Skip to main content

Role of Inflammasome in Chronic Kidney Disease

  • Chapter
  • First Online:
Renal Fibrosis: Mechanisms and Therapies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1165))

Abstract

The inflammasome is a multiprotein complex assembled by intracytoplasmic pattern recognition receptors and is a key component of the innate immune system for host defense. Inflammasome recruits and activates the proinflammatory protease caspase-1 by recognizing pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs). Activated caspase-1 cleaves the precursors of IL-1β and IL-18 to produce the corresponding mature cytokines. Several types of inflammasomes have been identified, such as NLRP3, NLRP1, IPAF (NLRC4) and AIM2. NLRP3 has recently been reported as a central pathogenic mechanism of chronic kidney disease (CKD). In this chapter, we briefly summarize the current knowledge about the roles of inflammasomes in the pathogenesis of CKD. A better understanding of the function of inflammasomes will provide unexpected opportunities to develop new therapies for kidney diseases by modulation of the innate immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abais JM, Zhang C, Xia M, Liu Q, Gehr TW, Boini KM et al (2013) NADPH oxidase-mediated triggering of inflammasome activation in mouse podocytes and glomeruli during hyperhomocysteinemia. Antioxid Redox Signal 18:1537–1548

    Article  CAS  Google Scholar 

  • Bakker PJ, Butter LM, Kors L, Teske GJ, Aten J, Sutterwala FS et al (2014) Nlrp3 is a key modulator of diet-induced nephropathy and renal cholesterol accumulation. Kidney Int 85:1112–1122

    Article  CAS  Google Scholar 

  • Boini KM, Xia M, Abais JM, Li G, Pitzer AL, Gehr TW et al (2014) Activation of inflammasomes in podocyte injury of mice on the high fat diet: effects of ASC gene deletion and silencing. Biochim Biophys Acta 1843:836–845

    Article  CAS  Google Scholar 

  • Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38:240–244

    Article  CAS  Google Scholar 

  • Broderick L, De Nardo D, Franklin BS, Hoffman HM, Latz E (2015) The inflammasomes and autoinflammatory syndromes. Annu Rev Pathol 10:395–424

    Article  CAS  Google Scholar 

  • Caruso R, Warner N, Inohara N, Nunez G (2014) NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 41:898–908

    Article  CAS  Google Scholar 

  • Cavalca V, Cighetti G, Bamonti F, Loaldi A, Bortone L, Novembrino C et al (2001) Oxidative stress and homocysteine in coronary artery disease. Clin Chem 47:887–892

    CAS  PubMed  Google Scholar 

  • Chen K, Zhang J, Zhang W, Zhang J, Yang J, Li K et al (2013) ATP-P2X4 signaling mediates NLRP3 inflammasome activation: a novel pathway of diabetic nephropathy. Int J Biochem Cell Biol 45:932–943

    Article  CAS  Google Scholar 

  • Conley SM, Abais JM, Boini KM, Li PL (2017) Inflammasome activation in chronic glomerular diseases. Curr Drug Targets 18:1019–1029

    Article  CAS  Google Scholar 

  • Conway EM (2012) Thrombomodulin and its role in inflammation. Semin Immunopathol 34:107–125

    Article  CAS  Google Scholar 

  • Du P, Fan B, Han H, Zhen J, Shan J, Wang X et al (2013) NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy. Kidney Int 84:265–276

    Article  CAS  Google Scholar 

  • Duncan JA, Canna SW (2018) The NLRC4 inflammasome. Immunol Rev 281:115–123

    Article  CAS  Google Scholar 

  • El-Nahas AM (2003) Plasticity of kidney cells: role in kidney remodeling and scarring. Kidney Int 64:1553–1563

    Article  CAS  Google Scholar 

  • Emmerson BT, Cross M, Osborne JM, Axelsen RA (1990) Reaction of MDCK cells to crystals of monosodium urate monohydrate and uric acid. Kidney Int 37:36–43

    Article  CAS  Google Scholar 

  • Fang L, Xie D, Wu X, Cao HD, Su WF, Yang JW (2013) Involvement of endoplasmic reticulum stress in albuminuria induced inflammasome activation in renal proximal tubular cells. PLoS ONE 8:e72344

    Article  CAS  Google Scholar 

  • Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B et al (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25:713–724

    Article  CAS  Google Scholar 

  • Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S, Wu J et al (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11:385–393

    Article  CAS  Google Scholar 

  • Fritz JH, Ferrero RL, Philpott DJ, Girardin SE (2006) Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7:1250–1257

    Article  CAS  Google Scholar 

  • Gao P, Meng XF, Su H, He FF, Chen S, Tang H et al (2014) Thioredoxin-interacting protein mediates NALP3 inflammasome activation in podocytes during diabetic nephropathy. Biochim Biophys Acta 1843:2448–2460

    Article  CAS  Google Scholar 

  • Granata S, Dalla Gassa A, Bellin G, Lupo A, Zaza G (2016) Transcriptomics: a step behind the comprehension of the polygenic influence on oxidative stress, immune deregulation, and mitochondrial dysfunction in chronic kidney disease. Biomed Res Int 2016:9290857

    PubMed  PubMed Central  Google Scholar 

  • Gu J, Liu G, Xing J, Song H, Wang Z (2018) Fecal bacteria from Crohn’s disease patients more potently activated NOD-like receptors and Toll-like receptors in macrophages, in an IL-4-repressible fashion. Microb Pathog 121:40–44

    Article  CAS  Google Scholar 

  • Han H, Wang Y, Li X, Wang PA, Wei X, Liang W et al (2013) Novel role of NOD2 in mediating Ca2+ signaling: evidence from NOD2-regulated podocyte TRPC6 channels in hyperhomocysteinemia. Hypertension 62:506–511

    Article  CAS  Google Scholar 

  • Hara S, Kamei D, Sasaki Y, Tanemoto A, Nakatani Y, Murakami M (2010) Prostaglandin E synthases: understanding their pathophysiological roles through mouse genetic models. Biochimie 92:651–659

    Article  CAS  Google Scholar 

  • He L, Peng X, Liu G, Tang C, Liu H, Liu F et al (2015) Anti-inflammatory effects of triptolide on IgA nephropathy in rats. Immunopharmacol Immunotoxicol 37:421–427

    Article  Google Scholar 

  • Hu B, Jin C, Li HB, Tong J, Ouyang X, Cetinbas NM et al (2016) The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science 354:765–768

    Article  CAS  Google Scholar 

  • Hutton HL, Ooi JD, Holdsworth SR, Kitching AR (2016) The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology 21:736–744

    Article  CAS  Google Scholar 

  • Iwasaki T, Kaneko N, Ito Y, Takeda H, Sawasaki T, Heike T et al (2016) Nod2-Nodosome in a cell-free system: implications in pathogenesis and drug discovery for blau syndrome and early-onset sarcoidosis. Sci World J 2016:2597376

    Article  Google Scholar 

  • Kanwar YS, Sun L, Xie P, Liu FY, Chen S (2011) A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 6:395–423

    Article  CAS  Google Scholar 

  • Ke B, Shen W, Fang X, Wu Q (2018) The NLPR3 inflammasome and obesity-related kidney disease. J Cell Mol Med 22:16–24

    Article  CAS  Google Scholar 

  • Keestra-Gounder AM, Tsolis RM (2017) NOD1 and NOD2: beyond peptidoglycan sensing. Trends Immunol 38:758–767

    Article  CAS  Google Scholar 

  • Kim YK, Shin JS, Nahm MH (2016) NOD-like receptors in infection, immunity, and diseases. Yonsei Med J 57:5–14

    Article  CAS  Google Scholar 

  • Knauf F, Asplin JR, Granja I, Schmidt IM, Moeckel GW, David RJ et al (2013) NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int 84:895–901

    Article  CAS  Google Scholar 

  • Komada T, Chung H, Lau A, Platnich JM, Beck PL, Benediktsson H et al (2018) Macrophage uptake of necrotic cell DNA activates the AIM2 inflammasome to regulate a proinflammatory phenotype in CKD. J Am Soc Nephrol 29:1165–1181

    Article  CAS  Google Scholar 

  • Komada T, Usui F, Shirasuna K, Kawashima A, Kimura H, Karasawa T et al (2014) ASC in renal collecting duct epithelial cells contributes to inflammation and injury after unilateral ureteral obstruction. Am J Pathol 184:1287–1298

    Article  CAS  Google Scholar 

  • Kovesdy CP, Furth SL, Zoccali C (2017) Obesity and kidney disease: hidden consequences of the epidemic. Braz J Med Res 50:e6075

    CAS  Google Scholar 

  • Kurts C (2013) A crystal-clear mechanism of chronic kidney disease. Kidney Int 84:859–861

    Article  CAS  Google Scholar 

  • Lichtnekert J, Kulkarni OP, Mulay SR, Rupanagudi KV, Ryu M, Allam R et al (2011) Anti-GBM glomerulonephritis involves IL-1 but is independent of NLRP3/ASC inflammasome-mediated activation of caspase-1. PLoS ONE 6:e26778

    Article  CAS  Google Scholar 

  • Liu D, Xu M, Ding LH, Lv LL, Liu H, Ma KL et al (2014) Activation of the Nlrp3 inflammasome by mitochondrial reactive oxygen species: a novel mechanism of albumin-induced tubulointerstitial inflammation. Int J Biochem 57:7–19

    Article  CAS  Google Scholar 

  • Luo R, Kakizoe Y, Wang F, Fan X, Hu S, Yang T et al (2017) Deficiency of mPGES-1 exacerbates renal fibrosis and inflammation in mice with unilateral ureteral obstruction. Am J Physiol Renal Physiol 312:F121–F133

    Article  CAS  Google Scholar 

  • Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    Article  CAS  Google Scholar 

  • Magalhaes JG, Sorbara MT, Girardin SE, Philpott DJ (2011) What is new with nods? Curr Opin Immunol 23:29–34

    Article  CAS  Google Scholar 

  • Man SM, Karki R, Malireddi RK, Neale G, Vogel P, Yamamoto M et al (2015) The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nat Immunol 16:467–475

    Article  CAS  Google Scholar 

  • Martinon F (2010) Signaling by ROS drives inflammasome activation. Eur J Immunol 40:616–619

    Article  CAS  Google Scholar 

  • Mestecky J, Raska M, Julian BA, Gharavi AG, Renfrow MB, Moldoveanu Z et al (2013) IgA nephropathy: molecular mechanisms of the disease. Annu Rev Pathol 8:217–240

    Article  CAS  Google Scholar 

  • Monk D, Sanchez-Delgado M, Fisher R (2017) NLRPs, the subcortical maternal complex and genomic imprinting. Reproduction 154:R161–R170

    Article  CAS  Google Scholar 

  • Mulay SR, Anders HJ (2017) Crystal nephropathies: mechanisms of crystal-induced kidney injury. Nat Rev Nephrol 13:226–240

    Article  CAS  Google Scholar 

  • Mulay SR, Desai J, Kumar SV, Eberhard JN, Thomasova D, Romoli S et al (2016) Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat Commun 7:10274

    Article  CAS  Google Scholar 

  • Mulay SR, Evan A, Anders HJ (2014) Molecular mechanisms of crystal-related kidney inflammation and injury Implications for cholesterol embolism, crystalline nephropathies and kidney stone disease. Nephrol Dial Transplant 29:507–514

    Article  CAS  Google Scholar 

  • Mulay SR, Kulkarni OP, Rupanagudi KV, Migliorini A, Darisipudi MN, Vilaysane A et al (2013) Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1beta secretion. J Clin Invest 123:236–246

    Article  CAS  Google Scholar 

  • Nakagawa N, Yuhki K, Kawabe J, Fujino T, Takahata O, Kabara M et al (2012) The intrinsic prostaglandin E2-EP4 system of the renal tubular epithelium limits the development of tubulointerstitial fibrosis in mice. Kidney Int 82:158–171

    Article  CAS  Google Scholar 

  • Okla M, Zaher W, Alfayez M, Chung S (2018) Inhibitory effects of toll-like Receptor 4, NLRP3 inflammasome, and interleukin-1beta on white adipocyte browning. Inflammation 41:626–642

    Article  CAS  Google Scholar 

  • Pulskens WP, Butter LM, Teske GJ, Claessen N, Dessing MC, Flavell RA et al (2014) Nlrp3 prevents early renal interstitial edema and vascular permeability in unilateral ureteral obstruction. PLoS ONE 9:e85775

    Article  Google Scholar 

  • Shahzad K, Bock F, Dong W, Wang H, Kopf S, Kohli S et al (2015) Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int 87:74–84

    Article  CAS  Google Scholar 

  • Shen HH, Yang YX, Meng X, Luo XY, Li XM, Shuai ZW et al (2018) NLRP3: a promising therapeutic target for autoimmune diseases. Autoimmun Rev 17:694–702

    Article  CAS  Google Scholar 

  • Shigeoka AA, Kambo A, Mathison JC, King AJ, Hall WF, da Silva Correia J et al (2010) Nod1 and nod2 are expressed in human and murine renal tubular epithelial cells and participate in renal ischemia reperfusion injury. J Immunol 184:2297–2304

    Article  CAS  Google Scholar 

  • Soares JLS, Fernandes FP, Patente TA, Monteiro MB, Parisi MC, Giannella-Neto D et al (2018) Gain-of-function variants in NLRP1 protect against the development of diabetic kidney disease: NLRP1 inflammasome role in metabolic stress sensing? Clin Immunol 187:46–49

    Article  CAS  Google Scholar 

  • Sogawa Y, Nagasu H, Iwase S, Ihoriya C, Itano S, Uchida A et al (2017) Infiltration of M1, but not M2, macrophages is impaired after unilateral ureter obstruction in Nrf2-deficient mice. Sci Rep 7:8801

    Article  Google Scholar 

  • Song ZH, Ji ZN, Lo CK, Dong TT, Zhao KJ, Li OT et al (2004) Chemical and biological assessment of a traditional chinese herbal decoction prepared from Radix Astragali and Radix Angelicae Sinensis: orthogonal array design to optimize the extraction of chemical constituents. Planta Med 70:1222–1227

    Article  CAS  Google Scholar 

  • Tsai YL, Hua KF, Chen A, Wei CW, Chen WS, Wu CY et al (2017) NLRP3 inflammasome: pathogenic role and potential therapeutic target for IgA nephropathy. Sci Rep 7:41123

    Article  CAS  Google Scholar 

  • Vilaysane A, Chun J, Seamone ME, Wang W, Chin R, Hirota S et al (2010) The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol 21:1732–1744

    Article  CAS  Google Scholar 

  • Wang X, Yi F (2015) Implication of pattern-recognition receptors in cardiovascular diseases. Antioxid Redox Signal 22:1130–1145

    Article  CAS  Google Scholar 

  • Wong DWL, Yiu WH, Chan KW, Li Y, Li B, Lok SWY et al (2018) Activated renal tubular Wnt/beta-catenin signaling triggers renal inflammation during overload proteinuria. Kidney Int 93:1367–1383

    Article  CAS  Google Scholar 

  • Yang SM, Ka SM, Hua KF, Wu TH, Chuang YP, Lin YW et al (2013) Antroquinonol mitigates an accelerated and progressive IgA nephropathy model in mice by activating the Nrf2 pathway and inhibiting T cells and NLRP3 inflammasome. Free Radic Bio Med 61:285–297

    Article  CAS  Google Scholar 

  • Yu G, Bai Z, Chen Z, Chen H, Wang G, Wang G et al (2017) The NLRP3 inflammasome is a potential target of ozone therapy aiming to ease chronic renal inflammation in chronic kidney disease. Int Immunopharmacol 43:203–209

    Article  CAS  Google Scholar 

  • Yu HH, Chiang BL (2014) Diagnosis and classification of IgA nephropathy. Autoimmun Rev 13:556–559

    Article  CAS  Google Scholar 

  • Zhang C, Boini KM, Xia M, Abais JM, Li X, Liu Q et al (2012) Activation of Nod-like receptor protein 3 inflammasomes turns on podocyte injury and glomerular sclerosis in hyperhomocysteinemia. Hypertension 60:154–162

    Article  CAS  Google Scholar 

  • Zhang L, Wang XZ, Li YS, Zhang L, Hao LR (2017) Icariin ameliorates IgA nephropathy by inhibition of nuclear factor kappa b/Nlrp3 pathway. FEBS Open Bio 7:54–63

    Article  CAS  Google Scholar 

  • Zhang W, Cai Y, Xu W, Yin Z, Gao X, Xiong S (2013) AIM2 facilitates the apoptotic DNA-induced systemic lupus erythematosus via arbitrating macrophage functional maturation. J Clin Immunol 33:925–937

    Article  Google Scholar 

  • Zhao C, Gillette DD, Li X, Zhang Z, Wen H (2014) Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation. J Biol Chem 289:17020–17029

    Article  CAS  Google Scholar 

  • Zhao J, Zhang H, Huang Y, Wang H, Wang S, Zhao C et al (2013) Bay11-7082 attenuates murine lupus nephritis via inhibiting NLRP3 inflammasome and NF-κB activation. Int Immunopharmacol 17:116–122

    Article  CAS  Google Scholar 

  • Zheng L, Zhang J, Yuan X, Tang J, Qiu S, Peng Z et al (2018) Fluorofenidone attenuates interleukin-1β production by interacting with NLRP3 inflammasome in unilateral ureteral obstruction. Nephrology 23:573–584

    Article  CAS  Google Scholar 

  • Zhou M, Tang W, Fu Y, Xu X, Wang Z, Lu Y et al (2015) Progranulin protects against renal ischemia/reperfusion injury in mice. Kidney Int 87:918–929

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, L., Tang, W., Yi, F. (2019). Role of Inflammasome in Chronic Kidney Disease. In: Liu, BC., Lan, HY., Lv, LL. (eds) Renal Fibrosis: Mechanisms and Therapies. Advances in Experimental Medicine and Biology, vol 1165. Springer, Singapore. https://doi.org/10.1007/978-981-13-8871-2_19

Download citation

Publish with us

Policies and ethics