Skip to main content

Inflammasomes in the Kidney

  • Chapter
  • First Online:
Inflammasomes: Clinical and Therapeutic Implications

Part of the book series: Experientia Supplementum ((EXS,volume 108))

Abstract

Inflammasomes influence a diverse range of kidney disease, including acute and chronic kidney diseases, and those mediated by innate and adaptive immunity. Both IL-18 and in particular IL-1β are validated therapeutic targets in several kidney diseases. In addition to leukocyte-derived inflammasomes, renal tissue cells express functional inflammasome components. Furthermore, a range of endogenous substances that directly activate inflammasomes also mediate kidney injury. Many of the functional studies have focussed on the NLRP3 inflammasome, and there is also evidence for the involvement of other inflammasomes in some conditions. While, at least in some disease, the mechanistic details of the involvement of the inflammasome remain to be elucidated, therapies focussed on inflammasomes and their products have potential in treating kidney disease in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abais JM, Zhang C, Xia M, Liu Q, Gehr TW, Boini KM, Li PL (2013) NADPH oxidase-mediated triggering of inflammasome activation in mouse podocytes and glomeruli during hyperhomocysteinemia. Antioxid Redox Signal 18:1537–1548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akcay A, Nguyen Q, Edelstein CL (2009) Mediators of inflammation in acute kidney injury. Mediat Inflamm 2009:137072

    Article  CAS  Google Scholar 

  • Anders HJ, Schaefer L (2014) Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J Am Soc Nephrol 25:1387–1400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Awad AS, Kinsey GR, Khutsishvili K, Gao T, Bolton WK, Okusa MD (2011) Monocyte/macrophage chemokine receptor CCR2 mediates diabetic renal injury. Am J Physiol Ren Physiol 301:F1358–F1366

    Article  CAS  Google Scholar 

  • Babelova A, Moreth K, Tsalastra-Greul W, Zeng-Brouwers J, Eickelberg O, Young MF, Bruckner P, Pfeilschifter J, Schaefer RM, Grone HJ, Schaefer L (2009) Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem 284:24035–24048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bagavant H, Fu SM (2009) Pathogenesis of kidney disease in systemic lupus erythematosus. Curr Opin Rheumatol 21:489–494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bakker PJ, Butter LM, Claessen N, Teske GJ, Sutterwala FS, Florquin S, Leemans JC (2014) A tissue-specific role for Nlrp3 in tubular epithelial repair after renal ischemia/reperfusion. Am J Pathol 184:2013–2022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bani-Hani AH, Leslie JA, Asanuma H, Dinarello CA, Campbell MT, Meldrum DR, Zhang H, Hile K, Meldrum KK (2009) IL-18 neutralization ameliorates obstruction-induced epithelial-mesenchymal transition and renal fibrosis. Kidney Int 76:500–511

    Article  PubMed  CAS  Google Scholar 

  • Barbour SJ, Reich HN (2012) Risk stratification of patients with IgA nephropathy. Am J Kidney Dis 59:865–873

    Article  PubMed  Google Scholar 

  • Bierzynska A, Saleem M (2017) Recent advances in understanding and treating nephrotic syndrome. F1000Res 6:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bombardieri M, McInnes IB, Pitzalis C (2007) Interleukin-18 as a potential therapeutic target in chronic autoimmune/inflammatory conditions. Expert Opin Biol Ther 7:31–40

    Article  PubMed  CAS  Google Scholar 

  • Bonnemaison ML, Marks ES, Boesen EI (2017) Interleukin-1beta as a driver of renal NGAL production. Cytokine 91:38–43

    Article  PubMed  CAS  Google Scholar 

  • Brinkkoetter PT, Ising C, Benzing T (2013) The role of the podocyte in albumin filtration. Nat Rev Nephrol 9:328–336

    Article  PubMed  CAS  Google Scholar 

  • Brissette MJ, Laplante P, Qi S, Latour M, Cailhier JF (2016) Milk fat globule epidermal growth factor-8 limits tissue damage through inflammasome modulation during renal injury. J Leukoc Biol 100:1135–1146

    Article  PubMed  CAS  Google Scholar 

  • Calvani N, Richards HB, Tucci M, Pannarale G, Silvestris F (2004) Up-regulation of IL-18 and predominance of a Th1 immune response is a hallmark of lupus nephritis. Clin Exp Immunol 138:171–178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao Y, Fei D, Chen M, Sun M, Xu J, Kang K, Jiang L, Zhao M (2015) Role of the nucleotide-binding domain-like receptor protein 3 inflammasome in acute kidney injury. FEBS J 282:3799–3807

    Article  PubMed  CAS  Google Scholar 

  • Chan AJ, Alikhan MA, Odobasic D, Gan PY, Khouri MB, Steinmetz OM, Mansell AS, Kitching AR, Holdsworth SR, Summers SA (2014) Innate IL-17A-producing leukocytes promote acute kidney injury via inflammasome and Toll-like receptor activation. Am J Pathol 184:1411–1418

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Sheu LF, Chou WY, Tsai SC, Chang DM, Liang SC, Lin FG, Lee WH (1997) Interleukin-1 receptor antagonist modulates the progression of a spontaneously occurring IgA nephropathy in mice. American J Kidney Dis 30:693–702

    Article  CAS  Google Scholar 

  • Chen K, Zhang J, Zhang W, Zhang J, Yang J, Li K, He Y (2013) ATP-P2X4 signaling mediates NLRP3 inflammasome activation: a novel pathway of diabetic nephropathy. Int J Biochem Cell Biol 45:932–943

    Article  PubMed  CAS  Google Scholar 

  • Chen KW, Bezbradica JS, Gross CJ, Wall AA, Sweet MJ, Stow JL, Schroder K (2016) The murine neutrophil NLRP3 inflammasome is activated by soluble but not particulate or crystalline agonists. Eur J Immunol 46:1004–1010

    Article  PubMed  CAS  Google Scholar 

  • Chi HH, Hua KF, Lin YC, Chu CL, Hsieh CY, Hsu YJ, Ka SM, Tsai YL, Liu FC, Chen A (2017) IL-36 signaling facilitates activation of the NLRP3 inflammasome and IL-23/IL-17 axis in renal inflammation and fibrosis. J Am Soc Nephrol 28:2022–2037

    Article  PubMed  PubMed Central  Google Scholar 

  • Choubey D, Panchanathan R (2017) Absent in melanoma 2 proteins in SLE. Clin Immunol 176:42–48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chow F, Ozols E, Nikolic-Paterson DJ, Atkins RC, Tesch GH (2004) Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. Kidney Int 65:116–128

    Article  PubMed  CAS  Google Scholar 

  • Chun J, Chung H, Wang X, Barry R, Taheri ZM, Platnich JM, Ahmed SB, Trpkov K, Hemmelgarn B, Benediktsson H, James MT, Muruve DA (2016) NLRP3 localizes to the tubular epithelium in human kidney and correlates with outcome in IgA nephropathy. Sci Rep 6:24667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS, Ma L, Watowich SS, Jetten AM, Tian Q, Dong C (2009) Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30:576–587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coca SG, Yalavarthy R, Concato J, Parikh CR (2008) Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int 73:1008–1016

    Article  PubMed  CAS  Google Scholar 

  • Cook HT (2007) Interpretation of renal biopsies in IgA nephropathy. Contrib Nephrol 157:44–49

    PubMed  Google Scholar 

  • Coppo R, Amore A, Peruzzi L, Vergano L, Camilla R (2010) Innate immunity and IgA nephropathy. J Nephrol 23:626–632

    PubMed  Google Scholar 

  • Correa-Costa M, Braga TT, Semedo P, Hayashida CY, Bechara LR, Elias RM, Barreto CR, Silva-Cunha C, Hyane MI, Goncalves GM, Brum PC, Fujihara C, Zatz R, Pacheco-Silva A, Zamboni DS, Camara NO (2011) Pivotal role of Toll-like receptors 2 and 4, its adaptor molecule MyD88, and inflammasome complex in experimental tubule-interstitial nephritis. PLoS One 6:e29004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crow MK (2014) Type I interferon in the pathogenesis of lupus. J Immunol 192:5459–5468

    Article  PubMed  CAS  Google Scholar 

  • Darisipudi MN, Knauf F (2016) An update on the role of the inflammasomes in the pathogenesis of kidney diseases. Pediatr Nephrol 31:535–544

    Article  PubMed  Google Scholar 

  • Darisipudi MN, Thomasova D, Mulay SR, Brech D, Noessner E, Liapis H, Anders HJ (2012) Uromodulin triggers IL-1beta-dependent innate immunity via the NLRP3 inflammasome. J Am Soc Nephrol 23:1783–1789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • dos Santos NA, Carvalho Rodrigues MA, Martins NM, dos Santos AC (2012) Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch Toxicol 86:1233–1250

    Article  PubMed  CAS  Google Scholar 

  • Du W, Zhen J, Zheng Z, Ma S, Chen S (2013) Expression of AIM2 is high and correlated with inflammation in hepatitis B virus associated glomerulonephritis. J Inflamm 10:37

    Article  CAS  Google Scholar 

  • Du L, Dong F, Guo L, Hou Y, Yi F, Liu J, Xu D (2015) Interleukin-1beta increases permeability and upregulates the expression of vascular endothelial-cadherin in human renal glomerular endothelial cells. Mol Med Rep 11:3708–3714

    Article  PubMed  CAS  Google Scholar 

  • Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nunez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elneam AI, Mansour NM, Zaki NA, Taher MA (2016) Serum Interleukin-18 and Its Gene Haplotypes Profile as Predictors in Patients with Diabetic Nephropathy. Open Access Maced J Med Sci 4:324–328

    Article  PubMed  PubMed Central  Google Scholar 

  • Emmerson BT, Cross M, Osborne JM, Axelsen RA (1990) Reaction of MDCK cells to crystals of monosodium urate monohydrate and uric acid. Kidney Int 37:36–43

    Article  PubMed  CAS  Google Scholar 

  • Falk RJ, Terrell RS, Charles LA, Jennette JC (1990) Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci U S A 87:4115–4119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faubel S, Ljubanovic D, Reznikov L, Somerset H, Dinarello CA, Edelstein CL (2004) Caspase-1-deficient mice are protected against cisplatin-induced apoptosis and acute tubular necrosis. Kidney Int 66:2202–2213

    Article  PubMed  CAS  Google Scholar 

  • Faubel S, Lewis EC, Reznikov L, Ljubanovic D, Hoke TS, Somerset H, Oh DJ, Lu L, Klein CL, Dinarello CA, Edelstein CL (2007) Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther 322:8–15

    Article  PubMed  CAS  Google Scholar 

  • Faust J, Menke J, Kriegsmann J, Kelley VR, Mayet WJ, Galle PR, Schwarting A (2002) Correlation of renal tubular epithelial cell-derived interleukin-18 up-regulation with disease activity in MRL-Faslpr mice with autoimmune lupus nephritis. Arthritis Rheum 46:3083–3095

    Article  PubMed  CAS  Google Scholar 

  • Feng H, Gu J, Gou F, Huang W, Gao C, Chen G, Long Y, Zhou X, Yang M, Liu S, Lu S, Luo Q, Xu Y (2016) High glucose and lipopolysaccharide prime NLRP3 inflammasome via ROS/TXNIP pathway in mesangial cells. J Diabetes Res 2016:6973175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franceschini A, Capece M, Chiozzi P, Falzoni S, Sanz JM, Sarti AC, Bonora M, Pinton P, Di Virgilio F (2015) The P2X7 receptor directly interacts with the NLRP3 inflammasome scaffold protein. FASEB J 29:2450–2461

    Article  PubMed  CAS  Google Scholar 

  • Furuichi K, Wada T, Iwata Y, Kokubo S, Hara A, Yamahana J, Sugaya T, Iwakura Y, Matsushima K, Asano M, Yokoyama H, Kaneko S (2006) Interleukin-1-dependent sequential chemokine expression and inflammatory cell infiltration in ischemia-reperfusion injury. Crit Care Med 34:2447–2455

    Article  PubMed  CAS  Google Scholar 

  • Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Futosi K, Fodor S, Mocsai A (2013) Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 17:638–650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gabay C, Lamacchia C, Palmer G (2010) IL-1 pathways in inflammation and human diseases. Nat Rev Rheumatol 6:232–241

    Article  PubMed  CAS  Google Scholar 

  • Gao P, He FF, Tang H, Lei CT, Chen S, Meng XF, Su H, Zhang C (2015) NADPH oxidase-induced NALP3 inflammasome activation is driven by thioredoxin-interacting protein which contributes to podocyte injury in hyperglycemia. J Diabetes Res 2015:504761

    PubMed  PubMed Central  Google Scholar 

  • Gauer S, Sichler O, Obermuller N, Holzmann Y, Kiss E, Sobkowiak E, Pfeilschifter J, Geiger H, Muhl H, Hauser IA (2007) IL-18 is expressed in the intercalated cell of human kidney. Kidney Int 72:1081–1087

    Article  PubMed  CAS  Google Scholar 

  • Gois PH, Canale D, Volpini RA, Ferreira D, Veras MM, Andrade-Oliveira V, Camara NO, Shimizu MH, Seguro AC (2016) Allopurinol attenuates rhabdomyolysis-associated acute kidney injury: renal and muscular protection. Free Radic Biol Med 101:176–189

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Bi X, Zhou P, Zhu S, Ding W (2017) NLRP3 deficiency attenuates renal fibrosis and ameliorates mitochondrial dysfunction in a mouse unilateral ureteral obstruction model of chronic kidney disease. Mediat Inflamm 2017:8316560

    Google Scholar 

  • Haq M, Norman J, Saba SR, Ramirez G, Rabb H (1998) Role of IL-1 in renal ischemic reperfusion injury. J Am Soc Nephrol 9:614–619

    PubMed  CAS  Google Scholar 

  • Haraldsson B, Jeansson M (2009) Glomerular filtration barrier. Curr Opin Nephrol Hypertens 18:331–335

    Article  PubMed  Google Scholar 

  • He Z, Lu L, Altmann C, Hoke TS, Ljubanovic D, Jani A, Dinarello CA, Faubel S, Edelstein CL (2008) Interleukin-18 binding protein transgenic mice are protected against ischemic acute kidney injury. Am J Physiol Ren Physiol 295:F1414–F1421

    Article  CAS  Google Scholar 

  • Hewins P, Morgan MD, Holden N, Neil D, Williams JM, Savage CO, Harper L (2006) IL-18 is upregulated in the kidney and primes neutrophil responsiveness in ANCA-associated vasculitis. Kidney Int 69:605–615

    Article  PubMed  CAS  Google Scholar 

  • Holdsworth SR, Gan PY, Kitching AR (2016) Biologics for the treatment of autoimmune renal diseases. Nat Rev Nephrol 12:217–231

    Article  PubMed  CAS  Google Scholar 

  • Homsi E, Janino P, de Faria JB (2006) Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int 69:1385–1392

    Article  PubMed  CAS  Google Scholar 

  • Hong W, Hu S, Zou J, Xiao J, Zhang X, Fu C, Feng X, Ye Z (2015) Peroxisome proliferator-activated receptor gamma prevents the production of NOD-like receptor family, pyrin domain containing 3 inflammasome and interleukin 1beta in HK-2 renal tubular epithelial cells stimulated by monosodium urate crystals. Mol Med Rep 12:6221–6226

    Article  PubMed  CAS  Google Scholar 

  • Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hultgren O, Andersson B, Hahn-Zoric M, Almroth G (2007) Serum concentration of interleukin-18 is up-regulated in patients with ANCA-associated vasculitis. Autoimmunity 40:529–531

    Article  PubMed  CAS  Google Scholar 

  • Hutton HL, Ooi JD, Holdsworth SR, Kitching AR (2016) The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology 21:736–744

    Article  PubMed  CAS  Google Scholar 

  • Isaka Y, Takabatake Y, Takahashi A, Saitoh T, Yoshimori T (2016) Hyperuricemia-induced inflammasome and kidney diseases. Nephrol Dial Transplant 31:890–896

    Article  PubMed  CAS  Google Scholar 

  • Iseki K, Ikemiya Y, Inoue T, Iseki C, Kinjo K, Takishita S (2004) Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort. Am J Kidney Dis 44:642–650

    Article  PubMed  Google Scholar 

  • Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, Eisenbarth SC, Florquin S, Flavell RA, Leemans JC, Sutterwala FS (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci U S A 106:20388–20393

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansen MP, Emal D, Teske GJ, Dessing MC, Florquin S, Roelofs JJ (2017) Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps. Kidney Int 91:352–364

    Article  PubMed  CAS  Google Scholar 

  • Jarrot PA, Kaplanski G (2016) Pathogenesis of ANCA-associated vasculitis: an update. Autoimmun Rev 15:704–713

    Article  PubMed  CAS  Google Scholar 

  • Jones LK, O’Sullivan KM, Semple T, Kuligowski MP, Fukami K, Ma FY, Nikolic-Paterson DJ, Holdsworth SR, Kitching AR (2009) IL-1RI deficiency ameliorates early experimental renal interstitial fibrosis. Nephrol Dial Transplant 24:3024–3032

    Article  PubMed  CAS  Google Scholar 

  • Joosten LA, Netea MG, Dinarello CA (2013) Interleukin-1beta in innate inflammation, autophagy and immunity. Semin Immunol 25:416–424

    Article  PubMed  CAS  Google Scholar 

  • Joshi S, Wang W, Peck AB, Khan SR (2015) Activation of the NLRP3 inflammasome in association with calcium oxalate crystal induced reactive oxygen species in kidneys. J Urol 193:1684–1691

    Article  PubMed  CAS  Google Scholar 

  • Kahlenberg JM, Kaplan MJ (2014) The inflammasome and lupus: another innate immune mechanism contributing to disease pathogenesis? Curr Opin Rheumatol 26:475–481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kahlenberg JM, Thacker SG, Berthier CC, Cohen CD, Kretzler M, Kaplan MJ (2011) Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. J Immunol 187:6143–6156

    Article  PubMed  CAS  Google Scholar 

  • Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ (2013) Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol 190:1217–1226

    Article  PubMed  CAS  Google Scholar 

  • Kaushik M, Choo JC (2016) Serum uric acid and AKI: is it time? Clin Kidney J 9:48–50

    Article  PubMed  Google Scholar 

  • Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z, Grone HJ, Brinkmann V, Jenne DE (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 15:623–625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim HJ, Lee DW, Ravichandran K, D OK, Akcay A, Nguyen Q, He Z, Jani A, Ljubanovic D, Edelstein CL (2013) NLRP3 inflammasome knockout mice are protected against ischemic but not cisplatin-induced acute kidney injury. J Pharmacol Exp Ther 346:465–472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim SM, Lee SH, Kim YG, Kim SY, Seo JW, Choi YW, Kim DJ, Jeong KH, Lee TW, Ihm CG, Won KY, Moon JY (2015) Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy. Am J Physiol Ren Physiol 308:F993–f1003

    Article  CAS  Google Scholar 

  • Kinoshita K, Yamagata T, Nozaki Y, Sugiyama M, Ikoma S, Funauchi M, Kanamaru A (2004) Blockade of IL-18 receptor signaling delays the onset of autoimmune disease in MRL-Faslpr mice. J Immunol 173:5312–5318

    Article  PubMed  CAS  Google Scholar 

  • Kitching AR, Hutton HL (2016) The players: cells involved in glomerular disease. Clin J Am Soc Nephrol 11:1664–1674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kitching AR, Turner AL, Wilson GR, Semple T, Odobasic D, Timoshanko JR, O’Sullivan KM, Tipping PG, Takeda K, Akira S, Holdsworth SR (2005) IL-12p40 and IL-18 in crescentic glomerulonephritis: IL-12p40 is the key Th1-defining cytokine chain, whereas IL-18 promotes local inflammation and leukocyte recruitment. J Am Soc Nephrol 16:2023–2033

    Article  PubMed  CAS  Google Scholar 

  • Knauf F, Asplin JR, Granja I, Schmidt IM, Moeckel GW, David RJ, Flavell RA, Aronson PS (2013) NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int 84:895–901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Komada T, Usui F, Shirasuna K, Kawashima A, Kimura H, Karasawa T, Nishimura S, Sagara J, Noda T, Taniguchi S, Muto S, Nagata D, Kusano E, Takahashi M (2014) ASC in renal collecting duct epithelial cells contributes to inflammation and injury after unilateral ureteral obstruction. Am J Pathol 184:1287–1298

    Article  PubMed  CAS  Google Scholar 

  • Komada T, Usui F, Kawashima A, Kimura H, Karasawa T, Inoue Y, Kobayashi M, Mizushina Y, Kasahara T, Taniguchi S, Muto S, Nagata D, Takahashi M (2015) Role of NLRP3 inflammasomes for rhabdomyolysis-induced acute kidney injury. Sci Rep 5:10901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konno T, Nakano R, Mamiya R, Tsuchiya H, Kitanaka T, Namba S, Kitanaka N, Okabayashi K, Narita T, Sugiya H (2016) Expression and function of interleukin-1beta-induced neutrophil gelatinase-associated lipocalin in renal tubular cells. PLoS One 11:e0166707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • L’Homme L, Esser N, Riva L, Scheen A, Paquot N, Piette J, Legrand-Poels S (2013) Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages. J Lipid Res 54:2998–3008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lan HY, Nikolic-Paterson DJ, Zarama M, Vannice JL, Atkins RC (1993) Suppression of experimental crescentic glomerulonephritis by the interleukin-1 receptor antagonist. Kidney Int 43:479–485

    Article  PubMed  CAS  Google Scholar 

  • Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356:1517–1526

    Article  PubMed  CAS  Google Scholar 

  • Lech M, Lorenz G, Kulkarni OP, Grosser MO, Stigrot N, Darisipudi MN, Gunthner R, Wintergerst MW, Anz D, Susanti HE, Anders HJ (2015) NLRP3 and ASC suppress lupus-like autoimmunity by driving the immunosuppressive effects of TGF-beta receptor signalling. Ann Rheum Dis 74:2224–2235

    Article  PubMed  CAS  Google Scholar 

  • Lee DW, Faubel S, Edelstein CL (2015) A pan caspase inhibitor decreases caspase-1, IL-1alpha and IL-1beta, and protects against necrosis of cisplatin-treated freshly isolated proximal tubules. Ren Fail 37:144–150

    Article  PubMed  CAS  Google Scholar 

  • Leemans JC, Kors L, Anders HJ, Florquin S (2014) Pattern recognition receptors and the inflammasome in kidney disease. Nat Rev Nephrol 10:398–414

    Article  PubMed  CAS  Google Scholar 

  • Liao KC, Mogridge J (2013) Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP. Infect Immun 81:570–579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lichtnekert J, Kulkarni OP, Mulay SR, Rupanagudi KV, Ryu M, Allam R, Vielhauer V, Muruve D, Lindenmeyer MT, Cohen CD, Anders HJ (2011) Anti-GBM glomerulonephritis involves IL-1 but is independent of NLRP3/ASC inflammasome-mediated activation of caspase-1. PLoS One 6:e26778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim AK, Tesch GH (2012) Inflammation in diabetic nephropathy. Mediat Inflamm 2012:146154

    Article  CAS  Google Scholar 

  • Liu D, Xu M, Ding LH, Lv LL, Liu H, Ma KL, Zhang AH, Crowley SD, Liu BC (2014) Activation of the Nlrp3 inflammasome by mitochondrial reactive oxygen species: a novel mechanism of albumin-induced tubulointerstitial inflammation. Int J Biochem Cell Biol 57:7–19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu G, Shi Y, Peng X, Liu H, Peng Y, He L (2015) Astaxanthin attenuates adriamycin-induced focal segmental glomerulosclerosis. Pharmacology 95:193–200

    Article  PubMed  CAS  Google Scholar 

  • Lu A, Li H, Niu J, Wu S, Xue G, Yao X, Guo Q, Wan N, Abliz P, Yang G, An L, Meng G (2017) Hyperactivation of the NLRP3 inflammasome in myeloid cells leads to severe organ damage in experimental lupus. J Immunol 198:1119–1129

    Article  PubMed  CAS  Google Scholar 

  • Ludwig-Portugall I, Bartok E, Dhana E, Evers BD, Primiano MJ, Hall JP, Franklin BS, Knolle PA, Hornung V, Hartmann G, Boor P, Latz E, Kurts C (2016) An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice. Kidney Int 90:525–539

    Article  PubMed  CAS  Google Scholar 

  • Man SM, Kanneganti TD (2015) Regulation of inflammasome activation. Immunol Rev 265:6–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mandrup-Poulsen T, Pickersgill L, Donath MY (2010) Blockade of interleukin 1 in type 1 diabetes mellitus. Nat Rev Endocrinol 6:158–166

    Article  PubMed  CAS  Google Scholar 

  • Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241

    Article  PubMed  CAS  Google Scholar 

  • Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265

    Article  PubMed  CAS  Google Scholar 

  • Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z, Mullooly N, Mielke LA, Harris J, Coll RC, Mills KH, Mok KH, Newsholme P, Nunez G, Yodoi J, Kahn SE, Lavelle EC, O'Neill LA (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 11:897–904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mastrocola R, Aragno M, Alloatti G, Collino M, Penna C, Pagliaro P (2018) Metaflammation: tissue-specific alterations of the NLRP3 inflammasome platform. Curr Med Chem 25:1294–1310

    Article  PubMed  CAS  Google Scholar 

  • Matsui F, Rhee A, Hile KL, Zhang H, Meldrum KK (2013) IL-18 induces profibrotic renal tubular cell injury via STAT3 activation. Am J Physiol Ren Physiol 305:F1014–F1021

    Article  CAS  Google Scholar 

  • Mehta RL, Cerda J, Burdmann EA, Tonelli M, Garcia-Garcia G, Jha V, Susantitaphong P, Rocco M, Vanholder R, Sever MS, Cruz D, Jaber B, Lameire NH, Lombardi R, Lewington A, Feehally J, Finkelstein F, Levin N, Pannu N, Thomas B, Aronoff-Spencer E, Remuzzi G (2015) International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet 385:2616–2643

    Article  PubMed  Google Scholar 

  • Meldrum KK, Zhang H, Hile KL, Moldower LL, Dong Z, Meldrum DR (2012) Profibrotic effect of interleukin-18 in HK-2 cells is dependent on stimulation of the Toll-like receptor 4 (TLR4) promoter and increased TLR4 expression. J Biol Chem 287:40391–40399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melnikov VY, Ecder T, Fantuzzi G, Siegmund B, Lucia MS, Dinarello CA, Schrier RW, Edelstein CL (2001) Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J Clin Invest 107:1145–1152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010) Mechanisms of cisplatin nephrotoxicity. Toxins 2:2490–2518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirza RE, Fang MM, Weinheimer-Haus EM, Ennis WJ, Koh TJ (2014) Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes 63:1103–1114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Molitch ME, Adler AI, Flyvbjerg A, Nelson RG, So WY, Wanner C, Kasiske BL, Wheeler DC, de Zeeuw D, Mogensen CE (2015) Diabetic kidney disease: a clinical update from kidney disease: improving global outcomes. Kidney Int 87:20–30

    Article  PubMed  Google Scholar 

  • Mulay SR, Kulkarni OP, Rupanagudi KV, Migliorini A, Darisipudi MN, Vilaysane A, Muruve D, Shi Y, Munro F, Liapis H, Anders HJ (2013) Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1beta secretion. J Clin Invest 123:236–246

    Article  PubMed  CAS  Google Scholar 

  • Mulay SR, Evan A, Anders HJ (2014) Molecular mechanisms of crystal-related kidney inflammation and injury. Implications for cholesterol embolism, crystalline nephropathies and kidney stone disease. Nephrol Dial Transplant 29:507–514

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Shikata K, Hiramatsu M, Nakatou T, Kitamura T, Wada J, Itoshima T, Makino H (2005) Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Care 28:2890–2895

    Article  PubMed  CAS  Google Scholar 

  • Nee L, Tuite N, Ryan MP, McMorrow T (2007) TNF-alpha and IL-1 beta-mediated regulation of MMP-9 and TIMP-1 in human glomerular mesangial cells. Nephron Exp Nephrol 107:e73–e86

    Article  PubMed  CAS  Google Scholar 

  • Netea MG, Simon A, van de Veerdonk F, Kullberg BJ, Van der Meer JW, Joosten LA (2010) IL-1beta processing in host defense: beyond the inflammasomes. PLoS Pathog 6:e1000661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen D, Ping F, Mu W, Hill P, Atkins RC, Chadban SJ (2006) Macrophage accumulation in human progressive diabetic nephropathy. Nephrology 11:226–231

    Article  PubMed  Google Scholar 

  • Novick D, Kim S, Kaplanski G, Dinarello CA (2013) Interleukin-18, more than a Th1 cytokine. Semin Immunol 25:439–448

    Article  PubMed  CAS  Google Scholar 

  • Nozaki Y, Kinoshita K, Yano T, Asato K, Shiga T, Hino S, Niki K, Nagare Y, Kishimoto K, Shimazu H, Funauchi M, Matsumura I (2012) Signaling through the interleukin-18 receptor alpha attenuates inflammation in cisplatin-induced acute kidney injury. Kidney Int 82:892–902

    Article  PubMed  CAS  Google Scholar 

  • Obermayr RP, Temml C, Gutjahr G, Knechtelsdorfer M, Oberbauer R, Klauser-Braun R (2008) Elevated uric acid increases the risk for kidney disease. J Am Soc Nephrol 19:2407–2413

    Article  PubMed  PubMed Central  Google Scholar 

  • Odobasic D, Ghali JR, O'Sullivan KM, Holdsworth SR, Kitching AR (2014) Glomerulonephritis Induced by Heterologous Anti-GBM Globulin as a Planted Foreign Antigen. Curr Protoc Immunol 106:15.26.11–15.26.20

    Google Scholar 

  • Okamoto A, Fujio K, Tsuno NH, Takahashi K, Yamamoto K (2012) Kidney-infiltrating CD4+ T-cell clones promote nephritis in lupus-prone mice. Kidney Int 82:969–979

    Article  PubMed  CAS  Google Scholar 

  • Okui S, Yamamoto H, Li W, Gamachi N, Fujita Y, Kashiwamura S, Miura D, Takai S, Miyazaki M, Urade M, Okamura H, Ueda H (2012) Cisplatin-induced acute renal failure in mice is mediated by chymase-activated angiotensin-aldosterone system and interleukin-18. Eur J Pharmacol 685:149–155

    Article  PubMed  CAS  Google Scholar 

  • Ooi JD, Chang J, Hickey MJ, Borza DB, Fugger L, Holdsworth SR, Kitching AR (2012) The immunodominant myeloperoxidase T-cell epitope induces local cell-mediated injury in antimyeloperoxidase glomerulonephritis. Proc Natl Acad Sci U S A 109:E2615–E2624

    Article  PubMed  PubMed Central  Google Scholar 

  • Ooi JD, Chang J, O'Sullivan KM, Pedchenko V, Hudson BG, Vandenbark AA, Fugger L, Holdsworth SR, Kitching AR (2013) The HLA-DRB1*15:01-restricted Goodpasture’s T cell epitope induces GN. J Am Soc Nephrol 24:419–431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ooi JD, Gan PY, Odobasic D, Holdsworth SR, Kitching AR (2014) T cell mediated autoimmune glomerular disease in mice. Curr Protoc Immunol 107:15.27.11–15.27.19

    Google Scholar 

  • Ooi JD, Petersen J, Tan YH, Huynh M, Willett ZJ, Ramarathinam SH, Eggenhuizen PJ, Loh KL, Watson KA, Gan PY, Alikhan MA, Dudek NL, Handel A, Hudson BG, Fugger L, Power DA, Holt SG, Coates PT, Gregersen JW, Purcell AW, Holdsworth SR, La Gruta NL, Reid HH, Rossjohn J, Kitching AR (2017) Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells. Nature 545:243–247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peres LA, da Cunha AD Jr (2013) Acute nephrotoxicity of cisplatin: molecular mechanisms. J Bras Nefrol 35:332–340

    Article  PubMed  Google Scholar 

  • Pontillo A, Girardelli M, Kamada AJ, Pancotto JA, Donadi EA, Crovella S, Sandrin-Garcia P (2012) Polimorphisms in inflammasome genes are involved in the predisposition to systemic lupus erythematosus. Autoimmunity 45:271–278

    Article  PubMed  CAS  Google Scholar 

  • Pourghasem M, Shafi H, Babazadeh Z (2015) Histological changes of kidney in diabetic nephropathy. Caspian J Intern Med 6:120–127

    PubMed  PubMed Central  Google Scholar 

  • Prencipe G, Caiello I, Cherqui S, Whisenant T, Petrini S, Emma F, De Benedetti F (2014) Inflammasome activation by cystine crystals: implications for the pathogenesis of cystinosis. J Am Soc Nephrol 25:1163–1169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puelles VG, Kanzaki G, Bertram JF (2016) Indirect estimation of nephron number: a new tool to predict outcomes in renal transplantation? Nephrol Dial Transplant 31:1378–1380

    Article  PubMed  Google Scholar 

  • Pulskens WP, Butter LM, Teske GJ, Claessen N, Dessing MC, Flavell RA, Sutterwala FS, Florquin S, Leemans JC (2014) Nlrp3 prevents early renal interstitial edema and vascular permeability in unilateral ureteral obstruction. PLoS One 9:e85775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rifai A (2007) IgA nephropathy: immune mechanisms beyond IgA mesangial deposition. Kidney Int 72:239–241

    Article  PubMed  CAS  Google Scholar 

  • Rossaint J, Zarbock A (2016) Acute kidney injury: definition, diagnosis and epidemiology. Minerva Urol Nefrol 68:49–57

    PubMed  Google Scholar 

  • Rusai K, Huang H, Sayed N, Strobl M, Roos M, Schmaderer C, Heemann U, Lutz J (2008) Administration of interleukin-1 receptor antagonist ameliorates renal ischemia-reperfusion injury. Transpl Int 21:572–580

    Article  PubMed  CAS  Google Scholar 

  • Sadat U, Usman A, Boyle JR, Hayes PD, Solomon RJ (2015) Contrast medium-induced acute kidney injury. Cardiorenal Med 5:219–228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saemann MD, Weichhart T, Zeyda M, Staffler G, Schunn M, Stuhlmeier KM, Sobanov Y, Stulnig TM, Akira S, von Gabain A, von Ahsen U, Horl WH, Zlabinger GJ (2005) Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4-dependent mechanism. J Clin Invest 115:468–475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salama AD, Chaudhry AN, Ryan JJ, Eren E, Levy JB, Pusey CD, Lightstone L, Lechler RI (2001) In Goodpasture’s disease, CD4(+) T cells escape thymic deletion and are reactive with the autoantigen alpha3(IV)NC1. J Am Soc Nephrol 12:1908–1915

    PubMed  CAS  Google Scholar 

  • Schreiber A, Pham CT, Hu Y, Schneider W, Luft FC, Kettritz R (2012) Neutrophil serine proteases promote IL-1beta generation and injury in necrotizing crescentic glomerulonephritis. J Am Soc Nephrol 23:470–482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schreiber A, Luft FC, Kettritz R (2015) Phagocyte NADPH oxidase restrains the inflammasome in ANCA-induced GN. J Am Soc Nephrol 26:411–424

    Article  PubMed  CAS  Google Scholar 

  • Schrijvers BF, De Vriese AS, Flyvbjerg A (2004) From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocr Rev 25:971–1010

    Article  PubMed  CAS  Google Scholar 

  • Shahzad K, Bock F, Dong W, Wang H, Kopf S, Kohli S, Al-Dabet MM, Ranjan S, Wolter J, Wacker C, Biemann R, Stoyanov S, Reymann K, Soderkvist P, Gross O, Schwenger V, Pahernik S, Nawroth PP, Grone HJ, Madhusudhan T, Isermann B (2015) Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int 87:74–84

    Article  PubMed  CAS  Google Scholar 

  • Shen J, Wang L, Jiang N, Mou S, Zhang M, Gu L, Shao X, Wang Q, Qi C, Li S, Wang W, Che X, Ni Z (2016) NLRP3 inflammasome mediates contrast media-induced acute kidney injury by regulating cell apoptosis. Sci Rep 6:34682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shigeoka AA, Mueller JL, Kambo A, Mathison JC, King AJ, Hall WF, Correia Jda S, Ulevitch RJ, Hoffman HM, McKay DB (2010) An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J Immunol 185:6277–6285

    Article  PubMed  CAS  Google Scholar 

  • Shin MS, Kang Y, Lee N, Wahl ER, Kim SH, Kang KS, Lazova R, Kang I (2013) Self double-stranded (ds)DNA induces IL-1beta production from human monocytes by activating NLRP3 inflammasome in the presence of anti-dsDNA antibodies. J Immunol 190:1407–1415

    Article  PubMed  CAS  Google Scholar 

  • Suarez-Fueyo A, Bradley SJ, Klatzmann D, Tsokos GC (2017) T cells and autoimmune kidney disease. Nat Rev Nephrol 13:329–343

    Article  PubMed  CAS  Google Scholar 

  • Summers SA, Steinmetz OM, Li M, Kausman JY, Semple T, Edgtton KL, Borza DB, Braley H, Holdsworth SR, Kitching AR (2009) Th1 and Th17 cells induce proliferative glomerulonephritis. J Am Soc Nephrol 20:2518–2524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Summers SA, Steinmetz OM, Gan PY, Ooi JD, Odobasic D, Kitching AR, Holdsworth SR (2011) Toll-like receptor 2 induces Th17 myeloperoxidase autoimmunity while Toll-like receptor 9 drives Th1 autoimmunity in murine vasculitis. Arthritis Rheum 63:1124–1135

    Article  PubMed  CAS  Google Scholar 

  • Takano Y, Yamauchi K, Hayakawa K, Hiramatsu N, Kasai A, Okamura M, Yokouchi M, Shitamura A, Yao J, Kitamura M (2007) Transcriptional suppression of nephrin in podocytes by macrophages: roles of inflammatory cytokines and involvement of the PI3K/Akt pathway. FEBS Lett 581:421–426

    Article  PubMed  CAS  Google Scholar 

  • Tang WW, Feng L, Vannice JL, Wilson CB (1994) Interleukin-1 receptor antagonist ameliorates experimental anti-glomerular basement membrane antibody-associated glomerulonephritis. J Clin Invest 93:273–279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tashiro M, Sasatomi Y, Watanabe R, Watanabe M, Miyake K, Abe Y, Yasuno T, Ito K, Ueki N, Hamauchi A, Noda R, Hisano S, Nakashima H (2016) IL-1beta promotes tubulointerstitial injury in MPO-ANCA-associated glomerulonephritis. Clin Nephrol 86:190–199

    Article  PubMed  CAS  Google Scholar 

  • Taylor SR, Turner CM, Elliott JI, McDaid J, Hewitt R, Smith J, Pickering MC, Whitehouse DL, Cook HT, Burnstock G, Pusey CD, Unwin RJ, Tam FW (2009) P2X7 deficiency attenuates renal injury in experimental glomerulonephritis. J Am Soc Nephrol 20:1275–1281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Timoshanko JR, Kitching AR, Iwakura Y, Holdsworth SR, Tipping PG (2004a) Contributions of IL-1beta and IL-1alpha to crescentic glomerulonephritis in mice. J Am Soc Nephrol 15:910–918

    Article  PubMed  CAS  Google Scholar 

  • Timoshanko JR, Kitching AR, Iwakura Y, Holdsworth SR, Tipping PG (2004b) Leukocyte-derived interleukin-1beta interacts with renal interleukin-1 receptor I to promote renal tumor necrosis factor and glomerular injury in murine crescentic glomerulonephritis. Am J Pathol 164:1967–1977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai YL, Hua KF, Chen A, Wei CW, Chen WS, Wu CY, Chu CL, Yu YL, Lo CW, Ka SM (2017) NLRP3 inflammasome: pathogenic role and potential therapeutic target for IgA nephropathy. Sci Rep 7:41123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turner CM, Tam FW, Lai PC, Tarzi RM, Burnstock G, Pusey CD, Cook HT, Unwin RJ (2007) Increased expression of the pro-apoptotic ATP-sensitive P2X7 receptor in experimental and human glomerulonephritis. Nephrol Dial Transplant 22:386–395

    Article  PubMed  CAS  Google Scholar 

  • Vilaysane A, Chun J, Seamone ME, Wang W, Chin R, Hirota S, Li Y, Clark SA, Tschopp J, Trpkov K, Hemmelgarn BR, Beck PL, Muruve DA (2010) The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol 21:1732–1744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang W, Wang X, Chun J, Vilaysane A, Clark S, French G, Bracey NA, Trpkov K, Bonni S, Duff HJ, Beck PL, Muruve DA (2013) Inflammasome-independent NLRP3 augments TGF-beta signaling in kidney epithelium. J Immunol 190:1239–1249

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wen Y, Lv LL, Liu H, Tang RN, Ma KL, Liu BC (2015a) Involvement of endoplasmic reticulum stress in angiotensin II-induced NLRP3 inflammasome activation in human renal proximal tubular cells in vitro. Acta Pharmacol Sin 36:821–830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang P, Huang J, Li Y, Chang R, Wu H, Lin J, Huang Z (2015b) Exogenous carbon monoxide decreases sepsis-induced acute kidney injury and inhibits NLRP3 inflammasome activation in rats. Int J Mol Sci 16:20595–20608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang W, Luo R, Lin Y, Wang F, Zheng P, Levi M, Yang T, Li C (2015c) Aliskiren restores renal AQP2 expression during unilateral ureteral obstruction by inhibiting the inflammasome. Am J Physiol Ren Physiol 308:F910–F922

    Article  CAS  Google Scholar 

  • Wang L, Ma J, Guo C, Chen C, Yin Z, Zhang X, Chen X (2016) Danggui Buxue Tang attenuates tubulointerstitial fibrosis via suppressing NLRP3 inflammasome in a rat model of unilateral ureteral obstruction. Biomed Res Int 2016:9368483

    PubMed  PubMed Central  Google Scholar 

  • Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, Brickey WJ, Ting JP (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12:408–415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu J, Hicks J, Borillo J, Glass WF 2nd, Lou YH (2002) CD4(+) T cells specific to a glomerular basement membrane antigen mediate glomerulonephritis. J Clin Invest 109:517–524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu H, Craft ML, Wang P, Wyburn KR, Chen G, Ma J, Hambly B, Chadban SJ (2008) IL-18 contributes to renal damage after ischemia-reperfusion. J Am Soc Nephrol 19:2331–2341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao J, Fu C, Zhang X, Zhu D, Chen W, Lu Y, Ye Z (2015a) Soluble monosodium urate, but not its crystal, induces toll like receptor 4-dependent immune activation in renal mesangial cells. Mol Immunol 66:310–318

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Zhang XL, Fu C, Han R, Chen W, Lu Y, Ye Z (2015b) Soluble uric acid increases NALP3 inflammasome and interleukin-1beta expression in human primary renal proximal tubule epithelial cells through the Toll-like receptor 4-mediated pathway. Int J Mol Med 35:1347–1354

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Wang Y, Shao N, Gao P, Tang H, Su H, Zhang C, Meng XF (2015) The expression and significance of NLRP3 inflammasome in patients with primary glomerular diseases. Kidney Blood Press Res 40:344–354

    Article  PubMed  CAS  Google Scholar 

  • Yamamura M, Kawashima M, Taniai M, Yamauchi H, Tanimoto T, Kurimoto M, Morita Y, Ohmoto Y, Makino H (2001) Interferon-gamma-inducing activity of interleukin-18 in the joint with rheumatoid arthritis. Arthritis Rheum 44:275–285

    Article  PubMed  CAS  Google Scholar 

  • Yuan F, Kolb R, Pandey G, Li W, Sun L, Liu F, Sutterwala FS, Liu Y, Zhang W (2016) Involvement of the NLRC4-inflammasome in diabetic nephropathy. PLoS One 11:e0164135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zarbock A, Gomez H, Kellum JA (2014) Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies. Curr Opin Crit Care 20:588–595

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Hile KL, Asanuma H, Vanderbrink B, Franke EI, Campbell MT, Meldrum KK (2011) IL-18 mediates proapoptotic signaling in renal tubular cells through a Fas ligand-dependent mechanism. Am J Physiol Ren Physiol 301:F171–F178

    Article  CAS  Google Scholar 

  • Zhang C, Boini KM, Xia M, Abais JM, Li X, Liu Q, Li PL (2012) Activation of Nod-like receptor protein 3 inflammasomes turns on podocyte injury and glomerular sclerosis in hyperhomocysteinemia. Hypertension 60:154–162

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Cai Y, Xu W, Yin Z, Gao X, Xiong S (2013) AIM2 facilitates the apoptotic DNA-induced systemic lupus erythematosus via arbitrating macrophage functional maturation. J Clin Immunol 33:925–937

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Yuan F, Cao X, Zhai Z, GangHuang X, Du Y, Wang J, Zhang Y, Huang JZ, Hou W (2014) P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3. Toxicol Appl Pharmacol 281:1–10

    Article  PubMed  CAS  Google Scholar 

  • Zhao WY, Zhang L, Sui MX, Zhu YH, Zeng L (2016) Protective effects of sirtuin 3 in a murine model of sepsis-induced acute kidney injury. Sci Rep 6:33201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhen J, Zhang L, Pan J, Ma S, Yu X, Li X, Chen S, Du W (2014) AIM2 mediates inflammation-associated renal damage in hepatitis B virus-associated glomerulonephritis by regulating caspase-1, IL-1beta, and IL-18. Mediat Inflamm 2014:190860

    Article  CAS  Google Scholar 

  • Zheng L, Zhang J, Yuan X, Tang J, Qiu S, Peng Z, Yuan Q, Xie Y, Mei W, Tang Y, Meng J, Hu G, Tao L (2017) Fluorofenidone attenuates IL-1beta production by interacting with NLRP3 inflammasome in unilateral ureteral obstruction. Nephrology [Epub ahead of print]

    Google Scholar 

  • Zhong S, Zhao L, Li Q, Yang P, Varghese Z, Moorhead JF, Chen Y, Ruan XZ (2015) Inflammatory stress exacerbated mesangial foam cell formation and renal injury via disrupting cellular cholesterol homeostasis. Inflammation 38:959–971

    Article  PubMed  CAS  Google Scholar 

  • Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Richard Kitching .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hutton, H.L., Alikhan, M.A., Kitching, A.R. (2018). Inflammasomes in the Kidney. In: Cordero, M., Alcocer-Gómez, E. (eds) Inflammasomes: Clinical and Therapeutic Implications. Experientia Supplementum, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-319-89390-7_8

Download citation

Publish with us

Policies and ethics