Skip to main content

Advertisement

Log in

An update on the role of the inflammasomes in the pathogenesis of kidney diseases

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Innate immune response pathways play a critical role as the first line of defense. Initiation of an immune response requires sensors that can detect noxious stimuli within the cellular microenvironment. Inflammasomes are signaling platforms that are assembled in response to both microbe-specific and nonmicrobial antigens. Upon activation, proinflammatory cytokines are released to engage immune defenses and to trigger an inflammatory cell death referred to as pyroptosis. The aim of this review is to provide an overview of the current knowledge of the role of the inflammasomes in the pathogenesis of kidney diseases. As crystal deposition in the kidney is a frequent cause of acute kidney injury and chronic kidney disease in children, recent insights into mechanisms of inflammasome activation by renal crystals are highlighted. This may be of particular interest to pediatric patients and nephrologists in need of new therapeutic approaches. Lastly, current data findings that inflammasomes are not only of major importance in host defense but are also a key regulator of the intestinal microbiota and the progression of systemic diseases are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lech M, Grobmayr R, Ryu M, Lorenz G, Hartter I, Mulay SR, Susanti HE, Kobayashi KS, Flavell RA, Anders HJ (2014) Macrophage phenotype controls long-term AKI outcomes—kidney regeneration versus atrophy. J Am Soc Nephrol 25:292–304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157:1013–1022

    Article  CAS  PubMed  Google Scholar 

  3. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    Article  CAS  PubMed  Google Scholar 

  4. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Broderick L, De Nardo D, Franklin BS, Hoffman HM, Latz E (2015) The inflammasomes and autoinflammatory syndromes. Annu Rev Pathol 10:395–424

    Article  CAS  PubMed  Google Scholar 

  6. de Zoete MR, Palm NW, Zhu S, Flavell RA (2014) Inflammasomes. Cold Spring Harb Perspect Biol 6:a016287

    Article  PubMed  Google Scholar 

  7. Anders HJ, Muruve DA (2011) The inflammasomes in kidney disease. J Am Soc Nephrol 22:1007–1018

    Article  CAS  PubMed  Google Scholar 

  8. Leemans JC, Kors L, Anders HJ, Florquin S (2014) Pattern recognition receptors and the inflammasome in kidney disease. Nat Rev Nephrol 10:398–414

    Article  CAS  PubMed  Google Scholar 

  9. Anders HJ, Schaefer L (2014) Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J Am Soc Nephrol 25:1387–1400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Zhuang Y, Hu C, Ding G, Zhang Y, Huang S, Jia Z, Zhang A (2015) Albumin impairs renal tubular tight junctions via targeting the NLRP3 inflammasome. Am J Physiol Renal Physiol 308:F1012–F1019

    Article  CAS  PubMed  Google Scholar 

  11. Abais JM, Xia M, Li G, Chen Y, Conley SM, Gehr TW, Boini KM, Li PL (2014) Nod-like receptor protein 3 (NLRP3) inflammasome activation and podocyte injury via thioredoxin-interacting protein (TXNIP) during hyperhomocysteinemia. J Biol Chem 289:27159–27168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Shahzad K, Bock F, Dong W, Wang H, Kopf S, Kohli S, Al-Dabet MM, Ranjan S, Wolter J, Wacker C, Biemann R, Stoyanov S, Reymann K, Soderkvist P, Gross O, Schwenger V, Pahernik S, Nawroth PP, Grone HJ, Madhusudhan T, Isermann B (2015) Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int 87:74–84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD (2007) Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int 71:619–628

    Article  CAS  PubMed  Google Scholar 

  14. Kasimsetty SG, DeWolf SE, Shigeoka AA, McKay DB (2014) Regulation of TLR2 and NLRP3 in primary murine renal tubular epithelial cells. Nephron Clin Pract 127:119–123

    Article  CAS  PubMed  Google Scholar 

  15. Lorenz G, Darisipudi MN, Anders HJ (2014) Canonical and non-canonical effects of the NLRP3 inflammasome in kidney inflammation and fibrosis. Nephrol Dial Transplant 29:41–48

    Article  CAS  PubMed  Google Scholar 

  16. Homsi E, Janino P, de Faria JB (2006) Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int 69:1385–1392

    Article  CAS  PubMed  Google Scholar 

  17. Latz E (2010) The inflammasomes: mechanisms of activation and function. Curr Opin Immunol 22:28–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Hornung V, Latz E (2010) Critical functions of priming and lysosomal damage for NLRP3 activation. Eur J Immunol 40:620–623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Wu H, Ma J, Wang P, Corpuz TM, Panchapakesan U, Wyburn KR, Chadban SJ (2010) HMGB1 contributes to kidney ischemia reperfusion injury. J Am Soc Nephrol 21:1878–1890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Duncan JA, Gao X, Huang MT, O'Connor BP, Thomas CE, Willingham SB, Bergstralh DT, Jarvis GA, Sparling PF, Ting JP (2009) Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J Immunol 182:6460–6469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Rajan JV, Rodriguez D, Miao EA, Aderem A (2011) The NLRP3 inflammasome detects encephalomyocarditis virus and vesicular stomatitis virus infection. J Virol 85:4167–4172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Joly S, Ma N, Sadler JJ, Soll DR, Cassel SL, Sutterwala FS (2009) Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J Immunol 183:3578–3581

  23. Harder J, Franchi L, Munoz-Planillo R, Park JH, Reimer T, Nunez G (2009) Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-kappa B activation but proceeds independently of TLR signaling and P2X7 receptor. J Immunol 183:5823–5829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241

    Article  CAS  PubMed  Google Scholar 

  25. Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR, Tephly LA, Carter AB, Rothman PB, Flavell RA, Sutterwala FS (2008) The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA 105:9035–9040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Darisipudi MN, Thomasova D, Mulay SR, Brech D, Noessner E, Liapis H, Anders HJ (2012) Uromodulin triggers IL-1beta-dependent innate immunity via the NLRP3 inflammasome. J Am Soc Nephrol 23:1783–1789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G (2013) K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38:1142–1153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Lamkanfi M, Dixit VM (2012) Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol 28:137–161

    Article  CAS  PubMed  Google Scholar 

  30. van Bruggen R, Koker MY, Jansen M, van Houdt M, Roos D, Kuijpers TW, van den Berg TK (2010) Human NLRP3 inflammasome activation is Nox1-4 independent. Blood 115:5398–5400

    Article  PubMed  CAS  Google Scholar 

  31. Jin C, Flavell RA (2010) Molecular mechanism of NLRP3 inflammasome activation. J Clin Immunol 30:628–631

    Article  CAS  PubMed  Google Scholar 

  32. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Rock KL, Latz E, Ontiveros F, Kono H (2010) The sterile inflammatory response. Annu Rev Immunol 28:321–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140

    Article  CAS  PubMed  Google Scholar 

  35. Jin MS, Lee JO (2008) Structures of the toll-like receptor family and its ligand complexes. Immunity 29:182–191

    Article  CAS  PubMed  Google Scholar 

  36. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121

    Article  CAS  PubMed  Google Scholar 

  37. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, Miyake K, Zhang J, Lee WP, Muszynski A, Forsberg LS, Carlson RW, Dixit VM (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341:1246–1249

    Article  CAS  PubMed  Google Scholar 

  38. Vigano E, Mortellaro A (2013) Caspase-11: the driving factor for noncanonical inflammasomes. Eur J Immunol 43:2240–2245

    Article  CAS  PubMed  Google Scholar 

  39. Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92:501–509

    Article  CAS  PubMed  Google Scholar 

  40. Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, Dixit VM, Monack DM (2012) Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490:288–291

  41. Koyner JL, Garg AX, Thiessen-Philbrook H, Coca SG, Cantley LG, Peixoto A, Passik CS, Hong K, Parikh CR, TRIBE-AKI Consortium (2014) Adjudication of etiology of acute kidney injury: experience from the TRIBE-AKI multi-center study. BMC Nephrol 15:105

    Article  PubMed Central  PubMed  Google Scholar 

  42. Doi K, Ishizu T, Tsukamoto-Sumida M, Hiruma T, Yamashita T, Ogasawara E, Hamasaki Y, Yahagi N, Nangaku M, Noiri E (2014) The high-mobility group protein B1-Toll-like receptor 4 pathway contributes to the acute lung injury induced by bilateral nephrectomy. Kidney Int 86:316–326

    Article  CAS  PubMed  Google Scholar 

  43. Zhao H, Perez JS, Lu K, George AJ, Ma D (2014) Role of Toll-like receptor-4 in renal graft ischemia-reperfusion injury. Am J Physiol Renal Physiol 306:F801–F811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Wu H, Chen G, Wyburn KR, Yin J, Bertolino P, Eris JM, Alexander SI, Sharland AF, Chadban SJ (2007) TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 117:2847–2859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Kruger B, Krick S, Dhillon N, Lerner SM, Ames S, Bromberg JS, Lin M, Walsh L, Vella J, Fischereder M, Kramer BK, Colvin RB, Heeger PS, Murphy BT, Schroppel B (2009) Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc Natl Acad Sci USA 106:3390–3395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wu H, Steenstra R, de Boer EC, Zhao CY, Ma J, van der Stelt JM, Chadban SJ (2014) Preconditioning with recombinant high-mobility group box 1 protein protects the kidney against ischemia–reperfusion injury in mice. Kidney Int 85:824–832

    Article  CAS  PubMed  Google Scholar 

  47. Allam R, Darisipudi MN, Tschopp J, Anders HJ (2013) Histones trigger sterile inflammation by activating the NLRP3 inflammasome. Eur J Immunol 43:3336–3342

    Article  CAS  PubMed  Google Scholar 

  48. Allam R, Scherbaum CR, Darisipudi MN, Mulay SR, Hagele H, Lichtnekert J, Hagemann JH, Rupanagudi KV, Ryu M, Schwarzenberger C, Hohenstein B, Hugo C, Uhl B, Reichel CA, Krombach F, Monestier M, Liapis H, Moreth K, Schaefer L, Anders HJ (2012) Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J Am Soc Nephrol 23:1375–1388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Decleves AE, Caron N, Voisin V, Legrand A, Bouby N, Kultti A, Tammi MI, Flamion B (2012) Synthesis and fragmentation of hyaluronan in renal ischaemia. Nephrol Dial Transplant 27:3771–3781

    Article  CAS  PubMed  Google Scholar 

  50. Gao F, Koenitzer JR, Tobolewski JM, Jiang D, Liang J, Noble PW, Oury TD (2008) Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem 283:6058–6066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Ebid R, Lichtnekert J, Anders HJ (2014) Hyaluronan is not a ligand but a regulator of toll-like receptor signaling in mesangial cells: role of extracellular matrix in innate immunity. ISRN Nephrol 2014:714081

    Article  PubMed Central  PubMed  Google Scholar 

  52. Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, Eisenbarth SC, Florquin S, Flavell RA, Leemans JC, Sutterwala FS (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci USA 106:20388–20393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Shigeoka AA, Mueller JL, Kambo A, Mathison JC, King AJ, Hall WF, Correia Jda S, Ulevitch RJ, Hoffman HM, McKay DB (2010) An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia–reperfusion injury. J Immunol 185:6277–6285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Labbe K, McIntire CR, Doiron K, Leblanc PM, Saleh M (2011) Cellular inhibitors of apoptosis proteins cIAP1 and cIAP2 are required for efficient caspase-1 activation by the inflammasome. Immunity 35:897–907

    Article  CAS  PubMed  Google Scholar 

  55. Kim HJ, Lee DW, Ravichandran K, OK D, Akcay A, Nguyen Q, He Z, Jani A, Ljubanovic D, Edelstein CL (2013) NLRP3 inflammasome knockout mice are protected against ischemic but not cisplatin-induced acute kidney injury. J Pharmacol Exp Ther 346:465–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38:240–244

    Article  CAS  PubMed  Google Scholar 

  57. Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B, Volkmann N, Hanein D, Rouiller I, Reed JC (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25:713–724

    Article  CAS  PubMed  Google Scholar 

  58. Rusai K, Huang H, Sayed N, Strobl M, Roos M, Schmaderer C, Heemann U, Lutz J (2008) Administration of interleukin-1 receptor antagonist ameliorates renal ischemia-reperfusion injury. Transplant Int 21:572–580

    Article  CAS  Google Scholar 

  59. Dinarello CA, Simon A, van der Meer JW (2012) Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 11:633–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Dinarello CA (2011) Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117:3720–3732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Rider P, Carmi Y, Guttman O, Braiman A, Cohen I, Voronov E, White MR, Dinarello CA, Apte RN (2011) IL-1alpha and IL-1beta recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol 187:4835–4843

    Article  CAS  PubMed  Google Scholar 

  62. Xu D, Matsuo Y, Ma J, Koide S, Ochi N, Yasuda A, Funahashi H, Okada Y, Takeyama H (2010) Cancer cell-derived IL-1alpha promotes HGF secretion by stromal cells and enhances metastatic potential in pancreatic cancer cells. J Surg Oncol 102:469–477

    Article  CAS  PubMed  Google Scholar 

  63. Wolf JS, Chen Z, Dong G, Sunwoo JB, Bancroft CC, Capo DE, Yeh NT, Mukaida N, Van Waes C (2001) IL (interleukin)-1alpha promotes nuclear factor-kappaB and AP-1-induced IL-8 expression, cell survival, and proliferation in head and neck squamous cell carcinomas. Clin Cancer Res 7:1812–1820

    CAS  PubMed  Google Scholar 

  64. Lee JW, Nam WJ, Han MJ, Shin JH, Kim JG, Kim SH, Kim HR, Oh DJ (2011) Role of IL-1alpha in cisplatin-induced acute renal failure in mice. Korean J Intern Med 26:187–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Coccia M, Harrison OJ, Schiering C, Asquith MJ, Becher B, Powrie F, Maloy KJ (2012) IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J Exp Med 209:1595–1609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Bersudsky M, Luski L, Fishman D, White RM, Ziv-Sokolovskaya N, Dotan S, Rider P, Kaplanov I, Aychek T, Dinarello CA, Apte RN, Voronov E (2014) Non-redundant properties of IL-1alpha and IL-1beta during acute colon inflammation in mice. Gut 63:598–609

    Article  CAS  PubMed  Google Scholar 

  67. Puri TS, Shakaib MI, Chang A, Mathew L, Olayinka O, Minto AW, Sarav M, Hack BK, Quigg RJ (2010) Chronic kidney disease induced in mice by reversible unilateral ureteral obstruction is dependent on genetic background. Am J Physiol Renal Physiol 298:F1024–F1032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Vilaysane A, Chun J, Seamone ME, Wang W, Chin R, Hirota S, Li Y, Clark SA, Tschopp J, Trpkov K, Hemmelgarn BR, Beck PL, Muruve DA (2010) The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol 21:1732–1744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Pulskens WP, Butter LM, Teske GJ, Claessen N, Dessing MC, Flavell RA, Sutterwala FS, Florquin S, Leemans JC (2014) Nlrp3 prevents early renal interstitial edema and vascular permeability in unilateral ureteral obstruction. PLoS One 9:e85775

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Pulskens WP, Rampanelli E, Teske GJ, Butter LM, Claessen N, Luirink IK, van der Poll T, Florquin S, Leemans JC (2010) TLR4 promotes fibrosis but attenuates tubular damage in progressive renal injury. J Am Soc Nephrol 21:1299–1308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Chen K, Zhang J, Zhang W, Zhang J, Yang J, Li K, He Y (2013) ATP-P2X4 signaling mediates NLRP3 inflammasome activation: a novel pathway of diabetic nephropathy. Int J Biochem Cell Biol 45:932–943

    Article  CAS  PubMed  Google Scholar 

  72. Granata S, Masola V, Zoratti E, Scupoli MT, Baruzzi A, Messa M, Sallustio F, Gesualdo L, Lupo A, Zaza G (2015) NLRP3 inflammasome activation in dialyzed chronic kidney disease patients. PLoS One 10:e0122272

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Martin-Rodriguez S, Caballo C, Gutierrez G, Vera M, Cruzado JM, Cases A, Escolar G, Diaz-Ricart M (2015) TLR4 and NALP3 inflammasome in the development of endothelial dysfunction in uraemia. Eur J Clin Invest 45:160–169

    Article  CAS  PubMed  Google Scholar 

  74. Herlitz LC, D'Agati VD, Markowitz GS (2012) Crystalline nephropathies. Arch Pathol Lab Med 136:713–720

    Article  PubMed  Google Scholar 

  75. Kurts C, Panzer U, Anders HJ, Rees AJ (2013) The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol 13:738–753

    Article  CAS  PubMed  Google Scholar 

  76. Jamal A, Ramzan A (2004) Renal and post-renal causes of acute renal failure in children. J Coll Physicians Surg Pak 14:411–415

    PubMed  Google Scholar 

  77. Organ M, Norman RW (2011) Acute reversible kidney injury secondary to bilateral ureteric obstruction. Can Urol Assoc J 5:392–396

    Article  PubMed Central  PubMed  Google Scholar 

  78. Gillen DL, Worcester EM, Coe FL (2005) Decreased renal function among adults with a history of nephrolithiasis: a study of NHANES III. Kidney Int 67:685–690

    Article  PubMed  Google Scholar 

  79. Colombaro V, Jadot I, Decleves AE, Voisin V, Giordano L, Habsch I, Malaisse J, Flamion B, Caron N (2015) Lack of hyaluronidases exacerbates renal post-ischemic injury, inflammation, and fibrosis. Kidney Int. doi:10.1038/ki.2015.53

    PubMed  Google Scholar 

  80. Knauf F, Asplin JR, Granja I, Schmidt IM, Moeckel GW, David RJ, Flavell RA, Aronson PS (2013) NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int 84:895–901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Knauf F, Ko N, Jiang Z, Robertson WG, Van Itallie CM, Anderson JM, Aronson PS (2011) Net intestinal transport of oxalate reflects passive absorption and SLC26A6-mediated secretion. J Am Soc Nephrol 22:2247–2255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Jiang Z, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, Binder HJ, Aronson PS (2006) Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 38:474–478

    Article  CAS  PubMed  Google Scholar 

  83. Ko N, Knauf F, Jiang Z, Markovich D, Aronson PS (2012) Sat1 is dispensable for active oxalate secretion in mouse duodenum. Am J Physiol Cell Physiol 303:C52–C57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Cochat P, Rumsby G (2013) Primary hyperoxaluria. N Engl J Med 369:649–658

    Article  CAS  PubMed  Google Scholar 

  85. Hueppelshaeuser R, von Unruh GE, Habbig S, Beck BB, Buderus S, Hesse A, Hoppe B (2012) Enteric hyperoxaluria, recurrent urolithiasis, and systemic oxalosis in patients with Crohn's disease. Pediatr Nephrol 27:1103–1109

    Article  PubMed  Google Scholar 

  86. Hoppe B, Langman CB (2003) A United States survey on diagnosis, treatment, and outcome of primary hyperoxaluria. Pediatr Nephrol 18:986–991

    Article  PubMed  Google Scholar 

  87. Mulay SR, Kulkarni OP, Rupanagudi KV, Migliorini A, Darisipudi MN, Vilaysane A, Muruve D, Shi Y, Munro F, Liapis H, Anders HJ (2013) Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1beta secretion. J Clin Invest 123:236–246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Kurts C (2013) A crystal-clear mechanism of chronic kidney disease. Kidney Int 84:859–861

    Article  CAS  PubMed  Google Scholar 

  89. Knoepfelmacher M, Rocha R, Salgado LR, Semer M, Voss D, Wajchenberg BL, Liberman B (1994) Nephropathic cystinosis: report of 2 cases and review of the literature. Rev Assoc Med Bras 40:43–46

    CAS  PubMed  Google Scholar 

  90. Emma F, Nesterova G, Langman C, Labbe A, Cherqui S, Goodyer P, Janssen MC, Greco M, Topaloglu R, Elenberg E, Dohil R, Trauner D, Antignac C, Cochat P, Kaskel F, Servais A, Wuhl E, Niaudet P, Van't Hoff W, Gahl W, Levtchenko E (2014) Nephropathic cystinosis: an international consensus document. Nephrol Dial Transplant 29[Suppl 4]:iv87–iv94

    Article  PubMed Central  PubMed  Google Scholar 

  91. Prencipe G, Caiello I, Cherqui S, Whisenant T, Petrini S, Emma F, De Benedetti F (2014) Inflammasome activation by cystine crystals: implications for the pathogenesis of cystinosis. J Am Soc Nephrol 25:1163–1169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Chevalier RL (2014) The proximal tubule in cystinosis: fight or flight? J Am Soc Nephrol 25:1131–1132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Coll RC, Robertson AA, Chae JJ, Higgins SC, Munoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A, Croker DE, Butler MS, Haneklaus M, Sutton CE, Nunez G, Latz E, Kastner DL, Mills KH, Masters SL, Schroder K, Cooper MA, O'Neill LA (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21:248–255

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Grenier JM, Wang L, Manji GA, Huang WJ, Al-Garawi A, Kelly R, Carlson A, Merriam S, Lora JM, Briskin M, DiStefano PS, Bertin J (2002) Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1. FEBS Lett 530:73–78

    Article  CAS  PubMed  Google Scholar 

  95. Mankan AK, Kubarenko A, Hornung V (2012) Immunology in clinic review series; focus on autoinflammatory diseases: inflammasomes: mechanisms of activation. Clin Exp Immunol 167:369–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, Flavell RA (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745–757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang JP, Brown EM, Frankel G, Levy M, Katz MN, Philbrick WM, Elinav E, Finlay BB, Flavell RA (2014) NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156:1045–1059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Lech M, Avila-Ferrufino A, Skuginna V, Susanti HE, Anders HJ (2010) Quantitative expression of RIG-like helicase, NOD-like receptor and inflammasome-related mRNAs in humans and mice. Int Immunol 22:717–728

    Article  CAS  PubMed  Google Scholar 

  99. Anand PK, Malireddi RK, Lukens JR, Vogel P, Bertin J, Lamkanfi M, Kanneganti TD (2012) NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488:389–393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179–185

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Strowig T, Henao Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286

    Article  CAS  PubMed  Google Scholar 

  102. Anders HJ, Andersen K, Stecher B (2013) The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int 83:1010–1016

    Article  CAS  PubMed  Google Scholar 

  103. Goncalves S, Pecoits-Filho R, Perreto S, Barberato SH, Stinghen AE, Lima EG, Fuerbringer R, Sauthier SM, Riella MC (2006) Associations between renal function, volume status and endotoxaemia in chronic kidney disease patients. Nephrol Dial Transplant 21:2788–2794

    Article  CAS  PubMed  Google Scholar 

  104. Szeto CC, Kwan BC, Chow KM, Lai KB, Chung KY, Leung CB, Li PK (2008) Endotoxemia is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients. Clin J Am Soc Nephrol 3:431–436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Vaziri ND, Dure-Smith B, Miller R, Mirahmadi MK (1985) Pathology of gastrointestinal tract in chronic hemodialysis patients: an autopsy study of 78 cases. Am J Gastroenterol 80:608–611

    CAS  PubMed  Google Scholar 

  106. Magnusson M, Magnusson KE, Sundqvist T, Denneberg T (1990) Increased intestinal permeability to differently sized polyethylene glycols in uremic rats: effects of low- and high-protein diets. Nephron 56:306–311

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

F.K. is supported by funding from the Deutsche Forschungsgemeinschaft (DFG, project KN 1148/2-1) and the Hans Gessler Stiftung.

Conflict of interest

The authors have no relevant affiliation or financial involvement with any organizations or entity with a financial interest or financial conflict with the subject matter or materials discussed in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Knauf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darisipudi, M.N., Knauf, F. An update on the role of the inflammasomes in the pathogenesis of kidney diseases. Pediatr Nephrol 31, 535–544 (2016). https://doi.org/10.1007/s00467-015-3153-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-015-3153-z

Keywords

Navigation