Skip to main content

Physiological Role of Ascorbic Acid Recycling Enzymes in Plants

  • Chapter
  • First Online:
Ascorbic Acid in Plant Growth, Development and Stress Tolerance

Abstract

Ascorbic acid (AsA) is oxidized to monodehydroascorbate (MDHA), which dissociates to form dehydroascorbate (DHA) instead of detoxifying reactive oxygen species (ROS). MDHA and DHA are directly reduced to AsA by two reductases, monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), respectively. They contribute to maintaining AsA contents and its redox status, which are dependent on the rate of its biosynthesis and recycling. The primary functions of MDHAR and DHAR appear to recycle AsA in the AsA-glutathione (GSH) cycles for diminishing ROS produced during photosynthesis in leaves. In fruits, MDHAR and DHAR might function in a complementary manner to maintain the AsA redox status during fruit development and ripening. Also, MDHAR and DHAR function as part of the AsA-GSH cycles in the different plant cellular compartments, like chloroplasts, mitochondria, and peroxisomes. Taking into account the physiological functions of AsA in plants, MDHAR and DHAR as AsA regenerators are paid much attention in engineering of stress tolerance and nutrient values. Transgenic plants overexpressing MDHAR and DHAR exhibit an increase in AsA contents and enhanced stress tolerance. This chapter focuses on the primary structures and gene expressions of plant MDHAR and DHAR isozymes as well as their contributions to the AsA contents in the leaves and fruits of plants. Also, this chapter provides the information about the roles of MDHAR and DHAR in the chloroplast, the cytosol, the guard cells, and stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agius F, González-Lamothe R, Caballero JL, Muñoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a d-galacturonic acid reductase. Nat Biotechnol 21(2):177–181

    Article  CAS  PubMed  Google Scholar 

  • Amako K, Ushimaru T, Ishikawa A, Ogishi Y, Kishimoto R, Goda K (2006) Heterologous expression of dehydroascorbate reductase from rice and its application to determination of dehydroascorbate concentrations. J Nutr Sci Vitaminol (Tokyo) 52(2):89–95

    Article  CAS  Google Scholar 

  • Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E, Ahmad I, Tuteja R, Tuteja N (2014) Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. Protoplasma 251(6):1265–1283

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Badejo AA, Fujikawa Y, Esaka M (2009) Gene expression of ascorbic acid biosynthesis related enzymes of the Smirnoff-Wheeler pathway in acerola (Malpighia glabra). J Plant Physiol 166(6):652–660

    Article  CAS  PubMed  Google Scholar 

  • Barth C, Moeder W, Klessig DF, Conklin PL (2004) The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol 134(4):1784–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoli CG, Yu J, Gomez F, Fernandez L, Mcintosh L, Foyer CH (2006) Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57(8):1621–1631

    Article  CAS  PubMed  Google Scholar 

  • Chang LM, Sun H, Yang H, Wang XH, Su ZZ, Chen F, Wei W (2017) Over-expression of dehydroascorbate reductase enhances oxidative stress tolerance in tobacco. Electron J Biotechnol 25:1–8

    Article  CAS  Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16(5):1143–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol 142(2):775–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278(47):46869–46877

    Article  CAS  PubMed  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8(4):e23681

    Article  PubMed  Google Scholar 

  • Conklin PL (2001) Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ 24(4):383–394

    Article  CAS  Google Scholar 

  • Cruz-Rus E, Amaya I, Sánchez-Sevilla JF, Botella MA, Valpuesta V (2011) Regulation of ÊŸ-ascorbic acid content in strawberry fruits. J Exp Bot 62(12):4191–4201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey MW, Van Montagu M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J (2000) Plant ÊŸ-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80(7):825–860

    Article  CAS  Google Scholar 

  • Del Rio LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141(2):330–335

    Article  PubMed  PubMed Central  Google Scholar 

  • Dipierro S, Borraccino G (1991) Dehydroascorbate reductase from potato-tubers. Phytochemistry 30(2):427–429

    Article  CAS  Google Scholar 

  • Eastmond PJ (2007) MONODEHYROASCORBATE REDUCTASE4 is required for seed storage oil hydrolysis and postgerminative growth in Arabidopsis. Plant Cell 19(4):1376–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127(1):57–65

    Article  CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225(5):1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Eltayeb AE, Yamamoto S, Habora MEE, Yin L, Tsujimoto H, Tanaka K (2011) Transgenic potato overexpressing Arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide, drought and salt stresses. Breed Sci 61(1):3–10

    Article  CAS  Google Scholar 

  • Eltelib HA, Badejo AA, Fujikawa Y, Esaka M (2011) Gene expression of monodehydroascorbate reductase and dehydroascorbate reductase during fruit ripening and in response to environmental stresses in acerola (Malpighia glabra). J Plant Physiol 168(6):619–627

    Article  CAS  PubMed  Google Scholar 

  • Eltelib HA, Fujikawa Y, Esaka M (2012) Overexpression of the acerola (Malpighia glabra) monodehydroascorbate reductase gene in transgenic tobacco plants results in increased ascorbate levels and enhanced tolerance to salt stress. S Afr J Bot 78:295–301

    Article  CAS  Google Scholar 

  • Eskling M, Arvidsson P, Akerlunde HE (1997) The xanthophyll cycle, its regulation and components. Physiol Plant 100(4):806–816

    Article  CAS  Google Scholar 

  • Feng H, Liu W, Zhang Q, Wang X, Wang X, Duan X, Li F, Huang L, Kang Z (2014a) TaMDHAR4, a monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striiformis f. sp. tritici. Plant Physiol Biochem 76:7–16

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Wang X, Zhang Q, Fu Y, Feng C, Wang B, Huang L, Kang Z (2014b) Monodehydroascorbate reductase gene, regulated by the wheat PN-2013 miRNA, contributes to adult wheat plant resistance to stripe rust through ROS metabolism. Biochim Biophys Acta 1839(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Fomenko DE, Gladyshev VN (2002) CxxS: fold-independent redox motif revealed by genome-wide searches for thiol/disulfide oxidoreductase function. Protein Sci 11(10):2285–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Lelandais M (1996) A comparison of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasmalemma membranes of pea leaf mesophyll cells. J Plant Physiol 148(3–4):391–398

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17(7):1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer C, Rowell J, Walker D (1983) Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta 157(3):239–244

    Article  CAS  PubMed  Google Scholar 

  • Gallie DR (2013) The role of ÊŸ-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64(2):443–443

    Article  Google Scholar 

  • Grefen C, Donald N, Hashimoto K, Kudla J, Schumacher K, Blatt MR (2010) A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J 64(2):355–365

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Nishimura M (2003) Entering a new era of research on plant peroxisomes. Curr Opin Plant Biol 6(6):577–582

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Asada K (1984) Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiol 25(1):85–92

    CAS  Google Scholar 

  • Hu JP, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24(6):2279–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ioannidi E, Kalamaki MS, Engineer C, Pateraki I, Alexandrou D, Mellidou I, Giovannonni J, Kanellis AK (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60:663–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez A, Hernandez JA, Del Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114(1):275–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston EJ, Rylott EL, Beynon E, Lorenz A, Chechik V, Bruce NC (2015) Monodehydroascorbate reductase mediates TNT toxicity in plants. Science 349(6252):1072–1075

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Urano J, Maki Y, Ushimaru T (1997) Purification and characterization of dehydroascorbate reductase from rice. Plant Cell Physiol 38(2):173–178

    Article  CAS  Google Scholar 

  • Kavitha K, George S, Venkataraman G, Parida A (2010) A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92(10):1321–1329

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Kim IS, Bae MJ, Choe YH, Kim YH, Park HM, Kang HG, Yoon HS (2013) Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica). Planta 237(6):1613–1625

    Article  CAS  PubMed  Google Scholar 

  • Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YM, Kwak SS (2003) Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J Plant Physiol 160(4):347–353

    Article  CAS  PubMed  Google Scholar 

  • Lado J, Alos E, Rodrigo MJ, Zacarias L (2015) Light avoidance reduces ascorbic acid accumulation in the peel of Citrus fruit. Plant Sci 231:138–147

    Article  CAS  PubMed  Google Scholar 

  • Leterrier M, Corpas FJ, Barroso JB, Sandalio LM, Del Río LA (2005) Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol 138(4):2111–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010a) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant 139(4):421–434

    CAS  PubMed  Google Scholar 

  • Li M, Ma F, Liang D, Li J, Wang Y (2010b) Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi. PLoS One 5(12):e14281

    Article  PubMed  PubMed Central  Google Scholar 

  • Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43(6):900–914

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wang L, Gu L, Zhao W, Su H, Cheng X (2015) Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry. Food Chem 188:399–405

    Article  CAS  PubMed  Google Scholar 

  • Lunde C, Baumann U, Shirley NJ, Drew DP, Fincher GB (2006) Gene structure and expression pattern analysis of three monodehydroascorbate reductase (Mdhar) genes in Physcomitrella patens: implications for the evolution of the MDHAR family in plants. Plant Mol Biol 60(2):259–275

    Article  CAS  PubMed  Google Scholar 

  • Mano J, Hideg E, Asada K (2004) Ascorbate in thylakoid lumen functions as an alternative electron donor to photosystem II and photosystem I. Arch Biochem Biophys 429(1):71–80

    Article  CAS  PubMed  Google Scholar 

  • Mccartney AW, Greenwood JS, Fabian MR, White KA, Mullen RT (2005) Localization of the tomato bushy stunt virus replication protein p33 reveals a peroxisome-to-endoplasmic reticulum sorting pathway. Plant Cell 17(12):3513–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Miyake C, Asada K (1994) Ferredoxin-dependent photoreduction of the monodehydroascorbate radical in spinach thylakoids. Plant Cell Physiol 35(4):539–549

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89(7):841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noshi M, Hatanaka R, Tanabe N, Terai Y, Maruta T, Shigeoka S (2016) Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis. Biosci Biotechnol Biochem 80(5):870–877

    Article  CAS  PubMed  Google Scholar 

  • Noshi M, Yamada H, Hatanaka R, Tanabe N, Tamoi M, Shigeoka S (2017) Arabidopsis dehydroascorbate reductase 1 and 2 modulate redox states of ascorbate-glutathione cycle in the cytosol in response to photooxidative stress. Biosci Biotechnol Biochem 81(3):523–533

    Article  CAS  PubMed  Google Scholar 

  • Obara K, Sumi K, Fukuda H (2002) The use of multiple transcription starts causes the dual targeting of Arabidopsis putative monodehydroascorbate reductase to both mitochondria and chloroplasts. Plant Cell Physiol 43(7):697–705

    Article  CAS  PubMed  Google Scholar 

  • Ostergaard J, Persiau G, Davey MW, Bauw G, Van Montagu M (1997) Isolation of a cDNA coding for ÊŸ-galactono-gamma-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. Purification, characterization, cDNA cloning, and expression in yeast. J Biol Chem 272(48):30009–30016

    Article  CAS  PubMed  Google Scholar 

  • Palma JM, Corpas FJ, Del Rio LA (2009) Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology. Proteomics 9(9):2301–2312

    Article  CAS  PubMed  Google Scholar 

  • Qin A, Shi Q, Yu X (2011) Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes. Mol Biol Rep 38(3):1557–1566

    Article  CAS  PubMed  Google Scholar 

  • Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber AP, Olsen LJ, Hu J (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150(1):125–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimaoka T, Yokota A, Miyake C (2000) Purification and characterization of chloroplast dehydroascorbate reductase from spinach leaves. Plant Cell Physiol 41(10):1110–1118

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3(3):229–235

    Article  CAS  PubMed  Google Scholar 

  • Stevens R, Page D, Gouble B, Garchery C, Zamir D, Causse M (2008) Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ 31(8):1086–1096

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126(1):45–51

    Article  CAS  Google Scholar 

  • Szarka A, Tomasskovics B, Banhegyi G (2012) The ascorbate-glutathione-alpha-tocopherol triad in abiotic stress response. Int J Mol Sci 13(4):4458–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szarka A, Banhegyi G, Asard H (2013) The inter-relationship of ascorbate transport, metabolism and mitochondrial, plastidic respiration. Antioxid Redox Signal 19(9):1036–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang ZX, Yang HL (2013) Functional divergence and catalytic properties of dehydroascorbate reductase family proteins from Populus tomentosa. Mol Biol Rep 40(8):5105–5114

    Article  CAS  PubMed  Google Scholar 

  • Tripathy BC, Oelmuller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7(12):1621–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urano J, Nakagawa T, Maki Y, Masumura T, Tanaka K, Murata N, Ushimaru T (2000) Molecular cloning and characterization of a rice dehydroascorbate reductase. FEBS Lett 466(1):107–111

    Article  CAS  PubMed  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163(11):1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Wang C-F, Huang L-L, Buchenauer H, Han Q-M, Zhang H-C, Kang Z-S (2007) Histochemical studies on the accumulation of reactive oxygen species (O2 − and H2O2) in the incompatible and compatible interaction of wheat Puccinia striiformis f. sp. tritici. Physiol Mol Plant Pathol 71(4–6):230–239

    Article  CAS  Google Scholar 

  • Wang GL, Xu ZS, Wang F, Li MY, Tan GF, Xiong AS (2015) Regulation of ascorbic acid biosynthesis and recycling during root development in carrot (Daucus carota L.) Plant Physiol Biochem 94:10–18

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhu X, Chen Y, Gong Y, Liu L (2013) Expression profiling of genes involved in ascorbate biosynthesis and recycling during fleshy root development in radish. Plant Physiol Biochem 70:269–277

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231(3):609–621

    Article  CAS  PubMed  Google Scholar 

  • Yoon HS, Lee H, Lee IA, Kim KY, Jo J (2004) Molecular cloning of the monodehydroascorbate reductase gene from Brassica campestris and analysis of its mRNA level in response to oxidative stress. Biochim Biophys Acta 1658(3):181–186

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Tamaoki M, Shikano T, Nakajima N, Ogawa D, Ioki M, Aono M, Kubo A, Kamada H, Inoue Y, Saji H (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47(2):304–308

    Article  CAS  PubMed  Google Scholar 

  • Zhang YJ, Wang W, Yang HL, Li Y, Kang XY, Wang XR, Yang ZL (2015) Molecular properties and functional divergence of the dehydroascorbate reductase gene family in lower and higher plants. PLoS One 10(12):e0145038

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Grant-in-Aid for Scientific Research; JSPS KAKENHI Grant Numbers JP15K07394, JP24580143, JP21580113, JP19580108, and for Grant-in-Aid for JSPS Research Fellow; JSPS KAKENHI Grant Number JP17J00827.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muneharu Esaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suekawa, M., Fujikawa, Y., Esaka, M. (2017). Physiological Role of Ascorbic Acid Recycling Enzymes in Plants. In: Hossain, M., Munné-Bosch, S., Burritt, D., Diaz-Vivancos, P., Fujita, M., Lorence, A. (eds) Ascorbic Acid in Plant Growth, Development and Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-319-74057-7_14

Download citation

Publish with us

Policies and ethics