Skip to main content

Functional Anatomical Traits of the Photosynthetic Organs of Plants with Crassulacean Acid Metabolism

  • Chapter
  • First Online:
The Leaf: A Platform for Performing Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 44))

Summary

Crassulacean acid metabolism (CAM) is a photosynthetic adaptation to water and/or CO2 limited environments that has evolved in 400 genera from 36 families of higher plants. Despite the taxonomic and ecological diversity of CAM, plants with this photosynthetic specialization share a number of common anatomical traits that impinge on the physiological processes underpinning photosynthetic CO2 assimilation and water use. Thick, succulent leaves and/or stems are typical for terrestrial CAM plants. The large cells within these succulent tissues serve to accommodate the overnight vacuolar accumulation of malic acid that defines CAM and also increase water storage capacity. Significant morphological and anatomical diversity exists among leaf and stem succulents that impact on water-use strategies and thus the predisposition towards CAM. We provide an overview of CAM diversity in terms of leaf and stem anatomy, leaf venation and stomatal patterning. We consider the physiological implications of these anatomical traits in terms of water use and leaf hydraulic properties as well as the impacts on CO2 uptake and carbon gain. We also discuss which anatomical traits are likely to be important determinants for the mode and level of CAM that might be engineered into non-CAM species as a means of improving plant water use efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C:

hydraulic capacitance

CAM:

crassulacean acid metabolism

D:

dimensional

e:

modulus of elasticity

GSmax :

anatomical maximum stomatal conductance

IAS:

intercellular air space

Lmes/area:

length of mesophyll cells that are exposed to intercellular air space

MDH:

malate dehydrogenase

NAD-ME:

nicotinamide dinucleotide malic enzyme

NADP-ME:

nicotinamide dinucleotide phosphate malic enzyme

pCO2 :

partial pressure of CO2 within the leaf

PEP:

phosphoenolpyruvate

PEPCK:

phosphoenolpyruvate carboxykinase

PPC:

phosphoenolpyruvate carboxylase

PPCK:

phosphoenolpyruvate carboxylase kinase

PPDK:

pyruvate phosphate dikinase

Rubisco:

ribulose bisphosphate carboxylase oxygenase

WUE:

water use efficiency (moles of CO2 fixed to moles of water lost by transpiration)

δ13C:

carbon isotope ratio

References

  • Abraham PE, Yin H, Borland AM, Weighill D, Lim SD, De Paoli HC, Engle N, Jones PC, Agh R, Weston DJ, Wullschleger SD, Tschaplinski T, Jacobson D, Cushman JC, Hettich RL, Tuskan GA, Yang X (2016) Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. Nat Plants 2:16178

    Article  CAS  PubMed  Google Scholar 

  • Altesor A, Silva C, Ezcurra E (1994) Allometric neoteny and the evolution of succulence in cacti. Bot J Linn Soc 114:283–292

    Article  Google Scholar 

  • Arakaki M, Christin PA, Nyffeler R, Lendel A, Eggli U, Ogburn RM, Spriggs E, Moore MJ, Edwards EJ (2011) Contemporaneous and recent radiations of the world's major succulent plant lineages. Proc Natl Acad Sci U S A 108:8379–8384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awad H, Herbette S, Brunel N, Tixier A, Pilate G, Cochard H, Badel E (2012) No trade-off between hydraulic and mechanical properties in several transgenic poplars modified for lignins metabolism. Environ Exp Bot 77:185–195

    Article  CAS  Google Scholar 

  • Balsamo RA, Uribe EG (1988) Leaf anatomy and ultrastructure of the Crassulacean-acid-metabolism plant Kalanchoë daigremontiana. Planta 173:183–189

    Article  CAS  PubMed  Google Scholar 

  • Barcikowski W, Nobel PS (1984) Water relations of cacti during desiccation: distribution of water in tissues. Bot Gaz 145:110–115

    Article  Google Scholar 

  • Barrera-Zambrano V, Lawson T, Olmos E, Fernández-Garcia N, Borland A (2014) Leaf anatomical traits which accomodate the facultative engagement of crassulacean acid metabolism in tropical trees of the genus Clusia. J Exp Bot 65:3513–3523

    Article  PubMed  Google Scholar 

  • Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986

    Article  PubMed  Google Scholar 

  • Borland AM, Griffiths H, Hartwell J, Smith JAC (2009) Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot 60:2879–2896

    Article  CAS  PubMed  Google Scholar 

  • Borland AM, Guo H-B, Yang X, Cushman JC (2016) Orchestration of carbohydrate processing for crassulacean acid metabolism. Curr Opin Plant Biol 31:118–124

    Article  CAS  PubMed  Google Scholar 

  • Borland AM, Hartwell J, Weston DJ, Schlauch KA, Tschaplinski TJ, Tuskan GA, Yang X, Cushman JC (2014) Engineering crassulacean acid metabolism to improve water-use efficiency. Trends Plant Sci 19:327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borland AM, Técsi LI, Leegood RC, Walker RP (1998) Inducibility of crassulacean acid metabolism (CAM) in Clusia species; physiological/biochemical characterisation and intercellular localization of carboxylation and decarboxylation processes in three species which exhibit different degrees of CAM. Planta 205:342–351

    Article  CAS  Google Scholar 

  • Borland AM, Wullschleger SD, Weston DJ, Hartwell J, Tuskan GA, Yang X, Cushman JC (2015) Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy. Plant Cell Environ 38:1833–1849

    Article  CAS  PubMed  Google Scholar 

  • Borland AM, Yang X (2013) Informing the improvement and biodesign of crassulacean acid metabolism via system dynamics modelling. New Phytol 200:946–949

    Article  CAS  PubMed  Google Scholar 

  • Brodribb TJ, Jordan GJ, Carpenter RJ (2013) Unified changes in cell size permit coordinated leaf evolution. New Phytol 199:559–570

    Article  PubMed  Google Scholar 

  • Cai J, Liu X, Vanneste K, Proost S, Tsai W-C, Liu K-W, Chen L-J, He Y, Xu Q, Bian C, Zheng Z, Sun F, Liu W, Hsiao Y-Y, Pan Z-J, Hsu C-C, Yang Y-P, Hsu Y-C, Chuang Y-C, Dievart A, Dufayard J-F, Xu X, Wang J-Y, Wang J, Xiao X-J, Zhao X-M, Du R, Zhang G-Q, Wang M, Su Y-Y, Xie G-C, Liu G-H, Li L-Q, Huang L-Q, Luo Y-B, Chen H-H, Van de Peer Y, Liu Z-J (2015) The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47:65–72

    Article  CAS  PubMed  Google Scholar 

  • Christin PA, Arakaki M, Osborne CP, Bräutigam A, Sage RF, Hibberd JM, Kelly S, Covshoff S, Wong GKS, Hancock L, Edwards EJ (2014) Shared origins of a key enzyme during the evolution of C4 and CAM metabolism. J Exp Bot 65:3609–3621

    Article  PubMed  PubMed Central  Google Scholar 

  • Christman MA, Sperry JS, Smith DD (2012) Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species. New Phytol 193:713–720

    Article  PubMed  Google Scholar 

  • Cockburn W, Ting IP, Sternberg LO (1979) Relationships between stomatal behavior and internal carbon dioxide concentration in crassulacean acid metabolism plants. Plant Physiol 63:1029–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook B, Smerdon J, Seager R, Coats S (2014) Global warming and 21st century drying. Clim Dynam 43:1–21

    Article  Google Scholar 

  • Crayn DM, Winter K, Smith JAC (2004) Multiple origins of crassulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae. Proc Natl Acad Sci U S A 101:3703–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cushman JC, Davis SC, Yang X, Borland AM (2015) Development and use of bioenergy feedstocks for semi-arid and arid lands. J Exp Bot 66:4177–4193

    Article  CAS  PubMed  Google Scholar 

  • Cutler D (2004) Aloe leaf anatomy. In: Reynolds T (ed) Aloes: the genus Aloe. CRC Press, London, pp 372–377

    Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58

    Article  Google Scholar 

  • de Faria APG, Vieira ACM, Wendt T (2012) Leaf anatomy and its contribution to the systematics of Aechmea subgenus Macrochordion (de Vriese) Baker (Bromeliaceae). An Acad Bras Ciênc 84:961–971

    Article  PubMed  Google Scholar 

  • Deng H, Zhang LS, Zhang GQ, Zheng BQ, Liu ZJ, Wang Y (2016) Evolutionary history of PEPC genes in green plants: implications for the evolution of CAM in orchids. Mol Phylogenet Evol 94:559–564

    Article  CAS  PubMed  Google Scholar 

  • DePaoli HC, Borland AM, Tuskan GA, Cushman JC, Yang X (2014) Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities. J Exp Bot 65:3381–3393

    Article  CAS  PubMed  Google Scholar 

  • Doheny-Adams T, Hunt L, Franks PJ, Beerling DJ, Gray JE (2012) Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philos Trans Roy Soc B 367:547–555

    Article  CAS  Google Scholar 

  • Dever LV, Boxall SF, KeÅ™ová J, Hartwell J (2015) Transgenic perturbation of the decarboxylation phase of crassulacean acid metabolism alters physiology and metabolism but has only a small effect on growth. Plant Physiol 167:44–59

    Article  CAS  PubMed  Google Scholar 

  • De Veylder L, Larkin J, Schnittger A (2011) Molecular control and function of endoreduplication in development and physiology. Trends Plant Sci 16:624–634

    Article  PubMed  CAS  Google Scholar 

  • Edwards EJ, Ogburn RM (2012) Angiosperm responses to a low CO2 world: CAM and C4 photosynthesis as parallel evolutionary trajectories. Int J Plant Sci 173:724–733

    Article  CAS  Google Scholar 

  • Eggli U, Nyffeler R (2009) Living under temporally arid conditions-succulence as an adaptive strategy. Bradleya 27:13–36

    Article  Google Scholar 

  • Evans JR, von Caemmerer S (1996) Carbon dioxide fixation in leaves. Plant Physiol 110:339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fondom NY, Castro-Nava S, Huerta AJ (2009) Seasonal variation in photosynthesis and diel carbon balance under natural conditions in two Peperomia species that differ with respect to leaf anatomy. J Tor Bot Soc 136:57–69

    Article  Google Scholar 

  • Franks PJ, Drake PL, Beerling DJ (2009) Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant Cell Environ 32:1737–1748

    Article  PubMed  Google Scholar 

  • Goldstein G, Ortega JKE, Nerd A, Nobel PS (1991) Diel patterns of water potential components for the crassulacean acid metabolism plant Opuntia ficus-indica when well-watered or droughted. Plant Physiol 95:274–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouws L, Osmond C, Schurr U, Walter A (2005) Distinctive diel growth cycles in leaves and cladodes of CAM plants: differences from C3 plants and putative interactions with substrate availability, turgor and cytoplasmic pH. Funct Plant Biol 32:421–428

    Article  CAS  PubMed  Google Scholar 

  • Griffiths H (1992) Carbon isotope discrimination and the integration of carbon assimilation pathways in terrestrial CAM plants. Plant Cell Environ 15:1051–1062

    Article  CAS  Google Scholar 

  • Griffiths H (2013) Plant venation: from succulence to succulents. Curr Biol 23:R340–R431

    Article  CAS  PubMed  Google Scholar 

  • Griffiths H, Robe WE, Girnus J, Maxwell K (2008) Leaf succulence determines the interplay between carboxylase systems and light use during crassulacean acid metabolism. J Exp Bot 59:1851–1861

    Article  CAS  PubMed  Google Scholar 

  • Guralnick LJ, Cline A, Smith M, Sage RF (2008) Evolutionary physiology: the extent of C4 and CAM photosynthesis in the genera Anacampseros and Grahamia of the Portulacaceae. J Exp Bot 59:1735–1742

    Article  CAS  PubMed  Google Scholar 

  • Hartwell J, Dever LV, Boxall SF (2016) Emerging model systems for functional genomics analysis of crassulacean acid metabolism. Curr Opin Plant Biol 31:100–108

    Article  CAS  PubMed  Google Scholar 

  • Hastilestari BR, Mudersbach M, Tomala F, Vogt H, Biskupek-Korell B, Van Damme P, Guretzki S, Papenbrock J (2013) Euphorbia tirucalli L.-comprehensive characterization of a drought tolerant plant with a potential as biofuel source. PLoS One 8:e63501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera A (2009) Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for? Ann Bot 103:645–653

    Article  CAS  PubMed  Google Scholar 

  • Herrera A, Ballestrini C, Tezara W (2008) Nocturnal sap flow in the C3-CAM species, Clusia minor. Trees-Struct Funct 22:491–497

    Article  Google Scholar 

  • Hetherington A, Woodward F (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  PubMed  Google Scholar 

  • Heyduk K, Burrell N, Lalani F, Leebens-Mack JH (2016a) Gas exchange and leaf anatomy of a C3-CAM hybrid, Yucca gloriosa (Asparagaceae). J Exp Bot 67:1369–1379

    Article  CAS  PubMed  Google Scholar 

  • Heyduk K, McKain MR, Lalani F, Leebens-Mack J (2016b) Evolution of CAM anatomy predates the origins of crassulacean acid metabolism in the Agavoideae (Asparagaceae). Mol Phylogenet Evol 105:102–113

    Article  CAS  PubMed  Google Scholar 

  • Holthe P, Szarek S (1985) Physiological potential for survival of propagules of crassulacean acid metabolism species. Plant Physiol 79:219–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtum JAM, Aranda J, Virgo A, Gehrig HH, Winter K (2004) δ13C values and crassulacean acid metabolism in Clusia species from Panama. Trees-Struct Funct 18:658–668

    Article  CAS  Google Scholar 

  • Holtum JAM, Smith JAC, Neuhaus HE (2005) Intracellular transport and pathways of carbon flow in plants with crassulacean acid metabolism. Funct Plant Biol 32:429–449

    Article  CAS  PubMed  Google Scholar 

  • Kaul R (1977) The role of the multiple epidermis in foliar succulence of Peperomia (Piperaceae). Bot Gaz 138:213–218

    Article  Google Scholar 

  • Keeley JE (1998) CAM photosynthesis in submerged aquatic plants. Bot Rev 64:121–175

    Article  Google Scholar 

  • Kerbauy G, Takahashi C, Lopez A, Matsumura A, Hamachi L, Felix L, Pereira P (2012) Crassulacean acid metabolism in epiphytic orchids: current knowledge, future perspectives. In: Najafpour M (ed) Applied photosynthesis. InTech, Rijeka, pp 81–105

    Google Scholar 

  • Klavsen SK, Madsen TV, Maberly SC (2011) Crassulacean acid metabolism in the context of other carbon-concentrating mechanisms in freshwater plants: a review. Photosynth Res 109:269–279

    Article  CAS  PubMed  Google Scholar 

  • Kluge M, Brulfert J, Ravelomanana D, Lipp J, Ziegler H (1991) Crassulacean acid metabolism in Kalanchoë species collected in various climatic zones of Madagascar: a survey by δ13C analysis. Oecologia 88:407–414

    Article  PubMed  Google Scholar 

  • Kocurek M, Kornas A, Pilarski J, Tokarz K, Lüttge U, Miszalski Z (2015) Photosynthetic activity of stems in two Clusia species. Trees-Struct Funct 29:1029–1040

    Article  CAS  Google Scholar 

  • Kondo A, Nose A, Ueno O (2001) Coordinated accumulation of the chloroplastic and cytosolic pyruvate, Pi dikinases with enhanced expression of CAM in Kalanchoë blossfeldiana. Physiol Plant 111:116–122

    Article  CAS  Google Scholar 

  • Lawson T, Blatt MR (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164:1556–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson T, James W, Weyers J (1998) A surrogate measure of stomatal aperture. J Exp Bot 49:1397–1403

    Article  CAS  Google Scholar 

  • Lens F, Smets E, Melzer S (2012) Stem anatomy supports Arabidopsis thaliana as a model for insular woodiness. New Phytol 193:12–17

    Article  PubMed  Google Scholar 

  • Lens F, Davin N, Smets E, del Arco M (2013a) Insular woodiness on the Canary Islands: a remarkable case of convergent evolution. Int J Plant Sci 174:992–1013

    Article  Google Scholar 

  • Lens F, Tixier A, Cochard H, Sperry JS, Jansen S, Herbette S (2013b) Embolism resistance as a key mechanism to understand adaptive plant strategies. Curr Opin Plant Biol 16:287–292

    Article  PubMed  Google Scholar 

  • Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lüttge U (2008a) Clusia: Holy Grail and enigma. J Exp Bot 59:1503–1514

    Article  PubMed  CAS  Google Scholar 

  • Lüttge U (2008b) Stem CAM in arborescent succulents. Trees 22:139–148

    Article  Google Scholar 

  • Lüttge U, Duarte H (2007) Morphology, anatomy, life forms and hydraulic architechture. In: Lüttge U (ed) Clusia: a woody neotropical genus of remarkable plasticity and diversity. Springer, Berlin, pp 17–30

    Chapter  Google Scholar 

  • Lüttge U, Medina E, Cram WJ, Lee HSJ, Popp M, Smith JAC (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. II. Cactaceae. New Phytol 111:245–251

    Article  PubMed  Google Scholar 

  • Lüttge U, Nobel P (1984) Day-night variations in malate concentration, osmotic pressure and hydrostatic pressure in Cereus validus. Plant Physiol 75:804–807

    Article  PubMed  PubMed Central  Google Scholar 

  • Males J, Griffiths H (2017) Stomatal biology of CAM plants. Plant Physiol 174:550. https://doi.org/10.1104/pp.17.00114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin CE, Mas EJ, Lu C, Ong BL (2010) The photosynthetic pathway of the roots of twelve epiphytic orchids with CAM leaves. Photosynthetica 48:42–50

    Article  Google Scholar 

  • Martin CE, Siedow JN (1981) Crassulacean acid metabolism in the epiphyte Tillandsia usneoides L. (Spanish Moss). Plant Physiol 68:335–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason PM, Glover K, Smith JAC, Willis KJ, Woods J, Thompson IP (2015) The potential of CAM crops as a globally significant bioenergy resource: moving from 'fuel or food' to 'fuel and more food'. Energy Environ Sci 8:2320–2329

    Article  CAS  Google Scholar 

  • Maxwell K, von Caemmerer S, Evans J (1997) Is a low internal conductance to CO2 diffusion a consequence of succulence in plants with crassulacean acid metabolism? Aust J Plant Physiol 24:777–786

    Article  CAS  Google Scholar 

  • Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, Lyons E, Wang ML, Chen J, Biggers E, Zhang J, Huang L, Zhang L, Miao W, Zhang J, Ye Z, Miao C, Lin Z, Wang H, Zhou H, Yim WC, Priest HD, Zheng C, Woodhouse M, Edger PP, Guyot R, Guo HB, Guo H, Zheng G, Singh R, Sharma A, Min X, Zheng Y, Lee H, Gurtowski J, Sedlazeck FJ, Harkess A, McKain MR, Liao Z, Fang J, Liu J, Zhang X, Zhang Q, Hu W, Qin Y, Wang K, Chen LY, Shirley N, Lin YR, Liu LY, Hernandez AG, Wright CL, Bulone V, Tuskan GA, Heath K, Zee F, Moore PH, Sunkar R, Leebens-Mack JH, Mockler T, Bennetzen JL, Freeling M, Sankoff D, Paterson AH, Zhu X, Yang X, Smith JA, Cushman JC, Paull RE, Yu Q (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47:1435–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monja-Mio KM, Pool FB, Herrera GH, EsquedaValle M, Robert ML (2015) Development of the stomatal complex and leaf surface of Agave angustifolia Haw. ‘Bacanora’ plantlets during the in vitro to ex vitro transition process. Sci Hortic 189:32–40

    Article  CAS  Google Scholar 

  • Moreira N, Nascimento L, Leal-Costa M, Tavares E (2012) Comparative anatomy of leaves of Kalanchoe pinnata and K. crenata in sun and shade conditions, as a support for their identification. Rev Bras Farmac 22:929–936

    Article  Google Scholar 

  • Mott KA, Gibson AC, O'Leary JW (1982) The adaptive significance of amphistomatic leaves. Plant Cell Environ 5:455–460

    Article  Google Scholar 

  • Nelson E, Sage T, Sage R (2005) Functional leaf anatomy of plants with crassulacean acid metabolism. Funct Plant Biol 32:409–419

    Article  PubMed  Google Scholar 

  • Nelson E, Sage R (2008) Functional constraints of CAM leaf anatomy: tight cell packing is associated with increased CAM function across a gradient of CAM expression. J Exp Bot 59:1841–1850

    Article  CAS  PubMed  Google Scholar 

  • Ni Y, Tizard IR (2004) Analytical methodology: the gel-analysis of aloe pulp and its derivatives. In: Reynolds T (ed) Aloes: the genus Aloe. CRC Press, London, pp 111–126

    Google Scholar 

  • Nimmo H (2000) The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci 5:75–80

    Article  CAS  PubMed  Google Scholar 

  • Nobel PS (1988) Environmental biology of agaves and cacti. Cambridge University Press, Cambridge

    Google Scholar 

  • Nobel PS (1999) Physicochemical and environmental plant physiology. Academic Press, San Diego

    Google Scholar 

  • North GB, Martre P, Nobel PS (2004) Aquaporins account for variations in hydraulic conductance for metabolically active root regions of Agave deserti in wet, dry, and rewetted soil. Plant Cell Environ 27:219–228

    Article  CAS  Google Scholar 

  • Ogburn RM, Edwards EJ (2010) The ecological water-use strategies of succulent plants. In: Advances in Botanical Research, vol 55. Academic, Cambridge, MA, pp 179–225

    Google Scholar 

  • Ogburn RM, Edwards EJ (2013) Repeated origin of three-dimensional leaf venation releases constraints on the evolution of succulence in plants. Curr Biol 23:722–726

    Article  CAS  PubMed  Google Scholar 

  • Osmond C (1978) Crassulacean acid metabolism: a curiosity in context. Ann Rev Plant Physiol 29:379–414

    Article  CAS  Google Scholar 

  • Owen NA, Griffiths H (2014) Marginal land bioethanol yield potential of four crassulacean acid metabolism candidates (Agave fourcroydes, Agave salmiana, Agave tequilana and Opuntia ficus-indica) in Australia. GCB Bioenery 6:687–703

    Article  CAS  Google Scholar 

  • Pfenning AR, Hara E, Whitney O, Rivas MV, Wang R, Roulhac PL, Howard JT, Wirthlin M, Lovell PV, Ganapathy G, Mouncastle J, Moseley MA, Thompson JW, Soderblom EJ, Iriki A, Kato M, Gilbert MT, Zhang G, Bakken T, Bongaarts A, Bernard A, Lein E, Mello CV, Hartemink AJ, Jarvis ED (2014) Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346:1256846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pimienta-Barrios E, Zanudo-Hernandez J, Muñoz-Urias A, Robles-Murguía C (2012) Ecophysiology of young stems (cladodes) of Opuntia ficus-indica in wet and dry conditions. Gayana Bot 69:232–239

    Article  Google Scholar 

  • Reeves G, Grangé-Guermente MJ, Hibberd JM (2017) Regulatory pathways for cell-specific gene expression in C4 leaves with Kranz anatomy. J Exp Bot 68:107–116

    Article  CAS  PubMed  Google Scholar 

  • Ruess BR, Eller BM (1985) The correlation between crassulacean acid metabolism and water uptake in Senecio medley-woodii. Planta 166:57–66

    Article  CAS  PubMed  Google Scholar 

  • Sage RF (2002) Are crassulacean acid metabolism and C4 photosynthesis incompatible? Funct Plant Biol 29:775–785

    Article  CAS  PubMed  Google Scholar 

  • Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, Huner NPA, Shinozaki K, Singh J (2005) The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 46:1525–1539

    Article  CAS  PubMed  Google Scholar 

  • Sayed O (1998) Succulent plants inhabiting desert depressions in eastern Arabia were predominantly leaf succulents exhibiting a variety of adaptations. J Arid Environ 40:177–189

    Article  Google Scholar 

  • Schmida A (1985) Biogeography of the desert flora. In: Evenari M, Noy-Meier I, Goodall D (eds) Ecosystems of the world: hot deserts and shrublands. Elsevier, Amsterdam, pp 23–77

    Google Scholar 

  • Schmidt J, Kaiser W (1987) Response of the succulent leaves of Peperomia magnoliaefolia to dehydration. Plant Physiol 83:190–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulte P, Smith J, Nobel P (1989) Water storage and osmotic pressure influences on the water relations of a dicotyledonous desert plant. Plant Cell Environ 12:831–842

    Article  Google Scholar 

  • Silvera K, Santiago L, Winter K (2005) Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes. Funct Plant Biol 32:397–407

    Article  CAS  PubMed  Google Scholar 

  • Silvera K, Santiago LS, Cushman JC, Winter K (2009) Crassulacean acid metabolism and epiphytism linked to adaptive radiations in the Orchidaceae. Plant Physiol 149:1838–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sipes D, Ting I (1985) Crassulacean acid metabolism and crassulacean acid metabolism modifications in Peperomia-camptotricha. Plant Physiol 77:59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith J, Heuer S (1981) Determination of the volume of intercellular spaces in leaves and some values for CAM plants. Ann Bot 48:915–917

    Article  Google Scholar 

  • Smith J, Schulte P, Nobel P (1987) Water flow and water storage in Agave deserti: osmotic implications of crassulacean acid metabolism. Plant Cell Environ 10:639–648

    Article  Google Scholar 

  • Smith JAC, Lüttge U (1985) Day-night changes in leaf water relations associated with the rhythm of crassulacean acid metabolism in Kalanchoë daigremontiana. Planta 163:272–282

    Article  CAS  PubMed  Google Scholar 

  • Smith W, Hughes N (2009) Progress in coupling plant form and photosynthetic function. Castanea 74:1–26

    Article  Google Scholar 

  • Srivastava A, Lu Z, Zeiger E (1995) Modification of guard cell properties in advanced lines of Pima cotton bred for higher yields and heat resistance. Plant Sci 108:125–131

    Article  CAS  Google Scholar 

  • Szarek S, Johnson H, Ting I (1973) Drought adaptation in Opuntia basilaris. Significance of recycling carbon throug crassulacean acid metabolism. Plant Physiol 52:539–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teeri JA, Tonsor SJ, Turner M (1981) Leaf thickness and carbon isotope composition in the Crassulaceae. Oecologia 50:367–369

    Article  CAS  PubMed  Google Scholar 

  • Tissue D, Yakir D, Nobel P (1991) Diel water movement between parenchyma and chlorenchyma of two desert CAM plants under dry and wet conditions. Plant Cell Environ 14:407–413

    Article  Google Scholar 

  • Vargas-Soto JG, Andrade JL, Winter K (2009) Carbon isotope composition and mode of photosynthesis in Clusia species from Mexico. Photosynthetica 47:33–40

    Article  CAS  Google Scholar 

  • von Caemmerer S, Griffiths H (2009) Stomatal responses to CO2 during a diel crassulacean acid metabolism cycle in Kalanchoë daigremontiana and Kalanchoë pinnata. Plant Cell Environ 32:567–576

    Article  CAS  Google Scholar 

  • West-Eberhard MJ, Smith JAC, Winter K (2011) Photosynthesis, reorganized. Science 332:311–312

    Article  CAS  PubMed  Google Scholar 

  • Winter K, Holtum JAM (2002) How closely do the δ13C values of crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night? Plant Physiol 129:1843–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter K, Holtum JAM (2014) Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. J Exp Bot 65:3425–3441

    Article  PubMed  Google Scholar 

  • Winter K, Holtum JAM (2015) Cryptic crassulacean acid metabolism (CAM) in Jatropha curcas. Funct Plant Biol 42:711–717

    Article  CAS  PubMed  Google Scholar 

  • Winter K, Wallace BJ, Stocker GC, Roksandic Z (1983) Crassulacean acid metabolism in australian vascular epiphytes and some related species. Oecologia 57:129–141

    Article  PubMed  Google Scholar 

  • Winter K, Medina E, Garcia V, Luisa Mayoral M, Muniz R (1985) Crassulacean acid metabolism in roots of a leafless orchid, Campylocentrum tyrridion Garay & Dunsterv. J Plant Physiol 118:73–78

    Article  CAS  PubMed  Google Scholar 

  • Wyka T, Duarte H, Lüttge U (2005) Redundancy of stomatal control for the circadian photosynthetic rhythm in Kalanchoë daigremontiana Hamet et Perrier. Plant Biol 7:176–181

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119:101–117

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Cushman JC, Borland AM, Edwards EJ, Wullschleger SD, Tuskan GA, Owen NA, Griffiths H, Smith JA, De Paoli HC, Weston DJ, Cottingham R, Hartwell J, Davis SC, Silvera K, Ming R, Schlauch K, Abraham P, Stewart JR, Guo HB, Albion R, Ha J, Lim SD, Wone BW, Yim WC, Garcia T, Mayer JA, Petereit J, Nair SS, Casey E, Hettich RL, Ceusters J, Ranjan P, Palla KJ, Yin H, Reyes-Garcia C, Andrade JL, Freschi L, Beltran JD, Dever LV, Boxall SF, Waller J, Davies J, Bupphada P, Kadu N, Winter K, Sage RF, Aguilar CN, Schmutz J, Jenkins J, Holtum JA (2015) A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytol 207:491–504

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Hu R, Yin H, Jenkins J, Shu S, Tang H, Liu D, Weighill DA, Yim WC, Ha J, a Heyduk K, Goodstein DM, Guo H-B, Moseley RC, Fitzek E, Jawdy S, Zhang Z, Xie M, Hartwell J, Grimwood J, Abraham PE, Mewalal R, Beltrán JD, Boxall SF, Dever LV, Palla KJ, Albion R, Garcia T, Mayer J, Lim SD, Wai CM, Peluso P, Buren RV, De Paoli HC, Borland AM, Guo H, Chen J-G, Muchero W, Yin Y, Jacobson DA, Tschaplinski TJ, Hettich RL, Ming R, Winter K, Leebens-Mack JH, Smith JAC, Cushman JC, Schmutz J, Tuskan GA (2017) The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nat Com 8:1899

    Google Scholar 

  • Zotz G, Hietz P (2001) The physiological ecology of vascular epiphytes: current knowledge, open questions. J Exp Bot 52:2067–2078

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This chapter is based on work supported by the United States Department of Energy, Office of Science, Genomic Science Program under Award Number DE-SC0008834. AL acknowledges support from the RB Cooke Foundation and NHC is supported by Colciencias. Oak Ridge National Laboratory is managed by UT- Battelle, LLC for the US DOE under Contract Number DE–AC05–00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Borland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borland, A.M., Leverett, A., Hurtado-Castano, N., Hu, R., Yang, X. (2018). Functional Anatomical Traits of the Photosynthetic Organs of Plants with Crassulacean Acid Metabolism. In: Adams III, W., Terashima, I. (eds) The Leaf: A Platform for Performing Photosynthesis. Advances in Photosynthesis and Respiration, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-93594-2_10

Download citation

Publish with us

Policies and ethics