Skip to main content
Log in

The photosynthetic pathway of the roots of twelve epiphytic orchids with CAM leaves

  • Original Papers
  • Published:
Photosynthetica

Abstract

The photosynthetic pathway of the roots (both the white velamentous main portions and the green, nonvelamentous tips) was investigated in twelve taxa (natural species and intergeneric hybrid cultivars) of epiphytic orchids having CAM leaves. All organs contained chlorophyll, and the a/b ratios indicate that the organs, especially the roots, are likely shade-adapted. Stable carbon isotope ratios of the tissues were near −15‰ for all organs, a value typical of obligate (constitutive) CAM plants. Values for root tissues were slightly lower (more negative) than those of the leaves. The presence of CAM in the leaves of these orchids did not ensure that their roots performed CAM photosynthesis. Further work is needed to address the questions raised in this study and to determine if the photosynthetic roots of these taxa are capable of assimilating atmospheric CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAM:

crassulacean acid metabolism

Chl:

chlorophyll

DM:

dry mass

FM:

fresh mass

PDB:

Pee Dee belemnite

References

  • Ando, T.: Occurrence of two different modes of photosynthesis in Dendrobium cultivars. — Sci. Hort. 17: 169–175, 1982. Arditti J., Dueker J.: Photosynthesis by various organs of orchid plants. — Amer. Orchid Soc. Bull. 37: 862–865, 1968.

    Article  Google Scholar 

  • Avadhani, P.N., Goh, C.J., Arditti, J.: Stomatal and acidity rhythms in orchids: practical implications. — Amer. Orchid Soc. Bull. 47: 131–134, 1978.

    Google Scholar 

  • Avadhani, P.N., Goh, C.J., Rao, A.N., Arditti, J.: Carbon fixation in orchids. — In: Arditti, J. (ed.): Orchid Biology. Reviews and Perspectives, II. Pp. 174–192. Cornell University Press, Ithaca 1982.

    Google Scholar 

  • Benzing, D.H., Bent, A., Moscow, D., Peterson, G., Renfrow, A.: Functional correlates of deciduousness in Catasetum integerrimum (Orchidaceae). — Selbyana 7: 1–9, 1982.

    Google Scholar 

  • Benzing, D.H., Ott, D.W.: Vegetative reduction in epiphytic Bromeliaceae and Orchidaceae — its origin and significance. — Biotropica 13: 131–140, 1981.

    Article  Google Scholar 

  • Benzing, D.H., Ott, D.W., Friedman, W.E.: Roots of Sobralia macrantha (Orchidaceae): structure and function of the velamen-exodermis complex. — Amer. J. Bot. 69: 608–614, 1982.

    Article  Google Scholar 

  • Benzing, D.H., Pockman, W.T.: Why do nonfoliar green organs of leafy orchids fail to exhibit net photosynthesis? — Lindleyana 4: 53–60, 1989.

    Google Scholar 

  • Boardman, N.K.: Comparative photosynthesis of sun and shade plants. Annu. Rev. Plant Physiol. — 28: 355–377, 1977.

    Article  CAS  Google Scholar 

  • Bowling, D.R., Pataki, D.E., Randerson, J.T.: Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. — New Phytol. 178: 2440, 2008.

    Article  Google Scholar 

  • Cockburn, W., Goh, C.J., Avadhani, P.N.: Photosynthetic carbon assimilation in a shootless orchid, Chiloschista usneoides (Don) LDL. A variant on Crassulacean acid metabolism. — Plant Physiol. 77: 83–86, 1985.

    Article  CAS  PubMed  Google Scholar 

  • Coutinho, L.M.: [Algumas informaçŏes sŏbre a ocorrěncia do “Efeito de De Saussure” em epífitas e erbáceas terrestres da mata pluvial.] — Botânica 20: 83–98, 1963. [In Portugese]

    Google Scholar 

  • Earnshaw, M.J., Winter, K., Ziegler, H., Stichler, W., Cruttwell, N.E.G., Kerenga, K., Cribb, P.J., Wood, J., Croft, J.R., Carver, K.A., Gunn, T.C.: Altitudinal changes in the incidence of Crassulacean acid metabolism in vascular epiphytes and selected life forms in Papua New Guinea. — Oecologia 73: 566–572, 1987.

    Article  Google Scholar 

  • Endo, M., Ikusima, I.: Diurnal rhythm and characteristics of photosynthesis and respiration in the leaf and root of a Phalaenopsis plant. — Plant Cell Physiol. 30: 43–47, 1989.

    CAS  Google Scholar 

  • Erickson, L.C.: Respiration and photosynthesis in Cattleya roots. — Amer. Orchid Soc. Bull. 26: 401–402, 1957.

    CAS  Google Scholar 

  • Gehrig, H., Faist, K., Kluge, M.: Identification of phosphoenolpyruvate carboxylase isoforms in leaf, stem and roots of the obligate CAM plant Vanilla planifolia Salib. (Orchidaceae): a physiological and molecular approach. — Plant Molec. Biol. 38: 1215–1223, 1998.

    Article  CAS  Google Scholar 

  • Goh, C.J., Arditti, J., Avadhani, P.N.: Carbon fixation in orchid aerial roots. — New Phytol. 95: 367–374, 1983.

    Article  CAS  Google Scholar 

  • Goh, C.J., Avadhani, P.N., Loh, C.S., Hanegraaf, C., Arditti, J.: Diurnal stomatal and acidity rhythms in orchid leaves. — New Phytol. 78: 365–372, 1977.

    Article  Google Scholar 

  • Goh, C.J., Kluge, M.: Gas exchange and water relations in epiphytic orchids. — In: Lüttge U. (ed.): Vascular Plants as Epiphytes. Evolution and Ecophysiology. Pp. 139–166. Springer, Berlin — Heidelberg — New York — London — Paris — Tokyo — Hong Kong 1989.

    Google Scholar 

  • Griffiths, H.: Carbon balance during CAM — an assessment of respiratory CO2 recycling in the epiphytic bromeliads Aechmea nudicaulis and Aechmea fendleri. — Plant Cell Environ. 11: 603–611, 1988a.

    Article  CAS  Google Scholar 

  • Griffiths, H.: Crassulacean acid metabolism — a re-appraisal of physiological plasticity in form and function. — Adv. Bot. Res. 15: 43–92, 1988b.

    Article  CAS  Google Scholar 

  • Griffiths, H.: Carbon dioxide concentrating mechanisms and the evolution of CAM in vascular epiphytes. — In: Lüttge, U. (ed.): Vascular Plants as Epiphytes. Evolution and Ecophysiology. Pp. 42–86. Springer-Verlag, Berlin — Heidelberg — New York — London — Paris -Tokyo — Hong Kong 1989.

    Google Scholar 

  • Griffiths, H.: Carbon isotope discrimination and the integration of carbon assimilation pathways in terrestrial CAM plants. — Plant Cell Environ. 15: 1051–1062, 1992.

    Article  CAS  Google Scholar 

  • Griffiths, H.: Carbon isotope discrimination. — In: Hall, D.O., Scurlock, J.M.O., Bolhàr-Nordenkampf, H.R., Leegood, R.C., Long, S.P. (ed.): Photosynthesis and Production in a Changing Environment: A Field and Laboratory Manual. Pp. 181–192. Chapman & Hall, London — Glasgow — New York -Tokyo — Melbourne — Madras 1993.

    Google Scholar 

  • He, J., Khoo, G.H., Hew, C.S.: Susceptibility of CAM Dendrobium leaves and flowers to high light and high temperature under natural tropical conditions. — Environ. Exper. Bot. 40: 255–264, 1998.

    Article  Google Scholar 

  • Hew, C.-S.: Patterns of CO2 fixation in tropical orchid species. — Proc 8th World Orchid Conf. 1975: 426–430, 1976.

  • Hew, C.S.: CO2 fixation in orchids. — Acta Phytophysiol. Sin. 15: 217–222, 1989.

    Google Scholar 

  • Hew, C.S., Ng, C.K.Y., Gouk, S.S., Yong, J.W.H., Wong, S.C.: Variation in δ13C values for different plant parts of an Oncidium orchid. — Photosynthetica 32: 135–139, 1996.

    CAS  Google Scholar 

  • Hew, C.S., Ng, Y.W., Wong, S.C., Yeoh, H.H., Ho, K.K.: Carbon-dioxide fixation in orchid aerial roots. — Physiol. Plant. 60: 154–158, 1984.

    Article  CAS  Google Scholar 

  • Hew, C.S., Ye, Q.S., Pan, R.C.: Relation of respiration to CO2 fixation by Aranda orchid roots. — Environ. Exper. Bot. 31: 327–331, 1991.

    Article  Google Scholar 

  • Hew, C.S., Yong, J.W.H.: Growth and photosynthesis of Oncidium goldiana. — J. Hort. Sci. 69: 809–819, 1994.

    CAS  Google Scholar 

  • Hew, C.S., Yong, J.W.H.: The Physiology of Tropical Orchids in Relation to the Industry. — World Scientific, Singapore 1997.

    Google Scholar 

  • Ho, K., Yeoh, H.-H., Hew, C.-S.: The presence of photosynthetic machinery in aerial roots of leafy orchids. — Plant Cell Physiol. 24: 1317–1321, 1983.

    CAS  Google Scholar 

  • Hsu, C.-C., Lin, T.-C., Chiou, W.-L., Lin, S.-H., Lin, K.-C., Martin, C.E.: Canopy CO2 concentrations and Crassulacean acid metabolism in Hoya carnosa in a subtropical rain forest in Taiwan: consideration of CO2 availability and the evolution of CAM in epiphytes. — Photosynthetica 44: 130–135, 2006.

    Article  CAS  Google Scholar 

  • Kluge, M., Brulfert, J., Rauh, W., Ravelomanana, D., Ziegler, H.: Ecophysiological studies on the vegetation of Madagascar: A δ13C and δD survey for incidence of Crassulacean acid metabolism (CAM) among orchids from montane forests and succulents from the xerophytic thorn-bush. — Isotopes Environ. Health Stud. 31: 191–210, 1995.

    Article  CAS  Google Scholar 

  • Kluge, M., Ting, I.P.: Crassulacean Acid Metabolism. Analysis of an Ecological Adaptation. — Springer-Verlag, Berlin — Heidelberg — New York 1978.

    Google Scholar 

  • Knauft, R.L., Arditti, J.: Partial identification of dark 14CO2 fixation products in leaves of Cattleya (Orchidaceae). — New Phytol. 68: 657–661, 1969.

    Article  CAS  Google Scholar 

  • Konow, E.A., Wang, Y.-T.: Irradiance levels affect in vitro and greenhouse growth, flowering, and photosynthetic behavior of a hybrid Phalaenopsis orchid. — J. Amer. Soc. Hort. Sci. 126: 531–536, 2001.

    Google Scholar 

  • Lootens, P., Heursel, J.: Irradiance, temperature, and carbon dioxide enrichment affect photosynthesis in Phalaenopsis hybrids. — HortSci. 33: 1183–1185, 1998.

    Google Scholar 

  • Martin, C.E.: Physiological ecology of the Bromeliaceae. — Bot. Rev. 60: 1–82, 1994.

    Article  Google Scholar 

  • Martin, C.E.: Putative causes and consequences of recycling CO2 via Crassulacean acid metabolism. — In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 192–203. Springer-Verlag, Berlin — Heidelberg — New York 1996.

    Google Scholar 

  • Martin, C.E., Higley, M., Wang, W.-Z.: Ecophysiological significance of CO2-recycling via Crassulacean acid metabolism in Talinum calycinum Engelm (Portulacaceae). — Plant Physiol. 86: 562–568, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Martin, S.L., Davis, R., Protti, P., Lin, T.-C., Lin, S.-H., and Martin, C.E.: The occurrence of Crassulacean acid metabolism in epiphytic ferns, with an emphasis on the Vittariaceae. — Int. J. Plant Sci. 166: 623–630, 2005.

    Article  CAS  Google Scholar 

  • Martin, C.E., Hsu, R.(C.-C.), Lin, T.-C.: The relationship between CAM and leaf succulence in two epiphytic vines, Hoya carnosa and Dischidia formosana (Asclepiadaceae), in a subtropical rainforest in northeastern Taiwan. — Photosynthetica 47: 445–450, 2009.

    Article  CAS  Google Scholar 

  • Medina, E., Olivares, E., Díaz, M., van der Merwe, N.: [Metabolismo de Crassulaceas en bosques humedos tropicales.] — Monogr. Syst. Bot. Missouri Bot. Gard. 27: 56–67, 1986. [In Span.]

    Google Scholar 

  • Milburn, T.R., Pearson, D.J., Ndegwe, N.A.: Crassulacean acid metabolism under natural tropical conditions. — New Phytol. 67: 883–897, 1968.

    Article  CAS  Google Scholar 

  • Miura, Y.: Changes in the CO2 evolution rate in cattleya roots during alternating light and dark periods as related to changes in the CO2 absorption rate of cattleya leaves. — Plant Cell Physiol. 25: 1567–1569, 1984.

    CAS  Google Scholar 

  • Miura, Y., Murakami, T., Kobayashi, H.: [Dark 14CO2 fixation and translocation of 14C assimilates in cattleya plants.] — J. Jap. Soc. Hort. Sci. 58: 181–186, 1989. [In Japan.]

    Article  Google Scholar 

  • Motomura, H., Ueno, O., Kagawa, A., Yukawa, T.: Carbon isotope ratios and the variation in the diurnal pattern of malate accumulation in aerial roots of CAM species of Phalaenopsis (Orchidaceae). — Photosynthetica 46: 531–536, 2008.

    Article  CAS  Google Scholar 

  • Neales, T.F., Hew, C.S.: Two types of carbon fixation in tropical orchids. — Planta 123: 303–306, 1975.

    Article  CAS  Google Scholar 

  • Nuernbergk, E.L.: [Endogener Rhythmus und CO2-Stoffwechsel bei Pflanzen mit diurnalem Säurerhythmus.] — Planta 56: 28–70, 1960. [In Germ.]

    Article  Google Scholar 

  • Nowak, E.J., Martin, C.E.: Physiological and anatomical responses to water deficits in the CAM epiphyte Tillandsia ionantha (Bromeliaceae). — Int. J. Plant Sci. 158: 818–826, 1997.

    Article  Google Scholar 

  • Ong, B.L., Kluge, M., Friemert, V.: Crassulacean acid metabolism in the epiphytic ferns Drymoglossum piloselloides and Pyrrosia longifolia — studies on responses to environmental signals. — Plant Cell Environ. 9: 547–557, 1986.

    CAS  Google Scholar 

  • Osmond, C.B.: Crassulacean acid metabolism — curiosity in context. — Annu. Rev. Plant Physiol. 29: 379–414, 1978.

    Article  CAS  Google Scholar 

  • Ota, K., Morioka, K., Yamamoto, Y.: [Effects of leaf age, inflorescence, temperature, light-intensity and moisture conditions on CAM photosynthesis in Phalaenopsis.] — J. Jap. Soc. Hort. Sci. 60: 125–132, 1991. [In Japan.]

    Article  CAS  Google Scholar 

  • Patel, A., Ting, I.P.: Relationship between respiration and CAM-cycling in Peperomia camptotricha. — Plant Physiol. 84: 640–642, 1987.

    Article  PubMed  Google Scholar 

  • Sanders, D.J.: Crassulacean acid metabolism and its possible occurrence in the plant family Orchidaceae. — Amer. Orchid Soc. Bull. 48: 796–798, 1979.

    CAS  Google Scholar 

  • Sekizuka, F., Kawamitsu, Y., Nose, A., Murayama. S., Shinjo, C.-Y.: Effects of water-stress on gas-exchange characteristics in Crassulacean acid metabolism plant, Dendrobium ekapol cv. Panda. — Jap. J. Crop Sci. 64: 235–242, 1995.

    CAS  Google Scholar 

  • Šesták, Z.: Determination of chlorophylls a and b. — In: Šesták, Z., Čatský, J., Jarvis, P.G. (ed.): Plant Photosynthetic Production. Manual of Methods. Pp. 672–701. Dr. W. Junk N.V. Publ., The Hague 1971.

    Google Scholar 

  • Sinclair, R.: Water relations of tropical epiphytes. III. Evidence for Crassulacean acid metabolism. — J. Exp. Bot. 35: 1–7, 1984.

    Article  CAS  Google Scholar 

  • Smith, J.A.C.: Epiphytic bromeliads. — In: Lüttge, U. (ed.): Vascular Plants as Epiphytes. Evolution and Ecophysiology. Pp. 109–138. Springer-Verlag, Berlin — Heidelberg — New York — London — Paris -Tokyo — Hong Kong 1989.

    Google Scholar 

  • Sokal, R.R., Rohlf, F.J.: Biometry. The Principles and Practice of Statistics in Biological Research. 2nd Ed. — WH Freeman & Co, New York 1981.

    Google Scholar 

  • Stiles, K.C., Martin CE.: Effects of drought stress on CO2 exchange and water relations in the CAM epiphyte Tillandsia utriculata (Bromeliaceae). — J. Plant Physiol. 149: 721–728, 1996.

    CAS  Google Scholar 

  • Stuntz, S., Zotz, G.: Photosynthesis in vascular epiphytes: A survey of 27 species of diverse taxonomic origin. — Flora 196: 132–141, 2001.

    Google Scholar 

  • Teeri, J.A., Tonsor, S.J., Turner, M.: Leaf thickness and carbon isotope composition in the Crassulaceae. — Oecologia 50: 367–369, 1981.

    Article  Google Scholar 

  • Ting, I.P.: Crassulacean acid metabolism. — Annu. Rev. Plant Physiol. 36: 595–622, 1985.

    Article  CAS  Google Scholar 

  • Winter, K., Osmond, C.B., Hubick, K.T.: Crassulacean acid metabolism in the shade. Studies on an epiphytic fern, Pyrrosia longifolia, and other rainforest species from Australia. — Oecologia 68: 224–230, 1986.

    Article  Google Scholar 

  • Winter, K., Smith, J.A.C.: Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. — Springer-Verlag, Berlin — Heidelberg — New York 1996a.

    Google Scholar 

  • Winter, K., Smith, J.A.C.: Crassulacean acid metabolism: Current status and perspectives. — In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 389–426. Springer-Verlag, Berlin — Heidelberg — New York 1996b.

    Google Scholar 

  • Winter, K., Wallace, B.J., Stocker, G.C., Roksandic, Z.: Crassulacean acid metabolism in Australian vascular epiphytes and some related species. — Oecologia 57: 129–141, 1983.

    Article  Google Scholar 

  • Zimmerman, J.K., Ehleringer, J.R.: Carbon isotope ratios are correlated with irradiance levels in the Panamanian orchid Catasetum viridiflavum. — Oecologia 83: 247–249, 1990.

    Article  Google Scholar 

  • Zotz, G.: How prevalent is crassulacean acid metabolism among vascular epiphytes? — Oecologia 138: 184–192, 2004.

    Article  PubMed  Google Scholar 

  • Zotz, G., Ziegler, H.: The occurrence of crassulacean acid metabolism among vascular epiphytes from Central Panama. — New Phytol. 137: 223–229, 1997.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are exceedingly grateful to Mr. Teo Peng Seng of the Woon Leng Nursery in Singapore for allowing us to sample the orchids in his greenhouses for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.E. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, C., Mas, E., Lu, C. et al. The photosynthetic pathway of the roots of twelve epiphytic orchids with CAM leaves. Photosynthetica 48, 42–50 (2010). https://doi.org/10.1007/s11099-010-0007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-010-0007-6

Additional key words

Navigation