of est-ssr markers. BMC Genomics 12(1):451

    Google Scholar 

  • Wei W, Zhang Y, Wang L, Li D, Gao Y et al (2015) Genetic diversity, population structure, and association mapping of 10 agronomic traits in sesame. Crop Sci 56(1). https://doi.org/10.2135/cropsci2015.03.0153

  • Yoshida KT, Wada T, Koyama H, Mizobuchi-Fukuoka R, Naito S (1999) Temporal and spatial patterns of accumulation of the transcript of myo-inositol 1-phosphate synthase and phytin containing particles during seed development in rice. Plant Physiol 119:65–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yukawa Y, Takaiwa F, Yoshida N, Yamada K (1995) Structure and expression of two seed –specific cDNA clones encoding steroyl-acyl carrier protein desaturase from sesame, Sesamum indicum L. Plant Cell Physiol 37:201–205

    Article  Google Scholar 

  • Zhang H, Miao H, Wang L, Qu L, Liu H et al (2013) Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biol 14(1):401–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Miao H, Li C, Wei L, Duan Y et al (2016) Ultra-dense SNP genetic map construction and identification of SiDt gene controlling the determinate growth habit in Sesamum indicum L. Sci Rep 6:31556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Miao H, Wei L, Li C, Duan Y et al (2018) Identification of a SiCL1 gene controlling leaf curling and capsule indehiscence in sesame via cross-population association mapping and genomic variants screening. BMC Plant Biol 18(1):296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Miao H, Ju M (2019) Potential for adaptation to climate change through genomic breeding in sesame. In: Kole C (ed) Genomic designing of climate-smart oilseed crops. Springer, Cham, Switzerland, pp 374–376

    Google Scholar 

  • Zhao Y, Wang H, Chen W, Li Y (2014) Genetic structure, linkage disequilibrium and association mapping of Verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population. PLoS One 9(1):e86308

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duan, Y., Ju, M., Miao, H., Zhang, H. (2021). The Sesame Genome for Gene Discovery in Sesame. In: Miao, H., Zhang, H., Kole, C. (eds) The Sesame Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-98098-0_18

Download citation

Publish with us

Policies and ethics